Radiation, Magnetic Fields and Turbulence

E. Falgarone LERMA, ENS & Observatoire de Paris

Gyration radius of particle (mass Am_p , energy per nucleon E_n) in a magnetic field B:

$$R = 3.3 \times 10^{12} \text{cm} \frac{E_n (\text{GeV})}{B(\mu \text{G})} A$$

Protons in the ISM ($B = 6\mu$ G): $E_n = 3 \times 10^{11}$ GeV, R = 50 kpc, \sim Galaxy size $E_n = 600$ GeV, R = 20 AU, \sim smallest structures in the ISM

"MeV to TeV diffuse γ -rays workshop", GdR PCHE, LAPTh, Annecy, 26-27 May 2009

1 - RADIATION: Mean Galactic Background Spectrum

High Latitude Night sky

Leinert et al. 1998

Extragalactic Background

Visible: NGC1365 spiral galaxy

Barred Galaxy NGC 1365 (VLT UT1 + FORS1)

ESO PR Photo 08a/99 (27 February 1999)

Far-IR: 30 pc-long double helix close to the Galactic Center

SST/MIPS: length 30 pc, $B \sim 10^3$ G, 100 pc from massive BH Wolpert & Stuart, Nature 2006

Near-IR: Massive Star Forming Region

SST/IRAC: IC 1396 in Cepheus. Resolution 2mpc at $d = 500 \text{ pc}_{8}$

2 - MAGNETIC FIELDS: Methods of B measurements

 $B_{\perp} = \mathbf{B}$ plane-of-the-sky component $B_{\parallel} = \mathbf{B}$ line-of-sight component Polarization of dust thermal emission or absorption Sensitive to B_{\perp} orientation Polarization of thermal emission $\perp B_{\perp}$, Polarization of absorption $|| B_{\perp}$ Faraday Rotation RM = variation of the polarization angle of a linearly polarized wave due to free electrons $RM \propto \lambda^2 \int B_{\parallel} n_e dl$ n_e estimated with DM = plasma dispersion measure $DM \propto \int n_e dl$ inferred from $\Delta t \propto (\nu_1^{-2} - \nu_2^{-2}) DM$ (pulsars) $\rightarrow \langle B_{\parallel} \rangle = RM/DM$ Polarization of synchrotron emission Radiation intensity $I(\nu) \propto LB^{n+1}_{\perp}\nu^{-n}$ Spectrum of relativistic electrons $N(E)dE \propto E^{-p}dE$ with n = (p-1)/2Linearly polarized emission $\perp B_t$

Measurements of **B** intensity

Zeeman effect: H, OH, CN, C₂H lines

Break of degeneracy of a level of total angular momentum J=L+S by B

in an atom or molecule of non-zero magnetic momentum due to either:

- the total orbital momentum of electrons
- the spin of an unpaired electron,

 $\mu_B \propto \hbar e/2m_ec = 1.4$ Hz/ μ G, Bohr magneton

ullet the nucleus spin, $\mu_p \propto \mu_B/1840$

 $\nu_{\sigma_{\pm}} = \nu_0 \pm \nu_Z$ circularly polarized

 $\nu_{\pi} = \nu_0$, linearly polarized

 $\nu_Z = B_{\parallel}Z$, Z in Hz/µG depends on atom/radical/molecule and transition Fluctuation of **B** orientation in the POS

Statistical method proposed by Chandrasekhar & Fermi (1953):

$$B_{\perp} = Q\sqrt{4\pi\rho}\delta v/\delta\phi$$

 $\delta\phi = \delta B_{\perp}/B_{\perp}$
 $Q \approx 0.5$ from MHD numerical simulations (Ostriker et al. 2001)
two complementary methods

Optical starlight polarization due to dust absorption

10⁴ stars, polarization $|| B_{\perp}$, max 3%, $B_u/B_r \sim 0.8$ (Crutcher, Heiles, Troland 2001)

Polarization of diffuse dust emission: Archeops balloon 850 μ m

Enhanced small scale Faraday rotation in spiral arms

RM structure functions: more field coherence between arms (Haverkorn M. et al. 2006)

Large scale structure of galactic magnetic field

Examples of B determinations from RM/DM

223 RM measurements, (Han et al. 2006)

Arm/Interarm field: intensity and reversals

Han et al. 2006

Composite magnetic energy spectrum

Han, Ferrière & Manchester 2004

Combined RM/DM of 490 pulsars known distances, up to 10 kpc $E_B(k) = Ck^{-\alpha}$, $\alpha = -0.37 \pm 0.10$, $B_{rms} \sim 6\mu$ G Small scale spectrum from high latitude field, H α data (Minter & Spangler 1996) 3 pc < l <100pc, uncertain 2-D turbulence **Possibly significant discontinuity**

at \sim 80 pc:

 energy injection scale: inverse cascade of magnetic helicity, direct cascade of magnetic energy

- spectra of different regions

Random B_r versus uniform B_u magnetic field?

- At large scales (starlight polarization and synchrotron radiation): $B_r \sim B_u$

- Field fluctuations are parallel to **B** (field reversals)
- RM pulsars $B_r \sim 5 \mu {
 m G}$, $B_u \sim 1.5 \mu {
 m G}$
- More field coherence in interarm regions, less coherence in spiral arms and giant SFR (at 100 pc scale)

- B_r/B_u decreases as density increases, at small scales in star forming regions (dense cores)

Taurus molecular complex: ¹³CO and B direction

Polarization of the dust millimeter emission in a star forming region

B_{tot} vs. density from Bayesian analysis of Zeeman effect results

Median free parameters $B_0 = 10 \ \mu$ G, $n_0 = 300 \ \text{cm}^{-3}$, $\alpha = 0.67$, f = 0.03Crutcher et al. in prep.

