The origin of ⁶⁰Fe in the solar system

Laboratoire de Minéralogie et de Cosmochimie du Muséum, Paris, France

Collaborators: <u>Hennebelle</u>, Inutsuka, Meibom, <u>Ouellette</u>

Palavas les flots, 9 septembre 2009

1. Introduction

When microscopes meet telescopes...

nanoSIMS 50 @ MNHN

INTEGRAL *γ*–ray satellite

Meteorites are complex rocks

Differenciated meteorites (achondrites, irons, stony-irons)

Mineralogy compatible with gas-solid condensation Formed ~ 4.567 Ga ago [oldest dated solid]

Our premices

☆ Chondrites' components (CAIs, matrix, chondrules) formed and aggregated in the solar accretion disk 4.6 Ga ago

1 AU = Sun-Earth distance = 150 x 10⁶ km

2. Short-lived radionuclides

Short-lived radionuclides (SRs)

- Short-lived radionuclides are <u>radioactive elements</u> whose half-life (~Ma) is shorter than the age of the Solar System
- ☆ They have entirely decayed: they are now <u>extinct</u>

e.g. ⁶⁰Fe \rightarrow ⁶⁰Ni + e⁻ + $\bar{\nu}_{e}$ ($\beta^{-}, T_{1/2}$ = 2.6 Myr, Gudel et al. 2009)

Isochron diagram

Tachibana et al. ApJ 2006

The detection techniques

Secondary Ion Mass Spectrometer (SIMS) or ionprobe

☆ Inductively Coupled Plasma Mass Sepctometer (ICPMS)

The Solar System initial value of SRs = abundance in CAIs

The initial value of short-lived radionuclides

Radioactive Isotope (R)	T (Ma)	Daughter Isotope	Stable Isotope (S)	Initial Abundance (R/S)
⁷ Be	52 days	⁷ Li	⁹ Be	6×10^{-3}
⁴¹ Ca	0.1	⁴¹ K	⁴⁰ Ca	> 1.5 x 10 ⁻⁸
³⁶ Cl	0.3	³⁶ S, ³⁶ Ar	³⁵ Cl	> 1.6 x 10 ⁻⁴
²⁶ AI	0.74	²⁶ Mg	²⁷ Al	5 - 7 x 10 ⁻⁵
¹⁰ Be	1.5	¹⁰ B	⁹ Be	4-14 x 10 ⁻³
⁶⁰ Fe	1.5	⁶⁰ Ni	⁵⁶ Fe	0.3 x 10 ⁻⁶
⁵³ Mn	3.7	⁵³ Cr	⁵⁵ Mn	0.1 - 1.2 x 10 ⁻⁴
¹⁰⁷ Pd	6.5	¹⁰⁷ Ag	¹⁰⁸ Pd	5 - 40 x 10 ⁻⁵
¹⁸² Hf	9	¹⁸² W	¹⁸⁰ Hf	1×10^{-4}
¹²⁹ I	16	¹²⁹ Xe	¹²⁷ I	1×10^{-4}
⁹² Nb	36	⁹² Zr	⁹³ Nb	10 ⁻⁵ - 10 ⁻³
²⁴⁴ Pu	81	Fission products	²³⁸ U	7 x 10 ⁻³
¹⁴⁶ Sm	103	¹⁴² Nd	¹⁴⁴ Sm	4-15 x 10 ⁻³

The origin of short-lived radionuclides

Some short-lived radionuclides have abundances in excess relative to abundances calculated by models of the chemical evolution of the Galaxy

The last-minute origin of short-lived radionuclides

☆ ⁷Be, ¹⁰Be, ²⁶Al, ³⁶Cl, ⁴¹Ca, ⁵³Mn (?), ⁶⁰Fe (?) have a last minute origin

The importance of short-lived radionuclides

- Understanding the <u>origin</u> (as well as <u>abundance</u> and <u>spatial</u> <u>distribution</u>) of extinct short-lived radionuclides is a key task for cosmochemists and astrophysicists
 - ☆ It offers the possibility to characterize **Galactic evolution**
 - ☆ It constrains the **astrophysical environment** of the protoSun
 - ☆ It constrains the *irradiation conditions* in the solar accretion disk
 - ☆ SRs offer the possibility to build a **<u>chronology</u>**
 - $\Rightarrow \gamma$ -ray emitters SRs are a potential <u>heat source</u> for planetesimals

3. The origin of iron-60

The origin of iron-60

1. Galactic background **NO**

2. In situ irradiation of solar system dust by solar cosmic rays NO

3. Last minute injection by a nearby star

4. SPACE model

Injection of SRs in a protoplanetary disk Orion Nebular Cluster (~1 Myr old)

 θ^1 C Ori is the most massive star of the ONC (~40 M_o) which will explode as a supernova 5 Myr after the onset of star formation, ie 4 Myr from now

Requirements for supernova delivery of SRs

*nearby = 0.3 pc (from the SRs inventory and the SN yields) *young = 1 Myr (from the cosmochemical data)

