GDR PCHE's workshop on diffuse high-energy emission LAPTH, Annecy-le-vieux, 26/05/2009

Collective acceleration inside superbubbles

Gilles Ferrand

(formerly CESR Toulouse, now CEA/Irfu/Sap Saclay) in collaboration with Alexandre Marcowith (formerly CESR Toulouse, now LPTA Montpellier)

contents

1) Superbubbles

a particular environment for acceleration

2) **Multiple acceleration** by shocks regular acceleration (Fermi 1)

3) **Transport in the bubble** stochastic acceleration (Fermi 2) and escape

1) Superbubbles

a particular environment for acceleration

2) **Multiple acceleration** by shocks regular acceleration (Fermi 1)

3) **Transport in the bubble** stochastic acceleration (Fermi 2) and escape

Superbubbles: origin and basic properties

1.1

[review: Parizot et al 2004; lecture: Marcowith 2007]

Superbubbles: observations

thermal emission

multi-wavelength image of 30 Doradus

colour	instrument	band	composition	object
blue	Chandra ACS	0.9-2.3 keV	10 ⁶ K plasma	superbubble
green	MCELS	656 nm	10 ⁴ K plasma	supershell
red	Spitzer IRAC	6.5 - 9.4 μm	dust, PAH	shell & cloud
[composite by Townsley et al 2006]				

non-thermal emission

TeV emission from Westerlund 2

colliding winds? collective winds? multiple shocks?

[Aharonian et al 2007]

Acceleration: the coupled system, in context

1.3

[a model of acceleration inside superbubbles: Bykov 2001]

1) Superbubbles

a particular environment for acceleration

2) **Multiple acceleration** by shocks regular acceleration (Fermi 1)

3) **Transport in the bubble** stochastic acceleration (Fermi 2) and escape

2

Multiple acceleration: linear regime

$$f_{(i)}(p) = \frac{k \, s_1^i}{p_{\rm inj}} \left(\frac{R^i \, p}{p_{\rm inj}}\right)^{-s_1} \frac{\left(\ln\left(\frac{R^i \, p}{p_{\rm inj}}\right)\right)^{i-1}}{(i-1)!} H\left(p - \frac{p_{\rm inj}}{R^i}\right)$$

contribution from injection at the first shock to the distribution downstream of the i-th shock (after decompression)

2.1

total distribution downstream of the n-th shock (with injection at each shock, and after decompression)

 $f_n(p) = \sum_{i=1}^n f_{(i)}(p) \quad f_\infty(p > p_{\text{inj}}) \propto p^{-3}$

[Achterberg 1990, Schneider 1993, Pope & Melrose 1994]

marcos code

hydrodynamic treatment

conservation laws:

$$\frac{\partial \vec{X}}{\partial t} + div \left(\vec{F} \left(\vec{X} \right) \right) = \vec{0}$$

Euler 1D :

$$\vec{X} = \begin{pmatrix} \rho \\ \rho u \\ e \end{pmatrix} \quad \vec{F}(\vec{X}) = \begin{pmatrix} \rho u \\ \rho u^2 + P \\ (e+P)u \end{pmatrix}$$

kinetic treatment

spectrum of particles:

$$n(x,t) = \int_{p} f(p,x,t) 4\pi p^{2} dp$$

transport equation: $\frac{\partial f}{\partial t} + \frac{\partial}{\partial x} \left(uf \right) = \frac{\partial}{\partial x} \left(D \frac{\partial f}{\partial x} \right) + \frac{1}{3p^2} \frac{\partial p^3 f}{\partial p} \frac{\partial u}{\partial x}$

[Falle & Giddings 1987, Ferrand, Downes, Marcowith 2008]

2.3

Multiple acceleration: non-linear regime

first investigation of time-dependent non-linear acceleration by a sequence of shocks

 \rightarrow large range of indices, spectra can get very hard

[Ferrand, Downes, Marcowith 2008]

1) Superbubbles

a particular environment for acceleration

2) **Multiple acceleration** by shocks regular acceleration (Fermi 1)

3) **Transport in the bubble** stochastic acceleration (Fermi 2) and escape

3

Aim: investigate the time-dependent shape of the energy spectrum of CR protons produced inside SBs

Method: semi-analytical model of CR production and transport inside Monte-Carlo simulations of OB clusters timelines

process	Fermi 1	Fermi 2
what?	regular acceleration	stochastic re-acceleration + escape
why?	SN explosions	magnetic turbulence
where ?	at shock fronts	in the SB medium
when?	quite discreetly (during early SNR stages)	continuously (between SN shocks)

linear first order Fermi acceleration at shock fronts

CR distribution downstream of the shock: $f_{\text{down}}(p) = \int_0^\infty G_1(p, p_0) f_{\text{up}}(p_0) dp_0$

Green function:
$$G_1(p, p_0) = \frac{s_1}{p_0} \left(\frac{p}{p_0}\right)^{-s_1} H(p - p_0)$$

canonical slope:
$$s_1 = \frac{3r}{r-1}$$

[reference review: Drury 1983]

+ adiabatic decompression: $f'_{\text{down}}(p) = f_{\text{down}}(Rp)$ where $R = r^{1/3}$

[Melrose & Pope 1993, Ferrand et al 2008]

3.3 Green function for Fermi 2 and escape

valid for any turbulence index 0 < q < 2

[Becker et al 2006]

Diffusion scales

massive stars burn strongly
and die fast (3-37 Myrs)
→ live in groups

[IMF from Salpeter 1955, Kroupa 2002]

[data from Limongi and Chieffi 2006]

3.6

Distribution of supernovae

[compares well with Cerviño et al 2000]

Average spectra inside superbubbles

repeat until some average trend emerges:

3.7

pick-up a random cluster following the IMF

- sample time by intervals $dt = 10\ 000$ yrs:
 - if SN: do instantaneous Fermi 1 (from 10 MeV to 1 PeV)
 - else: do Fermi 2 + escape since last SN

[Ferrand & Marcowith 2009, in prep]

many physical parameters, often poorly constrained \rightarrow 720 runs $N_{\star} = [10, 30, 70, 200, 500]; r = 4$ $B = [1, 10] \,\mu\text{G}; \, \eta_T = [1/5, 1]; q = [3/2, 5/3]; \, \lambda_{\text{max}} = [10, 20, 40, 80] \,\text{pc}$ $n = [10^{-3}, 5.10^{-3}, 10^{-2}] \,\text{cm}^{-3}; \, x_{\text{acc}} = [40, 80, 120] \,\text{pc}$

but one single dimensionless key parameter: $\theta^{\star} = (D_p^{\star} t_{esc}^{\star})^{-1} \in [10^{-4}, 10^{+4}]$

- i. CR spectra inside SBs are strongly intermittent
- ii. sill, CR spectra have a distinctive two-parts shape resulting from competition between acceleration and escape: they are harder at the lowest energies and softer at the highest energies
- iii. the momentum at which this spectral break occurs critically depends on the **SB parameters**, all their effects being summarized by a single dimensionless parameter
- iv. for reasonable values of SB interior parameters, and especially for highly magnetized and turbulent SBs, very hard spectra (s<3) can be obtained over an important range of CR energies, at least up to the GeV domain

→ important implications - on the in-situ chemistry on the high-energy emission