Binaries and pulsars

Atelier diffuse MeV to TeV gamma-rays

Guillaume Dubus

erc LB06

Laboratoire d'Astrophysique de Grenoble UMR 5571 UJF / CNRS

Diffuse emission: cosmic rays

Credit: NASA/DOE/Fermi LAT Collaboration

Diffuse emission: cosmic rays

Puzzle of origin of cosmic rays will soon be 100 years old

Credit: NASA/DOE/Fermi LAT Collaboration

Diffuse emission: cosmic rays

Puzzle of origin of cosmic rays will soon be 100 years old Is the association with SNR astrophysics' Fermat theorem ?*

Credit: NASA/DOE/Fermi LAT Collaboration

Diffuse emission: e+e⁻ annihilation

Knödlseder et al. 2005

Diffuse emission: e+e⁻ annihilation

Weidenspointner et al. 2008

Pulsars and binaries sources of cosmic rays and positrons ?

Pulsars sources of cosmic rays and positrons ?

Pulsars sources of cosmic rays and positrons ?

• pulse P

 $E = 0.5 \ I\Omega^2 \approx 2 \ 10^{46} \ I_{45} P_1^{-2} \ \text{erg}$

• spindown (spinup)

$$\dot{E} = I\Omega\dot{\Omega} \approx -4 \ 10^{31} \ I_{45}\dot{P}_{-15}P_1^{-3} \ \text{erg s}^{-1}$$

• age

 $\tau = 0.5 P \dot{P}^{-1} (1 - P_i^2 P^{-2}) \approx 15 P_1 \dot{P}_{-15}^{-1} \text{ Myr}$

magnetic dipole

$$L = \dot{E} \sim \frac{B^2 R^6 \Omega^4}{c^3} \Rightarrow B \approx 10^{12} \ (P \dot{P}_{-15})^{1/2} \text{G}$$

by Lorimer of Pulsar Astronomy"

X-ray pulsars

accreting neutron stars p~few ms to 1000 s

Magnetosphere

Magnetosphere

- electric field
- e⁻e⁺ pair production
- pairs fill magnetosphere

$$\mathbf{E} = -\frac{\mathbf{v}}{c} \wedge \mathbf{B} \qquad \rho = \frac{\nabla \cdot \mathbf{E}}{4\pi} \approx -\frac{\mathbf{\Omega} \cdot \mathbf{B}}{2\pi c}$$

- E screened in co-rotating plasma
- voltage drop pole last open field line $\Delta V = 7 \ 10^{12} \ B_{12} P^{-2} \ \mathrm{V}$

Cosmic rays & pairs

• cosmic ray & pair energy and rate

 $E_{\text{max}} \approx 7 \ 10^{12} Z B_{12} P^{-2} \text{ eV}$ $\dot{N} \approx 10^{30} \kappa B_{12} P_1^{-2} (Z^{-1}) \text{ s}^{-1}$

pulsars generate energetic e⁻e⁺

- cosmic rays accelerated too ?
- UHECR from magnetars ?
- 511 keV contribution of ms pulsars ?

Blasi, Epstein & Olinto 2000 Giller & Lipsi 2002 Bednarek & Bartosik 2004 Wang, Pun, Cheng 2005

Pairs from nearby pulsar ?

Injection pairs E^{-1.6} exp(-E/E_{cut}) propagation

Monogem & Geminga pulsars

Hooper, Blasi, Serpico 2009 Grasso et al. 2009 ... Harding & Ramaty 1987

Binaries sources of cosmic rays and positrons ?

- neutron star or black hole
- companion
- accretion

$$\dot{E} \sim \left(\frac{GM}{R}\right) \dot{M} \sim (0.05 - 0.4) \dot{M} c^2$$

- thermalized: X-ray emission
- what fraction can be tapped for non-thermal processes ?

Binaries come in many kinds

High-mass or low-mass companion

(wind or Roche lobe overflow)

Black hole or neutron star

X-ray pulsars relativistic jets: microquasars

Gamma-ray binaries

non-thermal radiation dominates

LS I+61 303

HESS J0632+057

?