CNM: non-thermal kinetic energy and magnétic energy

(Crutcher et al. 2001) $B_{eq} = 0.4\sqrt{n_H}\Delta v_{NT}$ | B_{los} | from HI Zeeman, B_{eq} for $n_H = 100 \text{ cm}^{-3}$ \rightarrow CNM close to magnetic/kinetic equipartition

3 - TURBULENCE - HI emission in the Ursa Major high latitude cloud

HI data from Leiden-Dwingeloo survey (Hartmann & Burton) +DRAO interferometer, slope power spectrum -3.6±0.1, Kolmogorov

Miville-Deschênes et al. 2003

Power spectra of HI and CO(1-0) integrated emission

Falgarone, Levrier, Hily-Blant 2003

For fBm fields in 3-dim space, Stutzki et al. (1998)

 $\beta = \gamma(3 - \alpha)$

 α =slope of mass spectrum ~ 1.8 from $M = 10^{-3}$ to 10^{6} M_{\odot} β = slope of power spectrum γ =fractal dimension [γ =3 for β =3.6]

Data from Bensch et al. (2001), Gautier et al. (1992), Elmegreen et al. (2001), Stanimirovic & Lazarian (2001),

Miville-Deschênes et al. (2003) stical proportios bolow 10^{-2} pc?

Common statistical properties below 10^{-2} pc?

Size-linewidth scaling law from the ¹²CO(1-0) line

Parsec-scale field in a turbulent high latitude cloud

IRAM-30m, HERA mosaic, On-The-Fly + FS mapping,

Polaris Flare $A_v = 0.6$ to 0.8 mag ${}^{12}CO(2-1)$ line

1.5 million spectra, $\sim 10^5$ independent spectra,

Field size: $43' \times 33'$, $\sim 2 \text{ pc}$ Pixel size: 7.5 mpc

Small spatial overlap of the two velocity components

Hily-Blant & Falgarone 2009

Space-velocity cuts: max shear ~ 40 km s⁻¹/pc

27

PDFs of Centroid Velocity Increments with variable lags

Spatial distribution of largest CVIs (E-CVI)

- **coherent structure** over more than a pc, thinner than 7.5mpc
- pure velocity structure
- splits into several branches
- CVI_{max} in Polaris \sim 2.5 CVI_{max} in

Taurus edge

E-CVIs: W(CO) (left) and Blue linewing (right)

30

Milliparsec scale structure of an E-CVI: PdBI only

IRAM Plateau de Bure Interferometer, 180 hours integration

Mosaic of 13 fields, ¹²CO(1-0) line, Pixel size 3mpc, Field size 0.09 by 0.045 pc Falgarone, Pety, Hily-Blant 2009

... and with short spacings from IRAM-30m

PdBI structures are **not filaments** but **sharp edges** of extended structures

Edges in space and in velocity

 \rightarrow velocity shears

6 out of 8 are pairs (PdBI only)

Non-Gaussian behavior of velocity-shear (vorticity) at mpc-scale

Current and vorticity sheets: MHD simulations

Figure 13. Above: visualization of current density intensity at $t \approx 1.6$ (left) and magnetic field lines superposed to the current density intensity (right). Below: vorticity intensity at the same time (left) and velocity field lines superposed to the vorticity intensity (right).

High Re decaying MHD turbulence, 1536³, Mininni et al. 2006 Clyne, Mininni, Norton & Rast 2009

Figure 11. (a) Pdfs of the *z* component of the current density (j_z) in the slice with $1536 \times 1536 \times 150$ grid points shown in figure 10 at full resolution (black line), 1/2 resolution (red line), 1/4 (green line), 1/8 (cyan line), 1/16 (blue line) and 1/32 resolution (purple line). As the data is coarsened, strong gradients are removed leaving only the smooth large-scale components of the fields. (b) Pdfs of j_z in the subregion indicated in figure 10 at full resolution at different times: $t \approx 0.6$ (blue line), 1.1 (cyan line), 1.3 (green line), 1.5 (red line) and 1.6 (black line).

Summary

Radiation energy density:

- \bullet Universe: All galaxies/AGN (CIB+COB) contribute to only about 5% of CMB
- Milky Way: similar contributions, **on average**, of OB stars, cool stars, PAHs, dust thermal emission and CMB

Magnetic fields:

- Large scale **field reversals** at the edge of spiral arms
- Interarm field direction **more coherent** than in spiral arms (RM and dust polarization)
- Field slightly more intense in spiral arms
- Large range of scales involved, statistical methods in their infancy
- $B \leq 10 \mu \text{G}$ and uniform below $n_0 = 300 \text{ cm}^{-3}$, $B \propto n^{2/3}$ above
- Some large scale coherence of field direction in molecular clouds, poor in giant SFRs
- In Solar Neighborhood, at large scale $B_r \sim B_u$
- Field close to **equipartition** with supersonic turbulence in the cold medium

Turbulence:

- Kolmogorov spectrum in CNM and unbound molecular gas
- Different slope in gravitationally bound entities (GMCs at 50 pc scale and above)

• Strong intermittency of velocity shears (vorticity) at mpc scale in diffuse molecular gas. Anticipated similar intermittency of current (MHD simulations)

Antisymmetric RM distribution: evidence for an A0 dynamo

