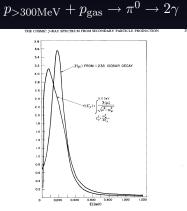
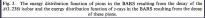
The ionization degree of molecular clouds

P. Hily-Blant, C. Ceccarelli, G. Dubus, T. Montmerle, Y. Galland, A. Fiasson

LAOG


September, 9th, 2009


P. Hily-Blant (LAOG)

- · HESS sources with no plausible counterpart at X-ray
- γ -ray sources associated with molecular clouds close to SNRs
- Interaction between high-energy protons accelerated by SNRs (presumably) with protons from the cloud

Tracing low-energy cosmic rays

- Only way to trace accelerated protons is indirect
- π^0 -meson decay produces γ -ray:

P. Hily-Blant (LAOG)

- continuous spectrum peaking at 70 MeV
- γ -ray flux:

$$F_{\gamma} \approx \frac{q\langle n \rangle V}{4\pi d^2}$$

- $\langle n \rangle$: average density (atoms ${
 m cm}^{-3}$)
- q: total rate of γ -ray production by π^0 -meson decay (s⁻¹) per atom of gas, $\approx 10^{-31}$ ph s⁻¹ atom⁻¹ (Aharonian & Atoyan 1996)

$$F_{\gamma}(> \text{ TeV}) \approx 10^{-12} \left(\frac{M}{10^6 \,\text{M}_{\odot}}\right) \left(\frac{1}{R_{\text{kpc}}}\right)^2 \text{ photons cm}^{-2} \,\text{s}^{-1}$$

- If distance accelerator-target-cloud < m.f.p.: interaction possible with subsequent trapping by magnetic fields of the cloud
- Typical non-associated HESS source has $F_{\gamma} \approx 10^{-11} \, {\rm photons} \, {\rm cm}^{-2} \, {\rm s}^{-1}$ above 1 TeV.

Motivation

- Look for interaction of accelerated protons (1–10 MeV) with the molecular cloud matter
- Test the possibility that
 - 1 molecular clouds are VHE sources and dark accelerators
 - 2 source of enhanced ionization degree of the cloud
- Enhancement of the ionization degree (not collisionally *e.g.* in a shock): association molecular cloud/*γ*-ray–source
- For such an association, should be possible to estimate the local density of cosmic rays

The fractional ionization in the ISM

- gas dynamics: coupling to magnetic fields
 - transfer of angular momentum
 - dissipation by turbulence
 - formation of stars
- planetary atmospheres: ionosphere, chemistry

Measuring the ionization degree in clouds

• Diffuse clouds exposed to enough UV field such that H/H_2 transition not complete: Optical observation of H_3^+

$$\zeta \approx 10^{-15} - 10^{-16} \, \mathrm{s}^{-1}$$

- Denser clouds, attenuation of UV by dust and self-shielding by ${\rm H_2}$: ${\rm H_3^+}$ much less abundant, different tracer of the ionization.
- Usual method (Guélin *et al* 1977): DCO⁺/HCO⁺ abundance ratio

DCO^+/HCO^+ abundance ratio

Consider the minimal network of chemical reactions governing the formation and destruction of HCO^+ and DCO^+ :

Formation

Destruction

$$\begin{array}{ccc} \mathsf{H}_{3}^{+} + \mathsf{CO} \xrightarrow[k_{H}]{} & \mathsf{HCO}^{+} + \mathsf{H}_{2} \\ \mathsf{H}_{2}\mathsf{D}^{+} + \mathsf{CO} \xrightarrow[2k_{D}]{} & \mathsf{HCO}^{+} + \mathsf{H}_{2} \\ \mathsf{H}_{2}\mathsf{D}^{+} + \mathsf{CO} \xrightarrow[k_{D}]{} & \mathsf{DCO}^{+} + \mathsf{HD} \end{array} \qquad \begin{array}{c} \mathsf{HCO}^{+} + \mathsf{e}^{-} & \xrightarrow[\beta_{H}]{} & \mathsf{CO} + \mathsf{H} \\ \mathsf{DCO}^{+} + \mathsf{e}^{-} & \xrightarrow[\beta_{D}]{} & \mathsf{CO} + D \end{array}$$

Steady-state: $dn(X)/dt = 0, \beta_H \approx \beta_D, k_H \approx 2k_D$

$$\frac{n(\text{DCO}^+)}{n(\text{HCO}^+)} = \frac{R'}{1+2R'}, \quad R' = \frac{1}{3} \frac{\text{H}_2\text{D}^+}{\text{H}_3^+}$$

ZZZ: Assumes low kinetic temperature (block endothermic reactions)