Variable VHE sources on orbital period

All have massive stars

3EG J0229+6151

3EG J0241+6103

(PSF)

2^h35^m

 $\Phi = [0.4, 0.7]$

LSI+61 303

2^h40^m

в

2^h50^m

2^h45^m

All are radio sources: rare in HMXBs most have GeV counterparts, **HE gamma-ray dominates non-stellar output**

Compact Pulsar Wind Nebula

scaled to LS 5039

PSR B1259-63 is a 48 ms radio pulsar with spindown power 8 10^{35} erg/s VHE emission ~ 0.1% of spindown power as in PWN

Rotation-powered, not accretion-powered

Gamma-gamma opacity

$$\epsilon_{\min} \approx 60 \frac{(10 \text{ eV}/kT_{\star})}{(1 + \cos\psi)} \text{ GeV}$$

Pair production

LS 5039 at periastron (1 TeV)

Pair production

average over angles

 $<\dot{N}>\sim 5\cdot 10^{35} \ {\rm s}^{-1}$

- high <E>: escape and annihilate in ISM
- young pulsars, short lifetime before X-ray pulsar turns on: ~ 100 systems in our Galaxy
- γγ pairs unobservable.

Cerutti et al. 2009, submitted

Binaries come in many kinds

High-mass or low-mass companion (wind or Roche lobe overflow)

Black hole or neutron star

X-ray pulsars relativistic jets: microquasars

Gamma-ray binaries

non-thermal radiation dominates

Microquasars

Microquasars have relativistic jets like AGNs

AGN jet dissipate in IGM

jet composition: e-e+ pairs ?

strong γ-ray emission in compact regions easiest on energy budget to accelerate jet termination: radio lobes imply huge energy sites of CR acceleration ?

Microquasar jets and cosmic rays

- radio vs X-ray show $L_{
 m jet} \sim L_{
 m X}^{0.5}$
- general arguments give $L_{\rm jet}/L_{\rm CR} \sim 1-30\%$
- SS433: cold Balmer, iron lines in relativistic plasma
- Narrow peaks at $\Gamma_{\rm jet} m_p c^2 \approx 5 \ \Gamma_5 \ {\rm GeV}$

Heinz, Sunyaev 2002 Fender, Maccarone, van Kesteren 2005

Microquasar jets and ISM

Typically ~ 1 pc. Comparatively far from black hole [1000 x distance of AGN lobes to black hole in units of R_g]

Cyg X-1

Oddballs?

Microquasar jets and pairs

Weidenspointner et al. 2008

if only e⁻e⁺ in jet then total in ISM

$$\dot{N} \sim \frac{L_{\rm jet}}{\Gamma_{\rm jet}\bar{\gamma}m_ec^2} \approx 10^{43} \ L_{38}\Gamma_5^{-1}\bar{\gamma}_1^{-1} \ {\rm s}^{-1}$$

- Disk distribution fits asymmetric distribution of LMXBs > 20 keV ??
- Do LMXBs produce pairs?

Heinz, Sunyaev 2002 Guessoum, Jean, Prantzos 2006 Bandyopadhyay et al. 2009

Microquasar jets and pairs

- annihilation lines in Nova Muscae and 1E1740-2942 flux >10⁻³ s⁻¹ ??
- line at 480 keV: Li production or redshift ??

• 511 keV line from pairs produced in *hybrid* plasma (non-thermal heating)

Nova Muscae (GRS1124-684)

Conclusion: pulsars and binaries sources of cosmic rays and positrons ?

Conclusion: pulsars and binaries sources of cosmic rays and positrons ?

- produce high energy pairs
- nearby pulsar seen in e⁺e⁻?
- ms pulsars for 511 keV line ??
- CR sources in theory ???

Conclusion: pulsars and binaries sources of cosmic rays and positrons ?

- produce high energy pairs
- nearby pulsar seen in e⁺e⁻ ?
- ms pulsars contribution 511 keV ??
- CR sources in theory ???

- produce high energy pairs ?
- γ -ray binaries don't contribute much
- microquasars contribution 511 keV ?
- CR sources in theory ???