Facility for Antiproton and Ion Research (FAIR)

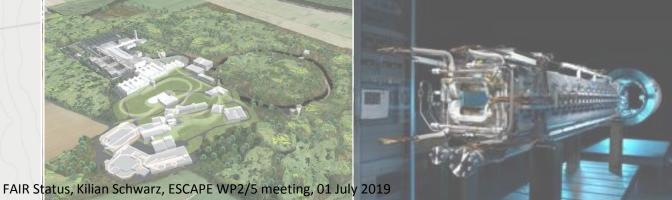
(under construction in Darmstadt, Germany)

Status of FAIR

- challenges in data processing in the context of EOSC and the FAIR principles

Kilian Schwarz

(with slides from J. Eschke and M. Al-Turany)

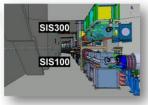

GSI GmbH

ESCAPE WP2/5 meeting, Amsterdam, 01 July 2019

FAIR: Facility for Antiproton and Ion Research – A World-Wide Unique Accelerator Facility

Romania

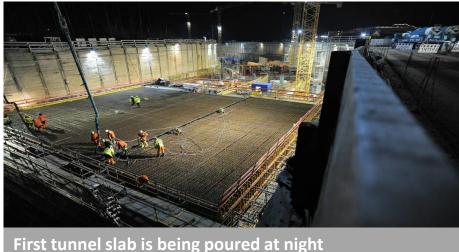
Status of FAIR Project: Civil Construction Progress since official start on 4th of July 2017



3.2 km beamlines Total area > 200 000 m² Area buildings ~ 98 000 m² Usable area ~ 135 000 m²

Volume of buildings ~ 1 049 000 m³Substructure: ~ 1500 pillars, up to 65 m deep

SIS100/300 tunnel



Status of FAIR Project: Civil Construction

Upgraded SIS18 completed ready for FAIR and FAIR phase 0

construction timeline:

- civil construction completed in 2023
- installation of accelerators and experiments 2022 - 2024
- start of pilot beams in 2025

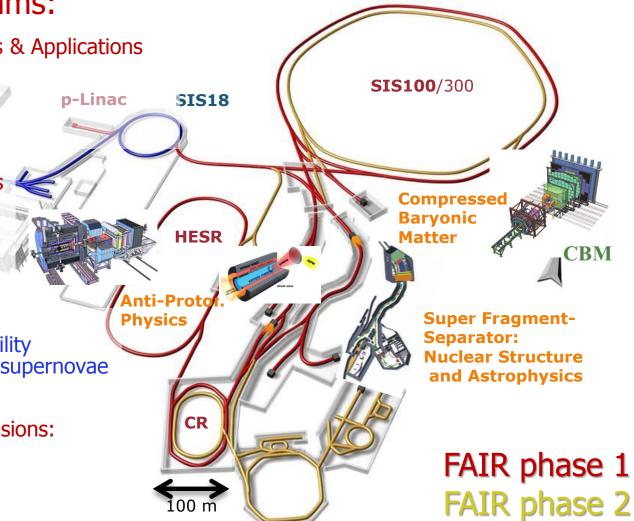
Facility for Antiproton & Ion Research

Experimental programs:

APPA: Atomic & Plasma Physics & Applications

- Highly charged atomsPlasma physics
- Radiobiology
- ➤ Material science

CBM: Nucleus-nucleus collisions


- Nuclear matter at neutron star core densities
- Phase transitions from hadrons to quarks

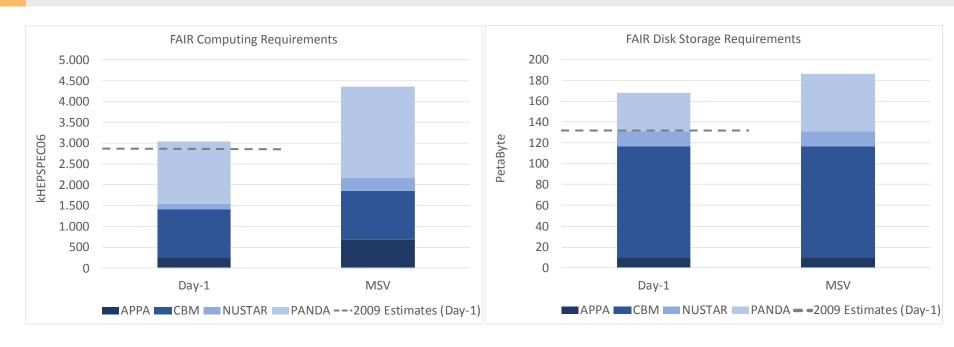
NUSTAR: Rare Isotope beams

- Nuclear structure far off stability
- Nucleosynthesis in stars and supernovae

PANDA: Antiproton-proton collisions:

