The origin of °°Fe in the solar system
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When microscopes meet
telescopes...
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CAIs [Calcium-Aluminium-rich inclusions]
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Our premices

v« Chondrites’ components (CAls, matrix, chondrules) fo rmed
and aggregated in the solar accretion disk 4.6 Ga ago

1 AU = Sun-Earth distance =150 x 10° km






Short-lived radionuclides (SRs)

Y« Short-lived radionuclides are radioactive elements whose
half-life (~Ma) is shorter than the age of the Sola r System

Y« They have entirely decayed: they are now extinct

e.g. ®OFe = ONi + e~ + v,
(B, Ty, = 2.6 Myr, Gudel et al. 2009)
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The detection techniques

Y« Secondary lon Mass Spectrometer (SIMS) or ionprobe

Y Inductively Coupled Plasma Mass Sepctometer (ICPMS)






The initial value of short-lived radionuclides




The origin of short-lived radionuclides

" ~The Milky Way @ 1.809'MeV:™

- =+ Comptel (2001)

Y« Some short-lived radionuclides have abundances in excess relative to abundances
calculated by models of the chemical evolution of the Galaxy



The last-minute origin of short-lived radionuclides

7« 'Be, 10Be, 26Al, 36Cl, 41Ca, >3Mn (?), °Fe (?) have a last minute origin

Gounelle et al. 2006

In situ irradiation

| Ouellette et al. 2005 I
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The importance of short-lived radionuclides

Y¢ Understanding the origin (as well as abundance and spatial
distribution) of extinct short-lived radionuclides is a key task for
cosmochemists and astrophysicists

Y¢ It offers the possibility to characterize Galactic evolution

7¢ |t constrains the astrophysical environment _ of the protoSun

Y¢ It constrains the irradiation conditions in the solar accretion disk

7¢ SRs offer the possibility to build a chronology

vc y-ray emitters SRs are a potential heat source_for planetesimals







The origin of iron-60

1. Galactic background NO

2. In situ Irradiation of solar system dust by solar
cosmic rays NO

3. Last minute injection by a nearby star

4. SPACE model



Orion Nebular Cluster (~1 Myr old)
Hester & Desch 2005 Evaporatmg. CflSk’§

0.1 pc

; HST
<<

B1C Ori is the most massive star of the ONC (~40 M ) which will explode
as a supernova 5 Myr after the onset of star formation e




SN nearby a young disk

*nearby = 0.3 pc (from the SRs inventory and the SN yields)
*young = 1 Myr (from the cosmochemical data)




1. Disk survival

2. Distance




Evaporation timescale

The time needed for 6'C Ori (~40 M ) to go supernova is




Even if disks do not evaporate, planets form on a
few Myr timescale (before massive star death)




NGC2244 (~ Orion in 1-2 Myr)

~ 2-3 Myr old cluster e R e %

~ 2-3 Myr before the central O
star goes SN

g

¥ Balog et al. ApJ 2007 B




Tr37 in Cepheus OB2
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Most disks are not in the enrichment zone (0.2 <r < 0.4 pc)
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The delivery of SRs into the disk by a nearby SN Is a
very unlikely event

Williams & Gaidos ApJL 2007; Gounelle & Meibom ApJ 2008







Second generation of stars

Drawing from
Hartmann et al. ApJ

neneration of siars =R

Contains °°Fe delivered by the 1 st generation of stars




. Prote high-mass star & Proto low-mass star £ Disk-fres low-mass star O Windy high-mass star

Gounelle et al. ApJL 2009
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Myca2("Fe)lt] = fn Z Ysn (“'Fe)e 1/

n: mixing efficiency of SRs
f. geometrical dilution factor
Ngy: Number of supernovae
Y- Yields of ®OFe of supernova i
t.: explosion time of thei ® SN
T. ®°Fe mean life

For a given size of the MC1 cloud (a given N ),
the calculation will be realized 100 times
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Woosley & Weaver (1995); Rauscher et al. (2002); Lim  ongi & Chiffi (2006)




Large scale turbulent flows: f =0.5. We conservatively assume f=0.1

Mixing favoured by low densities (Koyama & Inutsuka 2002): n =1 (cf.
Looney et al. 2006; Ouellette et al. 2005)




N, = 5000 stars

# of stars

dN/dM X M (14 ) 2.7 for stars more massive than1 M
Kroupa et al. 1993




100 realizations of the IMF

-
E -9

N 1 = 5000 stars

—
[ (%]
T

10~

)]
QL
(&)
o
QO
S
S
=}
O
(&)
o}
Y
(o}
H

10 15
# of supernovae




SN2 (26 Mo) SN4 (19 Mo)

—_
OI 1 1

1
[#)]

—_
OI

SN3 (20 M
LY (20Mo) SN5(15M)

——
th
Q
th
/4]
4+
=
| .
E
5
/4]
S
o
O 5
= 10
=
Q
Q
[
[5*]
-
[
=
o]
[4+]
@
L
o=
[7a]

—_—
OI
=~

N1 =5000 stars

5 10
Time (Myr)

One realization of the IMF with N , = 5000 stars




l-ul1 =5000 stars
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Molecular clouds made by turbulent convergent flows need
10-20 Myr to be assembled (e.g. Vazquez-Semadeni et al. 2007)




Meor. = (6.9 % 3.5) x 106 M,

N1 =5000 stars

Averaged aver the time interval 10-20 Myr
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My,c, [PFe] = (6.9 £ 3.5) x 107°M, [N, = 5000 stars]

With [*°Fe]ss = 0.4 ppb (*°Fe/*°Fe = 3 x 10-7), a molecular cloud of
mass M,,~, = (1.7 £ 0.9) x 10* M, would have the same *°Fe
abundance than the solar system

How reasonable is it to have a cloud of mass

My, = (1.7 £0.9) x 104 M, made by turbulent convergent flows
created by an OB association of N; = 5000 stars?




The MC progenitor of the Upper Sco OB association had a mass
My, = (0.8 —4.7) x 104 M, (de Geus 1992; Lada & Lada 2003)




Blaauw 1991




[Fe/H] =-0.16

[Fe/H] = 0.01

the ONC and the O
pollution scenario originally proposed by Cunha and collabo- _
rators (1992, 1994. 1998) for the Orion region. D’Orazi et al. astro- ph




Unlikely ©°Fe injected by a nearby SN

A significant proportion of MCs built by turbulent
convergent flows

The SPACE model proposes that while MCs are  being

built, they receive °°Fe from SNe belonging to a previous
episode of star formation and responsible for the
turbulent convergent flows

Quantitative, stochastic calculations show that the 50Fe
content of our solar system can be accounted for by such
a generic mechanism

Gounelle et al. (2009) ApJL 694 L1-L5