P. Hily-Blant (LAOG)

The H_2D^+/H_3^+ ratio

Formation

$$AH^{+} + HD \xrightarrow{}_{k_{1}} AD^{+} + H_{2} + \Delta E$$

$$k_{1} \approx 10^{-9}, \Delta E/k_{b} = 220 \text{ K}$$

$$k_{rec} \approx 10^{-7} - 10^{-6}, k \approx 10^{-9}$$

$$k'_{1} = k_{1} e^{-\Delta E/k_{B}T}$$

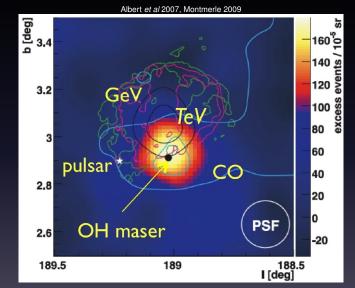

$$AD^{+} + H_{2} \xrightarrow{}_{k'_{1}} AH^{+} + HD$$

$$AD^{+} + X \xrightarrow{}_{b} \dots$$

Steady-state: (with A=H₂, X=H₂, CO), $x(X) = n(X)/n(H_2) \approx 2n(X)/n(H)$

$$R = \frac{\mathsf{H}_{2}\mathsf{D}^{+}}{\mathsf{H}_{3}^{+}} = \frac{k_{1}n(\mathsf{HD})/n(\mathsf{H}_{2})}{k_{\mathrm{rec}}x_{e} + k_{1}\,e^{-\Delta E/k_{B}T} + \sum_{i}k_{i}x_{i}}$$

Depends only on x_e ([CO], D/H known) and T < 20 K



P. Hily-Blant (LAOG)

Radio observations

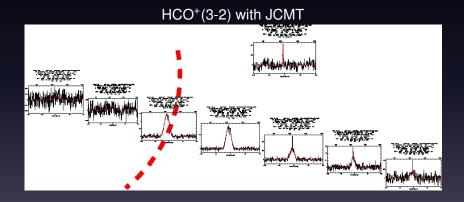
Telescope	Location	Diameter	HPBW
CfA	USA/Chile	1.2m	550
KOSMA	Switzerland	3m	220
NANTEN	Chile	4m	165
APEX	Chili	12m	26
JCMT	Hawaii	15m	20
IRAM	Spain	30m	10-20

- NANTEN well suited for comparison with HESS
- Molecular clouds clumpy (*e.g.* W28): Probing interactions needs higher angular resolution.
- Provides extremely good constraints on kinematics

VLA 20cm (green), ROSAT X-ray (purple), γ -ray EGRET + source (black), MAGIC TeV source (color), 3mm CO(1-0) Dame (cyan) 12/23

P. Hily-Blant (LAOG)

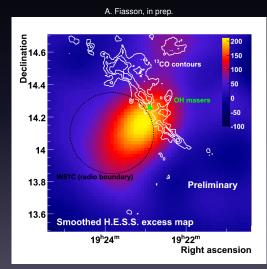
Ionization in Molecular Clouds


September, 9th, 2009

MAGIC-J0616+225/IC443

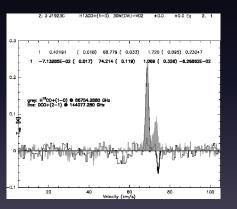
P. Hily-Blant (LAOG)

MAGIC-J0616+225/IC443

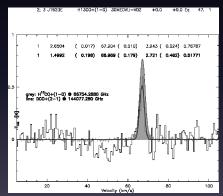

P. Hily-Blant (LAOG)

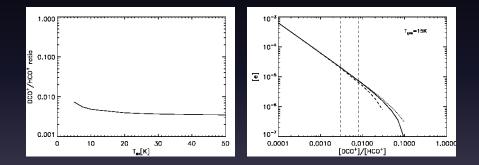
Ionization in Molecular Clouds

September, 9th, 2009 14 / 23

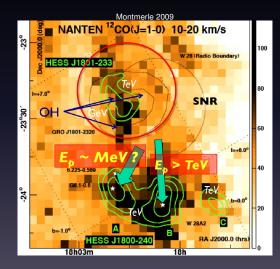

MAGIC-J0616+225/IC443

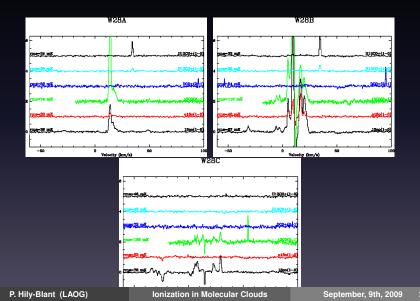
- DCO⁺ not detected
- upper limits on [DCO⁺]/[HCO⁺ ratio
- lower limits on the ionization degree x_e
- analysis still under way...
- but at one position (shifted from the shock), $x_e \ge 1.5 \times 10^{-5}$. Good candidate for further integration.




P. Hily-Blant (LAOG)

Upper limit


Detection


- Detected position: $x_e \approx 1.5 \times 10^{-5} \gg x_{\text{dark}}$
- Undetected position: $x_e \ge 7 \times 10^{-5}$
- But collisional excitation probable so perhaps not conclusive

W28

P. Hily-Blant (LAOG)

Perspectives

- Difficulty to find a good "laboratory"
- W28 might be such a "laboratory" to test γ -ray–molecular clouds interactions
- Need for molecular maps at various spatial resolutions.
 High-resolution maps needed to pinpoint interaction regios which may be tiny.
- Large maps at high angular resolution at mm-wavelenght are very demanding (typically $0.5^\circ \times 0.5^\circ \rightarrow 40-80$ hrs)

• J1506-622 -> Mopra radio telescope, Dec 15th