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The Origin of galactic Cosmic Rays

'_7..[ Facts:

the spectrum is (ALMOST) a single power law -> CR knee at few PeVs

extremely isotropic, up to very high energies

energy density -> wer = 1 eV/em?®
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The Origin of galactic Cosmic Rays

'_7..[ Facts:

the spectrum is (ALMOST) a single power law -> CR knee at few PeVs

extremely isotropic, up to very high energies

energy density -> wer = 1 eV/em?®

™ Most popular explanation:

acceleration in SuperNovaRemnants -> CR energy density if efficiency 210%

diffusive shock acceleration -> roughly the required spectrum...

propagation in the Galaxy -> isotropy
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Why is it so difficult?

...magnetic field...

S

CR source you

We cannot do CR Astronomy.

Need for indirect identification of CR sources.




Gamma-ray astronomy
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The sky @ E>100 MeV (FERMI)




We need to know:

™ Which are the sources of CRs?
which acceleration mechanism? -> injection spectrum

total energy in CRs
maximum energy of accelerated particles

™ How do CRs propagate?

maghetic field in the Galaxy
spatial distribution of sources
spatial distribution of CRs
injected -> observed spectrum

™ Which is the chemical composition of CRs?



We need to know:

Which are the sources of CRs?

which ac echanism? -> injection spectrum

total '
maximum energy of accelerated par@

™ How do CRs propagate?

magnetic field in the Galaxy
shatia-aistriouttenr-ef sources
spatial distribution of CRs
Injecte eoserved spectrum

™ Which is the chemical composition of CRs?



Why molecular clouds?

Molecular Clouds -> sites of star formation
dense -> n ~ 100 cm™3
massive -> Mass up to 10° Mo

Orion Nebula Mosaic HST - WFPC2

PRC95-45a - ST Scl OPO - November 20, 1995
C. R. O’Dell and S. K. Wong (Rice University), NASA




Why molecular clouds?

Molecular Clouds -> sites of star formation
dense -> n ~ 100 cm™3
massive -> Mass up to 10° Mo

Cloud mass
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PRC95-45a - ST Scl OPO - November 20, 1995
C. R. O’Dell and S. K. Wong (Rice University), NASA
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...because they are massive



Molecular Clouds are gamma-ray sources
The galactic centre ridge as seen by HESS

G'EIB+{.']‘I

:?

—l—'-;
0
ol

HESS collaboration, 2006



Molecular Clouds are gamma-ray sources
The galactic centre ridge as seen by HESS
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I - Molecular Clouds as Cosmic Ray
Barometers

IT - Supernova Remnants/Molecular
Clouds associations

ITT - Some comments on the galactic
gamma-ray background



I - Molecular Clouds as Cosmic Ray
Barometers



Molecular Clouds as CR barometers
(Issa & Wolfendale, 1981 ; Aharonian, 1991)

Zero-th order approximation: the CR spectrum everywhere in
the Galaxy is identical to the spectrum we observe at Earth
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Akharonian, 1991

Molecular Clouds as CR barometers
(Issa & Wolfendale, 1981 ; Aharonian, 1991)

Zero-th order approximation: the CR spectrum everywhere in
the Galaxy is identical to the spectrum we observe at Earth
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detectable with EGRET if:

Ms
d2—>10

kpc

only a few (Orion, Monoceros) -> Digel et al.2001
we need FERMI
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Molecular Clouds as CR barometers

Conversely, if we know M. and d (from CO measurements) we
can derive A and estimate both the normalization and spectrum
of CRs at the cloud -> Molecular Clouds are CR Barometers

Two caveats:

error in the determination of the mass (CO -> H2 conversion)

effective penetration of CR into the cloud (if not see Gabici et al. 2007)



Detectability at TeV energies:
the role of CTA

Gamma-ray flux from the cloud @1TeV
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flux from a
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cloud

mass and distance
of the cloud

Gabici, 2008




Detectability at TeV energies:
the role of CTA

Sensitivity of CTA @1TeV
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Detectability at TeV energies:

the role of CTA

Simplifying assumption:

2x 10713 §

d2

kpc

TeV/em?/s > 10714 (

GCTA)
0.1

(0%) TeV/em?/s

all the clouds have the same density (~ 100 cm3):

M3

0~ 1°
dkpc

Gabici, 2008




Detectability at TeV energies:
the role of CTA

Detectability condition: dkpc < 296 M52/3

HESS cannot detect passive clouds
CTA will be able to detect local passive clouds (~ kpc distance scale)
CTA (HESS) will probe the Cosmic Ray pressure in regions of the Galaxy

where 8 >» 1 (0 » 10)

