

Probing new physics with Coherent Elastic Neutrino-Nucleus Scattering and the future Ricochet experiment

Thomas Salagnac On the behalf of the Ricochet collaboration

GDR Neutrino 2019 25/06/2019

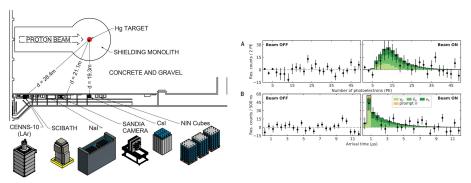
Coherent Elastic Neutrino-Nucleus Scattering

Ζo ■ Cross-section scale as N² (N: number of neutrons) Neutrir $\frac{d\sigma}{d\cos\theta} = \frac{G^2}{8\pi} [Z(4\sin^2\theta_w - 1) + N^2] E^2(1 + \cos\theta)$ arXiv: 1708.01294 \rightarrow Allow small target of heavy elements 133Cs CEvNS - v. ¹²⁷I CC - Pb v. NIN total 127 CEvNS - IBD ---- Pb v. NIN 1n ----- Pb v. NIN 2n ^{nat}Ge CEvNS ••• v.-е 40Ar CEvNS ---- ²³Na CEvNS Cross-section (10⁻³⁸ cm²) 10 10~ \rightarrow Hard to detect in practice 10-5 15 Neutrino Energy (MeV) Probing new physics with CEvNS and the future Ricochet experiment

Neutrino

25/05/2019 1 / 20

T. Salagnac

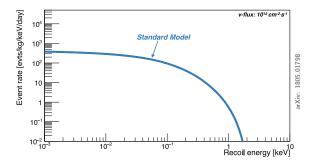

- - \rightarrow Interesting to detect neutrinos at low energy
- No intrinsic threshold

CEvNS: Coherent Elastic Neutrino-Nucleus Scattering

- Small nuclear recoil energy: sub-keV

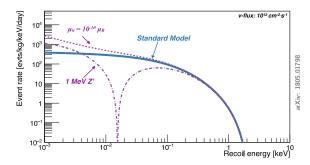
COHERENT: First unambiguous detection of CEvNS

The COHERENT experiment consists in multiple detectors placed in the "neutrino alley" at the SNS emitting high energy neutrinos (~ 50 MeV)


arXiv: 1708.01294

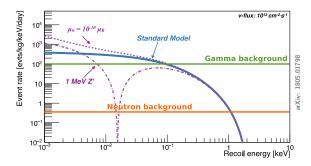
In August 2017, they reported the first unambiguous CEvNS detection at the 6.7 σ confidence level with their 14 kg Csl[Na] detector and a 4.25 keV energy threshold.

They observed a clean sample of $\sim 134\pm22~{\sf CEvNS}$ events thanks to their beam ON/OFF residual.


Change of paradigm: from discovery to a precision measurement at low-energy

Example: Nuclear recoil spectrum inside 1kg Ge target at $\sim 8\,{\rm m}$ of the 58 MWth ILL reactor

3 / 20


Example: Nuclear recoil spectrum inside 1kg Ge target at $\sim 8\,\mathrm{m}$ of the 58 MWth ILL reactor

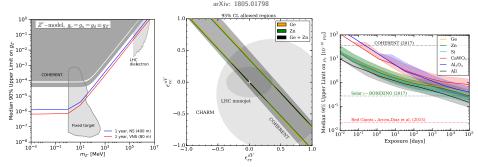
Looking for physics beyond the Standard Model in the electro-weak sector:

- Anomalous large neutrino magnetic moment (NMM)
- New massive mediator: Z' boson
- Non standard neutrino interactions (NSI) at low energy

Example: Nuclear recoil spectrum inside 1kg Ge target at $\sim 8\,\mathrm{m}$ of the 58 MWth ILL reactor

Looking for physics beyond the Standard Model in the electro-weak sector:

- Anomalous large neutrino magnetic moment (NMM)
- New massive mediator: Z' boson
- Non standard neutrino interactions (NSI) at low energy


Projection for new physics using CEvNS

Detector performances:

- \blacksquare Low energy threshold $\sim 50 \: eV$
- \blacksquare Low energy resolution $\sim 10 \: eV$
- \blacksquare EM background rejection of $> 10^3$

20 CEvNS events/day

- $\Rightarrow~5\,\sigma$ CEvNS detection in a couple of days !
- \Rightarrow 1% precision measurement after one year

- Measure the Weinberg angle with a %-precision from 1 to 10 MeV in momentum transfer
- Search for new bosons with competitive and complementary sensitivity
- Further constrain the existence of NSI by two orders of magnitude : need different targets
- Reach a world-leading CEvNS-based NMM limit of $\mu_{\nu} \sim 10^{-11}$ µB at the 90% C.L.