- Charmed hadrons (XYZ)
- ➤ Gluonic matter and hybrids
- > Hadron structure
- Double Lambda hypernuclei

FAIR Collaborations


Computing at FAIR

CBM APPA 1 TByte/s into online farms 35 PByte/year on disk ~300.000 cores at Tier 0 ~100.000 cores distributed PANDA NUSTAR

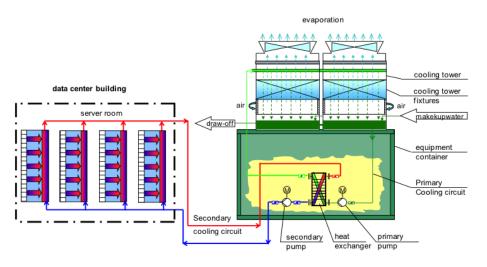
> M. Al-Turany, Perspektiven für HEP Software und Computing in Deutschland

Computing – step 1: Experiment requirements determined

Assumptions for resource requirements: Day-1 and MSV detector setups, nominal accelerator performance, multi-year integrated values (data lifetime)

FAIR Data Center

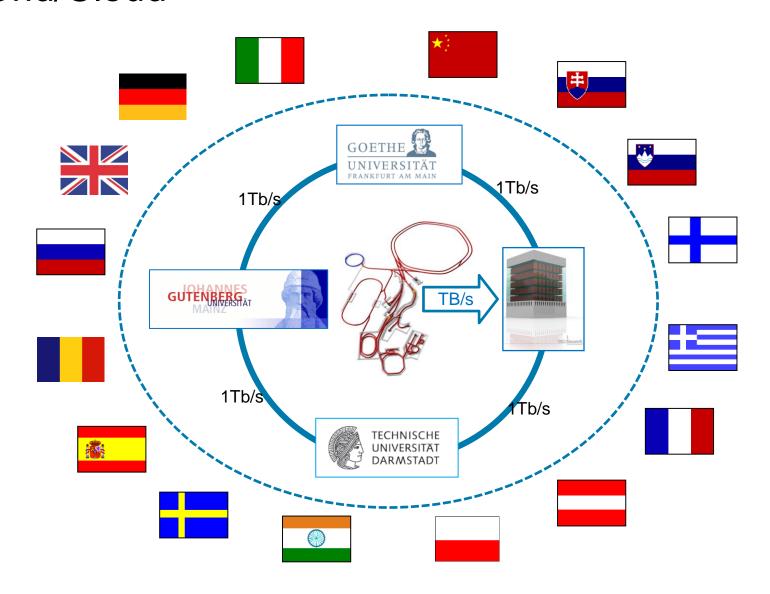
A common data center for FAIR (Green IT Cube)

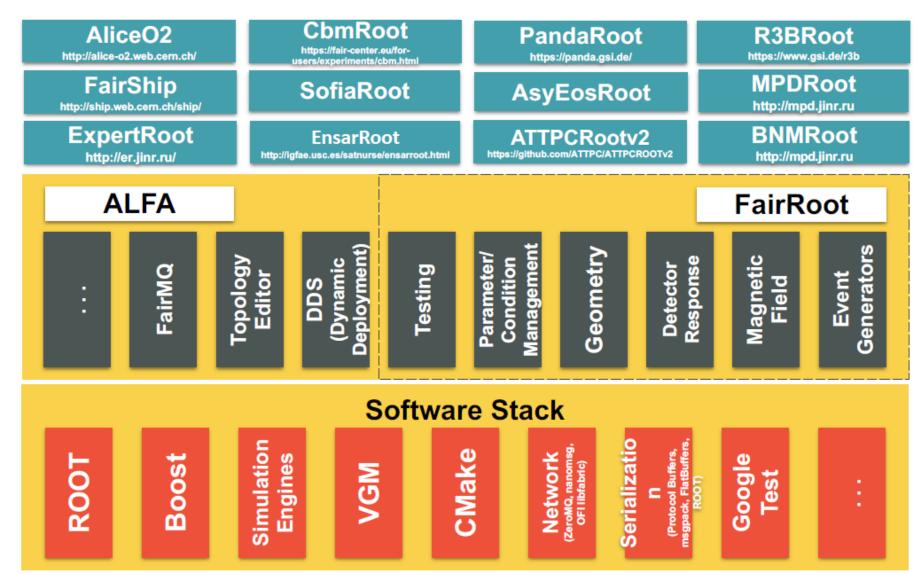

CBM FLES

- + 60'000 CPU cores
 - To perform online a full event reconstruction on the 1 TB/s input data stream
- +? GPUs
 - To speed up the reconstruction

