

CNIS

Cosmology and astrophysics with galaxy clusters from radio to γ-ray observations

Rémi Adam (LLR) LPNHE seminar — July 8th 2019

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ -rays

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ -rays

3/48

Starting from primordial fluctuations

A very homogeneous Universe, with tiny fluctuations

From large scale fluctuations to galaxy clusters

 The primordial fluctuations collapse in the expanding Universe

From large scale fluctuations to galaxy clusters

- The primordial fluctuations collapse in the expanding Universe
- To form clusters: the largest gravitationally bound structures

Galaxy clusters are peaks in the matter density field

Cosmology with cluster counts

Survey detection	Model
\mathbf{V}	¥
$\frac{dN}{dz} = \int \chi(z)$	$(M) \frac{d^2 N}{dz dM} dM$
Selection function	Mass-obs. relations

Cosmology with cluster counts

Sensitive to geometry, dark matter/energy and gravitation

Key ingredients: mass + observational properties

Optical & infrared:

- Galaxies
- Stellar population

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

- Bremsstrahlung thermal gas emission
- ➡ Gas density
- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

- Bremsstrahlung thermal gas emission
- ➡ Gas density
- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium
- Sunyaev-Zel'dovich effect:
- Inverse Compton (e⁻ + CMB)
- ➡ Thermal gas pressure
- Line-of-sight gas momentum

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

- Bremsstrahlung thermal gas emission
- ➡ Gas density
- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium
- Sunyaev-Zel'dovich effect:
- Inverse Compton (e⁻ + CMB)
- Thermal gas pressure
- Line-of-sight gas momentum

<u>Radio (+ γ-rays)</u>:

- Non-thermal emission (+DM?)
- Particle acceleration

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

• Bremsstrahlung thermal gas emission

➡ Gas density

- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium

Sunyaev-Zel'dovich effect:

- Inverse Compton (e⁻ + CMB)
- Thermal gas pressure
- Line-of-sight gas momentum

<u>Radio (+ γ-rays)</u>:

- Non-thermal emission (+DM?)
- Particle acceleration

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

• Bremsstrahlung thermal gas emission

➡ Gas density

- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium

Sunyaev-Zel'dovich effect:

- Inverse Compton (e⁻ + CMB)
- Thermal gas pressure
- Line-of-sight gas momentum

<u>Radio (+ γ-rays)</u>:

- Non-thermal emission (+DM?)
- Particle acceleration

Huge complementarity from different wavelengths

Shaping clusters observables with astrophysics

In surveys, observables are used as mass proxies At 1st order, they are fully determined by M and z

log M

Shaping clusters observables with astrophysics

...

[Sun et al. (2006)]

Turbulences in the gas

[Walker, et al. (2017)]

[CXO press release]

[Markevitch (2010)]

In surveys, observables are used as mass proxies At 1st order, they are fully determined by M and z

But rich astrophysical processes are at play

- Mergers / Shocks / turbulences
- Dark matter / hot gas / galaxies interactions
- Feedback from compact sources (AGN, SN)
- Particle acceleration

Shaping clusters observables with astrophysics

In surveys, observables are used as mass proxies At 1st order, they are fully determined by M and z

But rich astrophysical processes are at play

- Mergers / Shocks / turbulences
- Dark matter / hot gas / galaxies interactions
- Feedback from compact sources (AGN, SN)
- Particle acceleration

...

Affecting the observables

- Morphology, substructure
- Gas thermodynamics (pressure, density, ...)
- Non-thermal pressure from cosmic rays
- Galaxy colors

• ...

Very rich physics, to be controlled for cosmology

Cosmology

What is the nature of dark matter? What causes the accelerating expansion of the Universe: Λ, dark energy, modified gravity?

co-evolution

Dark matter ("simple")

Gas and galaxies (not so "simple")

Astrophysics

How does the baryonic matter co-evolve with the dark matter to shape the Universe?

[Illustris simulation]

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ-rays

A key observable, the Sunyaev-Zel'dovich effect

The SZ effect is the inverse Compton scattering of γ_{CMB} + $e^{-}_{cluster}$

$$\Delta I_{\rm tSZ} \propto f(\nu) \int P_e d\ell$$

- Brightness independent of redshift
- Sensitive to thermal pressure
- Closely tracks the total mass

Excellent probe for the hot gas in distant clusters

Cluster cosmology after Planck

- Detailed study of nearby clusters [Planck V, VIII, X (2013)]
- All-sky catalog (1653 objects) & map [Planck XXIX (2013), XXVII & XXII (2015)]

• Number count constraints [Planck XX (2013), Planck XXIV (2015)]

CMB & clusters & hydro sim in tension Astrophysical mismodeling? Missing physics in simulations? In ACDM? Statistical fluctuation?