The Ricochet experiment

Proposal paper: "The first low-energy kg-scale CEvNS neutrino observatory combining multi-target and multi-technology cryogenic detectors", J. Billard et al., J. Phys. G (2017) [arXiv: 1612.09035]

Reactor site candidates for Ricochet

MITR: A. Leder et al., JINST 2018

■ 4 m from 5.5 MWth core

 \rightarrow $4.5\times10^{11}~{\rm v/cm^2/s}$ at the detector

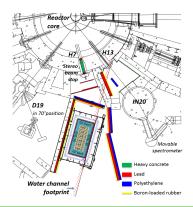
- Low overburden :
 - \rightarrow high cosmic background
- High level of correlated reactor background
- 4 weeks ON and 1 week OFF cycles

ILL: STEREO Collab., JINST 2018

- 7 m from 58 MWth core
 - \rightarrow $1.6\times10^{12}\,\nu/\text{cm}^2/\text{s}$ at the detector
- 15 m.w.e overburden :
 - \rightarrow reduction factor 2 to 3 of muon flux
- 3 or 4 cycles of 50 days
 - \rightarrow good ON / OFF ratio
- Close to reactor and neighboring experiments

 \rightarrow High level of reactor correlated background

Use Stereo casemate


 \rightarrow Benefit from Stereo experience and background characterization

Chooz - Near Site: J. Billard, et al., J. Phys. G 2017

400 m from two 4.25 GWth cores

 $\rightarrow \sim 5 \times 10^{10} \ \text{v}/\text{cm}^2/\text{s}$ at the detector

- No reactogenic background
- Uniquely high overburden: 120 m.w.e
- Rare OFF reactor periods

Reactor site candidates for Ricochet

MITR: A. Leder et al., JINST 2018

4 m from 5.5 MWth core

 \rightarrow $4.5\times10^{11}~{\rm v/cm^2/s}$ at the detector

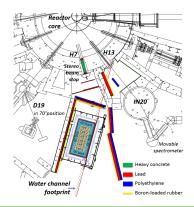
- Low overburden :
 - \rightarrow high cosmic background
- High level of correlated reactor background
- 4 weeks ON and 1 week OFF cycles

ILL: STEREO Collab., JINST 2018 ⇒ LOI send to ILL

- 7 m from 58 MWth core
 - \rightarrow $1.6\times10^{12}\,\nu/\text{cm}^2/\text{s}$ at the detector
- 15 m.w.e overburden :
 - \rightarrow reduction factor 2 to 3 of muon flux
- 3 or 4 cycles of 50 days
 - \rightarrow good ON / OFF ratio
- Close to reactor and neighboring experiments

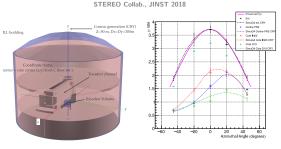
 \rightarrow High level of reactor correlated background

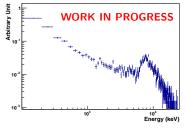
Use Stereo casemate


 \rightarrow Benefit from Stereo experience and background characterization

Chooz - Near Site: J. Billard, et al., J. Phys. G 2017

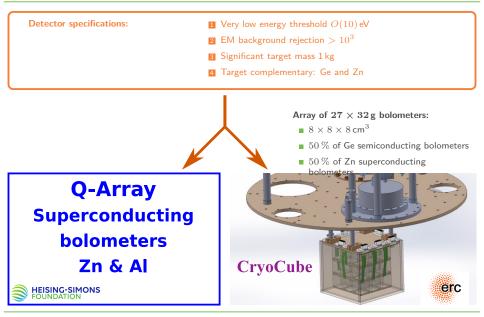
400 m from two 4.25 GWth cores

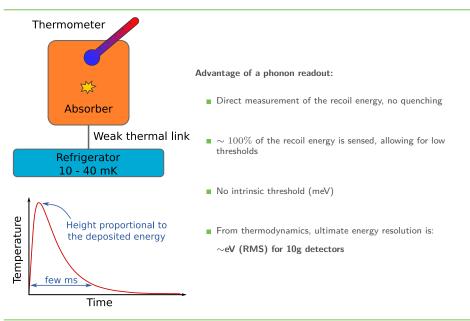

 $\rightarrow \sim 5 \times 10^{10} \; \mathrm{v/cm^2/s}$ at the detector


- No reactogenic background
- Uniquely high overburden: 120 m.w.e
- Rare OFF reactor periods

