

The Fermi Gamma-ray Space Telescope : reconstruction, systematics, and some results about galatic diffuse and electrons

Philippe Bruel

LLR - Ecole polytechnique/CNRS

Philippe Bruel

Fermi satellite

- Two instruments:
 - Large Area Telescope (LAT), 20 MeV >300 GeV
 - Gamma-ray Burst Monitor (GBM), 8 keV 40 MeV

Fermi in space

- Orbit : 565 km, circular
- Inclination : 25.6°
- Design life : 5 years (minimum)
- One orbit in 1.5h
- The whole sky in 3h

100 Sec

1 Orbit

1 Day

1 Year

Large Area Telescope

Large Area telescope

- Overall modular design
- 4×4 array of identical towers (each one including a tracker and a calorimeter module)
- Tracker surrounded by an Anti-Coincidence Detector (ACD)

Event reconstruction

Detailed instrument simulation with Geant4

- MC crucial for
 - Reconstruction tuning
 - Event selection and performance
 - Estimate residual contamination
 - 400 CPUs ran for 80 full days only for CRE analysis
- Accurate detector model
 - over 45000 volumes
- Physical interactions with Geant4
 - Optimized ElectroMagnetic (EM) and Hadronic (HAD) physics
 - EM: LHEP + Fermi-debugged routines for
 - Multiple scattering
 - Landau-Pomeranchuck-Migdal
 - HAD: custom physics lists
 - Bertini for E < 20GeV
 - QGSP for E > 20GeV
- Utilizes real LAT calibrations

Ensuring the most realistic simulation

- Calibrations
 - Using muons (on ground) and protons et al. (in orbit)
 - Signal in ACD, tracker and calorimeter
 - Position calibration
 - Intra tower and tower to tower alignment
 - Stability

Ensuring the most realistic simulation

- Beam tests (the last one at CERN in 2006)
 - Calibration Unit (2.5 towers) with electrons, gammas, protons, pions, from 100 MeV to 300 GeV in many configurations (94M evts)

Instrument performances

On orbit rates

Philippe Bruel

On orbit performance validation

- Main method : using bright pulsars (i.e. Vela)
 - Selecting events in-pulse and off-pulse
 - Subtracting off-pulse component to get a pure gamma signal

On orbit PSF validations

On orbit effective area validation

We discovered a pure orbit effect that must be taken into account in order to have a realistic effective area : off-time cosmic rays passing through the LAT decrease the effective area (~30% at 200 MeV, 10% at 1 GeV, ~0 at 10 GeV) Average rate of TKR counters obtained during 26.6 days of LAT nominal

- Using random triggered events, we can simulate this effect and get a good agreement between selection efficiency in data and simulation.
- Systematics : 10% at 100 MeV, 5% at 600 MeV, 20% at 10 GeV

Galactic diffuse at intermediate latitudes

 LAT data averaged over longitudes and latitudes range 10°
10°
(no point source and background subtraction)

Only systematic uncertainty in the effective area. Additional systematic uncertainty on the energy : 5% at 100 MeV and 10% above 1 GeV, with energy likely overestimated.

Galactic diffuse at intermediate latitudes

- Model is assumed (based on pre-Fermi data)
 - π° decay
 - Bremsstrahlung
 - Inverse Compton
- Source and isotropic (including residual background) component come from fitting the data with model fixed
- Spectral shape is consistent with data but overall emission lower for whole energy range
- Systematic uncertainty comes from the systematic uncertainty in the effective area propagated through the source and isotropic component

High energy cosmic ray electron spectrum

High energy cosmic ray electron spectrum

Data/MC agreement and contamination

- Good agreement data/MC
- Estimate of the proton contamination

Systematic uncertainty

Systematic uncertainty

Energy reconstruction

- Energy estimation at high energy relies on profile fitting
- Energy resolution tested up to 300 GeV at CERN

Philippe Bruel

GDR PCHE - May 26, 2009

Detecting an ATIC-like bump

- Given our energy resolution we would have seen a prominent feature such as the ATIC bump
 - ATIC excess: 70 electrons between 300 and 800 GeV
 - we would have seen an excess of 7000 electrons
- Test by adding a simple gaussian signal (450 +- 50 GeV) to our spectrum
 - Even if we worsen our energy resolution by a factor of 2, the feature would have been clearly seen

Conclusions

- Still improving the understanding of the instrument (new reconstruction, new selection) : larger effective area (especially at low energy) and smaller systematic uncertainties, less residual background
- For electrons+positrons : spectrum below 20 GeV, improving the reconstruction above 1 TeV
- Diffuse emission : new results this summer/fall (when the data becomes public), with more point sources to be subtracted