Need for resolved observations up to high redshift

NIKA2: the New IRAM KIDs Array 2

Excellent for resolving distant clusters

The NIKA2 guaranteed time SZ large program

In depth population study of the ICM:

- Redshift evolution of the ICM properties and scaling relations
- Dependence on cluster dynamical state

A first look at the data

Sub-mm and radio galaxies can bias the SZ signal

Lensed galaxies behind clusters

Clusters allow us to find distant galaxies

Cleaning the 'contaminant' galaxies

[Adam et al. (2016)]

Strong impact on the morphology...

It is crucial to account for contaminant sources

Gas temperature from X-ray+SZ imaging

- Temperature fundamental for astro & cosmo
 - Mass calibration
 - Cluster dynamical state
- Systematics in X-ray spectro. + challenging at high z

$\Rightarrow k_{\rm B}T = P_e/n_e$

• Independent cross-check of X-ray spectro.

10⁻³ keV/cm³

Done in 1D and 2D

tSZ pressure

(NIKA)

Excellent to obtain the temperature at high z

10⁻³ cm⁻³

X-ray density

Direct mass measurement from X-ray+SZ

Access to the mass, the SZ flux, and the cluster dynamics (morphology)

In depth study of SZ-mass calibration available

Implication of substructures on the SZ - mass scaling relation

Strong impact of inner structure on SZ-M relation

- Identification of disturbed region
 - induces significant deviations from the 'universal profile'
 - boost of the SZ flux by >60%

SZ imaging at low mass and high redshift

Follow-up of XXL-survey clusters in unexplored regime from resolved SZ data $(z=1, M_{500} < 3x10^{14} M_{sun})$

Pressure profile consistent with expectations from local sample

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ -rays

$\Gamma = 0.8$ Accretion shock

[Illustris TNG simulation]

[More et al. (2015)]

Major merger shock

[Markevitch & Vikhlinin (2007)]

[Illustris TNG simulation]

Major merger shock

[Markevitch & Vikhlinin (2007)]

[More et al. (2015)]

Turbulences

[Walker, et al. (2017)]

[Illustris TNG simulation]

[More et al. (2015)]

Turbulences

[Walker, et al. (2017)]

[Illustris TNG simulation]

Major merger shock

[Markevitch & Vikhlinin (2007)]

Energy injection from AGN & SN

[Chandra press release

From energy injection to γ -ray emission

Particle acceleration, and γ -ray signal, is expected

Diffuse radio emission in galaxy clusters

- Presence of relativistic e- and B field from radio synchrotron, but unclear origin
- CR protons should accumulate over cosmic time, with U_{CR}~10⁻² U_{therm} [Brunetti et al. (2014)]

Diffuse radio emission in galaxy clusters

- Presence of relativistic e- and B field from radio synchrotron, but unclear origin
- CR protons should accumulate over cosmic time, with U_{CR}~10⁻² U_{therm} [Brunetti et al. (2014)]

γ-rays would provide unambiguous diagnostics for cosmic ray protons

Search for γ-rays towards Coma with Fermi-LAT

Claimed detection in the direction of Coma

Search for y-rays towards Coma with Fermi-LAT

(work in progress)

- The signal would imply a CR to thermal pressure of few%
 - fine with model expectations
 - consistent with the multi-wavelength morphology

Search for y-rays towards Coma with Fermi-LAT

(work in progress)

- The signal would imply a CR to thermal pressure of few%
 - fine with model expectations
 - consistent with the multi-wavelength morphology

But accounting for a potential point source drastically reduces the significance

Fake detection due to point source contaminant?

Simulating the expected signal with CTA

(work in progress)

Major step in understanding CRp & non-thermal physics expected with CTA

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ -rays

Summary

Clusters as cosmic laboratories

- Clusters are very rich environment
 - Cosmology & astrophysics
- Astrophysical processes to be modeled for cosmology
 - The CMB/cluster tension remains unclear
 - Unique environment to study the DM-baryons co-evolution

NIKA2 SZ observations

- Resolved observations of the SZ signal
 - Many results from test case demonstration
 - Multi-wavelength analysis proved powerful
- Ongoing observations of 50 clusters
 - In depth study of the gas physics
 - High z SZ-mass calibration will be available

Cluster physics in the γ-rays

- Unique view on non-thermal physics
 - Clusters are cosmic calorimeters
 - Possible Fermi detection, but still unclear
- Observations with CTA
- CTA is now under construction
- Perseus will be the prime target