Cosmic simulation at ILL

- Cosmic simulation from STEREO based on CRY (for atmospheric shower) and Geant4
- Good agreement between muon flux measurement and MC simulation from STEREO simulation
- Goal of cosmic simulation:
 - Estimate gamma background
 - Estimate neutron background from muon spallation
 - Define shielding geometry and materials
 - Design µ-Veto
- Cosmic simulation are ongoing
- Reactor correlated background studies will be started soon in parallel

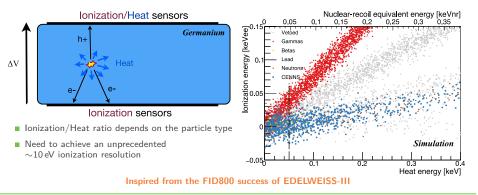



 \Rightarrow Background simulation to validate the ILL site are ongoing \Rightarrow Vibration measurements plan on site in July

Probing new physics with $\mathsf{CE}\nu\mathsf{NS}$ and the future Ricochet experiment

Specification of the Ricochet detectors

Cryogenic detector

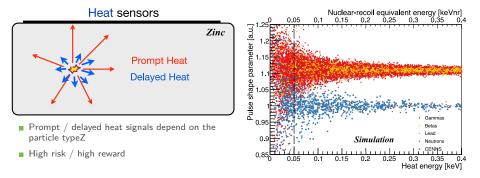


Particle identification with Ge

Technological key features of the Ricochet detector technology:

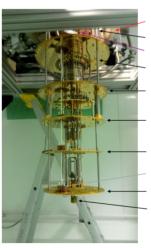
- Achieve Particle Identification down to $\mathcal{O}(10)$ eV with a rejection $> 10^3$
- Two different cryogenic detector technologies: semi- and super-conductors

Germanium (and silicon ?) semiconductors: CryoCube only



Particle identification with Zn

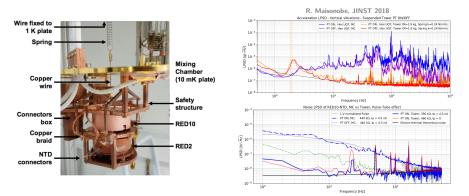
Technological key features of the Ricochet detector technology:


- Achieve Particle Identification down to $\mathcal{O}(10)$ eV with a rejection $> 10^3$
- Two different cryogenic detector technologies: semi- and super-conductors

Zinc (and aluminum ?) superconducting metals: CryoCube and Q-Array

R&D cryostat facility

- R&D laboratory at IPNL hosting a dry cryostat
- R&D shared with the Edelweiss experiment
- Cryostat from Cryoconcept, design similar to the future Ricochet cryostat
- Use a cylindrical lead sheilding of 10 cm thickness
- First complete cold-head decoupling demonstrated: Olivieri et al, NIM 2017
- Many detector prototypes and setup have been already tested

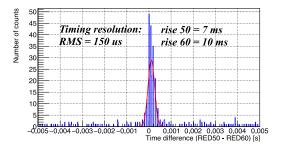

Feedthrough (300 K)

Decoupled stage (50 K - 100 K) MDM + Kapton PCB 1st stage (50 K) 2nd stage (4 K) Still (~1 K) Cold plate (~100 mK) Thermal clamps Mixing Chamber (~10 mK) Detectors

05/2019 12 / 20

Very low microphonic noise

- High impedance sensors (NTD, NbSi TES and electrodes) are highly sensitive to microphonics
- Highly efficient cryogenic suspension system designed to host kg-scale payloads:
 - \rightarrow sub $\mu g/\sqrt{\text{Hz}}$ level over the detector bandwidth (limited by accelerometer sensitivity)
- Detectors are now running in optimal conditions, only limited by thermodynamic and electronic noises



Detector scalability

R&D for the structure and cabling are ongoing:

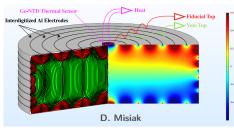
- Run with 2 × 30g bolometers have been performed already
- Next step is 4 6 bolometers at the same time

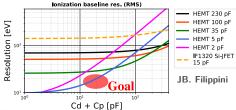
Time resolution of 100 µs, up to 10 keV despite slow pulse (ms)