Problems for supernova delivery of SRs

1. Disk survival

2. Distance

1. Disk survival - Evaporation

Evaporation timescale ~ 0.01-1 Myr

The time needed for $\theta^1 C$ Ori (~40 M_{\odot}) to go supernova is ~ 5 Myr

1. Disk survival – disk dissipation

Even if disks do not evaporate, planets form on a few Myr timescale (before massive star death)

2. Distance issue

The rapid growth of an ionized (HII) region around the massive star prevents star formation in the enrichment zone

2. Distance issue

Most disks are *not* in the enrichment zone (0.2 < r < 0.4 pc)

Probability of SN contamination

$$\mathcal{P} = \int_{10^2}^{5 \times 10^5} f_{\text{disk}}(N_*) f_{\text{enrichment}}(N_*) f_{\text{survivors}}(N_*) \frac{1}{N_*} dN_*$$

Probability for a star to have a young, intact disk close to a SN ~ 10⁻³ (generous upper limit)

The delivery of SRs into the *disk* by a *nearby* SN is a very unlikely event

Williams & Gaidos ApJL 2007; Gounelle & Meibom ApJ 2008

4. The SPACE model

Formation of molecular clouds by turbulent convergent flows

Second generation of stars

Drawing from Hartmann et al. ApJ 2001

Vazquez-Semadeni, Elmegreen, Hartmairst generation of state ros-Paredes...

Contains ⁶⁰Fe delivered by the 1st generation of stars

Supernovae Propagation And Cloud Enrichment (SPACE)

Gounelle et al. ApJL 2009

A stochastic quantitative calculation

η: mixing efficiency of SRs f: geometrical dilution factor N_{SN}: number of supernovae Y_{SNi}: yields of ⁶⁰Fe of supernova i t_i: explosion time of the ith SN τ: ⁶⁰Fe mean life

For a given size of the MC1 cloud (a given N_1), the calculation will be realized 100 times

⁶⁰Fe yields and supernovae lifetimes

$M(M_{\odot})$	t _{SN} (Myr)	$Y_{\rm SN}(^{60}{\rm Fe}) (M_{\odot})$
11	20.8	5.25E-6
12	17.8	3.62E-6
13	15.5	9.03E-5
14	13.8	5.72E-6
15	12.5	3.31E-5
16	11.4	4.39E-6
17	10.6	7.96E-6
18	9.9	2.54E-5
19	9.2	7.83E-5
20	8.8	2.09E-5
21	8.3	2.45E-5
22	7.9	5.19E-5
25	7.0	6.96E-5
30	6.0	3.75E-5
35	5.3	7.37E-5
40	4.9	5.93E-5
60	3.9	2.27E-4
80	3.4	7.55E-4
120	2.9	9.93E-4

Woosley & Weaver (1995); Rauscher et al. (2002); Limongi & Chiffi (2006)

Geometry and dilution

<u>Large scale</u> turbulent flows: f = 0.5. We conservatively assume f = 0.1

Mixing favoured by low densities (Koyama & Inutsuka 2002): $\eta = 1$ (cf. Looney et al. 2006; Ouellette et al. 2005)

Generating a set of N₁ stars following the IMF

 $dN/dM \propto M^{-(1+\alpha)}$

 α = 2.7 for stars more massive than 1 M_o Kroupa et al. 1993

The number of supernovae

100 realizations of the IMF

SPACE model - Results

One realization of the IMF with $N_1 = 5000$ stars

SPACE model - Results

Molecular clouds made by turbulent convergent flows need 10-20 Myr to be assembled (e.g. Vazquez-Semadeni et al. 2007)

SPACE model - Results

M_{60Fe} = (6.9 ± 3.5) x 10⁻⁶ M_{\odot}

Comparison with the solar system Numbers

 $M_{MC2} [^{60}Fe] = (6.9 \pm 3.5) \times 10^{-6} M_o [N_1 = 5000 \text{ stars}]$

With $[{}^{60}Fe]_{SS} = 0.4 \text{ ppb} ({}^{60}Fe/{}^{56}Fe = 3 \times 10^{-7})$, a molecular cloud of mass $M_{MC2} = (1.7 \pm 0.9) \times 10^4 \text{ M}_0$ would have the same ${}^{60}Fe$ abundance than the solar system

How reasonable is it to have a cloud of mass $M_{MC2} = (1.7 \pm 0.9) \times 10^4 M_o$ made by turbulent convergent flows created by an OB association of N₁ = 5000 stars?

The astrophysical setting

Metallicity [iron] enrichment in Orion

Metallicity [iron] enrichment in Orion

than the ONC. The ~ 0.1 dex difference in the Fe content of the ONC and the OB1b subgroup is consistent with the selfpollution scenario originally proposed by Cunha and collaborators (1992, 1994, 1998) for the Orion region.

D'Orazi et al. astro-ph

★ Unlikely ⁶⁰Fe injected by a nearby SN

 A significant proportion of MCs built by turbulent convergent flows

The <u>SPACE</u> model proposes that while MCs are being built, they receive ⁶⁰Fe from SNe belonging to a previous episode of star formation and responsible for the turbulent convergent flows

 Quantitative, stochastic calculations show that the ⁶⁰Fe content of our solar system can be accounted for by such a generic mechanism