Panda online

- + 66'000 CPU cores
 - To perform online a full event reconstruction on the 300 GB/s input data stream
- +? GPUs
 - To speed up the reconstruction


Dynamically allocated resources for exclusive usage and limited time



6 floors, 4.645 sqm room for 768 19" racks (2,2m) 4 MW cooling (baseline) Max cooling power 12 MW Fully redundant (N+1) PUE <1.07

FAIR Computing: T0/T1 MAN (Metropolitan Area Network) & Grid/Cloud

M. Al-Turany, Perspektiven für HEP Software und Computing in Deutschland

FAIR status/requirements computing:

data management

- 2 large experiments with similar requirements as LHC and several smaller non HEP like experiments targeting many different areas of research
- a common data management infrastructure has to be created which fulfills requirements of all experiments.

software development

- FairRoot is already being used by all FAIR experiments and additionally by some non FAIR experiments.
- software needs to support continuous data read out and complex online processing for event selection at high data rates.
- online and offline processing needs to become faster and more efficient, also by using new architectures and algorithms.

FAIR status/requirements computing:

- data/software access in the context of EOSC
 - In order to be able to publish at least parts of the data FAIR is in the process of developing corresponding MoUs.
 - The FAIR analysis software (FairRoot) should be made accessible via the software and service repository developed in the context of ESCAPE.

FAIR paradigm

the FAIR paradigm is planned to be introduced (at least to a large extend) for a consistent data management system which is being developed based to a large extend on common systems and available technologies. Also a meta data system under consideration of the DOI/data cite requirements is under development.

FAIR status/requirements computing/ESCAPE WP2/questionaire:

- Data production
 - 1 TB/s into online farm, 10 GB/s on disk
 - file size: ALICE: TF-10 GB, CTF-2 GB (FAIR not yet decided)
 - simulated event size (CBM): 250 kB
 - primary data compressed by factor 7 (zip)
 - primary data will be archived
- Data model
 - at least 2 replicas: 1 at T0, 1 at T1
 - data formats: RAW, (ESD), AOD
 - data lifecycles still to be defined
 - processing campaigns are planned, how often still tbd
 - raw data will be reprocessed periodically once per year
 - searchable meta data will most likely be needed

FAIR status/requirements computing/ESCAPE WP2/questionaire:

- Data access and processing
 - raw data processing in quasi-online mode for event selection and data reduction. Combination of FPGAs (1st stage) and CPU/GPU (2nd stage). 1/100th-1/1000th stored on disk. Data are reprocessed offline to generate AOD needed for final analysis.
 - protocols: xroot and root, Apache arrow
 - data cache yes, read ahead cache no
 - QoS only disk (production/non production) and tape
 - file popularity management service needed
 - data are read directly from storage
 - files are read fully or random parts
 - impact of remote data access evaluated
 - no data processing from tape
 - most likely intelligent data lake will orchestrate data movement. Several WMS under investigation
 - CLIs, APIs, Web Interfaces needed
 - HPC facilities used, no MPI jobs but MQ
 - interested in event-driven data processing
 - raw data have replicas, derived formats can be reproduced
 - temporary unavailable data access leads to loss of time

FAIR status/requirements computing/ESCAPE WP2/questionaire:

- Data access control
 - open access after a period of 1 year
 - no anonymous data access
 - all members of collaboration should have access
 - reading no groups with specific privileges, only selected users can write to critical data directories
 - most likely no access right information via database
 - Token based authentification planned (Sci-Tokens)
- AAI contact person
 - not yet clear. For the time being take me
- > 1000 active end-users
- user access via web browser (smaller experiments), via terminal and native application
- currently user authentication via ssh keys and X509, EduGain or similar planned
 - authorisation via Linux groups
- user registration via LDAP & DB and experiment hosted Web services
- data access via http and xrootd protocol. Privileges as user have on local Linux file system

FAIR interest in ESCAPE

- ESCAPE takes place right before the official start of FAIR.
- within ESCAPE essential IT ingredients are being developed, especially infrastructures for distributed data management and computing, which are needed by FAIR.
- FAIR hopes to profit from taking part in ESCAPE by getting important support and ideas for setting up their own infrastructure for distributed computing.