- All the pulse is fitted with a template
- Start time of the pulse estimated with fit

Time resolution is decisive for Veto-muon design:

- Deadtime vs Veto-muon surface
- Geant4 studies ongoing to determine feasibility

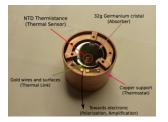

Improving particle discrimination


Particle discrimination is right now limited by the ionization resolution (200 eV)

Goal: reach a ionization resolution below 20 eV

HEMT preamplifier: High Molity Electron Transistor

- Lower intrinsic noise than JFET (Junction Field Effect Transistor)
- HEMT Noise Model: goal implies a 20 pF total capacitance (detector & cabling)
- Low temperature threshold ~4 K, closer to detector, less cable capacitance
- R&D ongoing, HEMT are being characterized

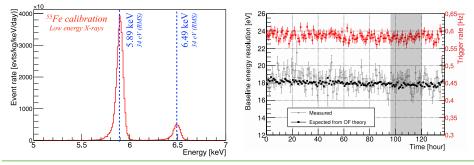


New electrode design:

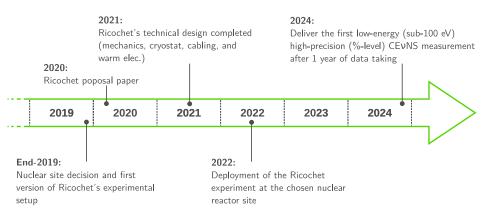
- Good charge collection, for event reconstruction
- Large fiducial volume (75%)
- High surface event rejection efficiency (FID)
- Minimized capacitance: Cdet $\sim 10 \, \mathrm{pF}$
- Studies ongoing : multiple design simulated with COMSOL and data driven model

Toward a heat baseline resolution of 10 eV

From EDELWEISS R&D: Armengaud, E. et al., Phys. Rev. D 2019

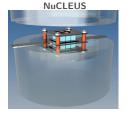

Major accomplishments: with 32 g Ge detector


- 18 eV baseline energy resolution (RMS)
- 55 eV energy threshold
- %-level stability over a week


Reproducible: similar results on 3 other $\sim 30\,{\rm g}$ bolometers

 \Rightarrow Validates the choice of 30 g crystals as individual detectors for the CryoCube array

 \rightarrow Expect a factor 2 of improvement with HEMT



Other experiments probing CEvNS in the sub-100 eV region

- At the Mitchell Insti. research reactor(1 MW) with movable core
- Use of SuperCDMS Soudan detectors iZIP (625 g Ge) in HV mode
- Background reduction with passive and active shielding - No particle identification < 1 keV
- Science run started, Phase 2 in 1 year
- R. Mahapatra et al., NIMA 853 (2017) 53

- 80 meters away from Chooz reactors (2 × 4.25 GW)
- Phase 1: total target mass of 10 g - 9 × 0.8 g CaWO 4 and 9 × 0.5 g Al2O 3
- Background reduction with passive and active shielding (w. bolometers) - no particle identification
- Phase 1 start in 2020, then switch to phase 2 with 10 kg (2000 crystals)

G. Angloher et al., arXiv:1905.10258 (2019)

Ricochet - CryoCube

- Nuclear site to be finalized by end-2019
- Two detector technologies:
 - CryoCube: 1 kg array of detectors 30g (Ge & Zn)
 - Q-Array: 100 g (Zn & Al)
- Background reduction with passive and active shielding + particle identification
- First science data taking planned for 2023

J. Billard et al., JPG 44 (2017) 10

Conclusion

- Since its first detection by the COHERENT collaboration in July 2017, CENNS has become a burgeoning field of research
- A very exciting process that has yet to be explored:
 - From ton-scale to kg-scale neutrino experiments (ideal for nuclear reactor monitoring)
 - New probe for physics beyond the SM (new massive mediators, anomalously large NMM, ...)
- Growing interest in measuring this process in Europe: Ricochet, NuCLEUS are forming a consortium. Both supported with ERC Starting Grants.
- Ricochet is the only sub-100 eV CENNS experiment investigating particle identification to provide a decisive %-level CENNS measurement by 2024.
- RED20 results from EDELWEISS R&D, show near specification performances for the heat channel for Ge bolometers and indicates that expected detector performances are reachable
- Ricochet has been presented at IN2P3 Scientific Council in October 2018 and positively reviewed.
- Final site decision expect in end-2019