Gabici, 2008



GLAT (degrees)

"Tomography” with gamma rays

Casanova ...S6...et al, 2009

NANTEN: CO (J=1-0)
-> tracer of H:

LAB HI Survey
(Karberla et al 05)

ASSUMPTION:
CR spectrum is universal
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GLAT (degrees)

"Tomography” with gamma rays

Casanova ...S6...et al, 2009

NANTEN: CO (J=1-0)

-> tracer of H:

LAB HI Survey
(Karberla et al 05)

ASSUMPTION:
CR spectrum is universal
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"Tomography” with gamma rays

Casanova ...S6...et al, 2009
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IT - Supernova Remnants/Molecular
Clouds associations



Montmerle's SNOBs

adapted from Montmerle, 1979 ; Casse & Paul, 1980

IZ Massive (OB) stars form in dense regions -> molecular cloud complexes
IZ OB stars evolve rapidly and eventually explode forming SNRs
IZ SNR shocks accelerate COSMIC RAYS

A CRs escape from their sources and diffuse away in the DENSE circumstellar
material -> molecular cloud complex

A ..and produce there gamma rays!

An association between cosmic ray
sources and molecular cloud is expected




Gamma rays from SNRs:
a test for CR origin

Drury, Aharonian & Volk, 1994

CR observations -> CR power of the Galaxy } 210% of SNR energy MUST

Supernova rate in the Galaxy (*3 per century) be converted into CRs

SNRs visible in TeV gamma rays

ISM density n# 0.1+ 1cm
=

proton-proton interactions



Gamma rays from SNRs:
a test for CR origin

Drury, Aharonian & Volk, 1994

CR observations -> CR power of the Galaxy 210% of SNR energy MUST
be converted into CRs

Supernova rate in the Galaxy (*3 per century)

SNRs visible in TeV gamma rays

ISM density n# 0.1+ 1cm
=

proton-proton interactions

* RXJ1713 as seen by HESS

SNRs detected @TeVs & TEST PASSED!

BUT

hadronic or leptonic???

17h16m 17h10m




Are SuperNova Remnants CR PeVatrons?
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RXJ1713 does not look like a PeVatron...

We would like SNRs to be CR PeVatrons...

RXJ1713 data from HESS

1070 T
Underlying proton - 'b,m NS
o I ] is NOTII
spectrum E¢ with ]
exponential cutoff % 7
@150 TeV -3 |
; \\M/L
1p-12 L1 L1 L L1
0.1 1 10 100

E [TeV]

Gabici, 2008



RX J1713 probably WAS a PeVatronlt

We need to know a bit of shock acceleration theory...

THIS IS A SNR D(E) E

Diffusion length:  lgiff ~ ” ocB ”
sh shWsh




RX J1713 probably WAS a PeVatronlt

We need to know a bit of shock acceleration theory...

THIS IS A SNR

D(E) E
X
Ush Bshush

Diffusion length:  lgiff ~

Confinement condition:
D(E)
Ush (t)

< Rsh(t) - Emax ~ Bsh ush<t) Rsh (t)



RX J1713 probably WAS a PeVatronlt

We need to know a bit of shock acceleration theory...

THIS IS A SNR

Sedov phase:

Ron(t) o t2/5
wsh (t) o< t73/°

D(E) E
X
Ush Bshush

Diffusion length:  lgiff ~

Confinement condition:
D(E)
Ush (t)

< Rsh(t) - Emax ~ Bsh ush<t) Rsh (t)



RX J1713 probably WAS a PeVatronlt

We need to know a bit of shock acceleration theory...

THIS IS A SNR D(E) E

Diffusion length:  lgiff ~ ” ocB ”
sh shWsh

Confinement condition:
D(E)
Ush (t)

< Rsh(t) - Emax ~ Bsh ush<t) Rsh (t)

Sedov phase: Eoor X Bsht_1/5

R (t) oc t?/9 /

wsh (t) o< t73/°




RX J1713 probably WAS a PeVatronlt

We need to know a bit of shock acceleration theory...

THIS IS A SNR D(E) E

Diffusion length:  lgiff ~ ” ocB "
sh shWsh

Confinement condition:
D(E)
Ush (t)

< Rsh(t) - Emax ~ Bsh ush<t) Rsh(t)

/ Bsh GISO

depends on
Sedov phase: Eoax _1/5 time
Ran(t) ox t2/° /

—3/5
Usp (t) o< t Emnox decreases with time

Particles with E > Emax escape the SNR




Particle escape from SNRs Vg

Ptuskin & Zirakashvili, 2003
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Particle escape from SNRs ... .,

Ptuskin & Zirakashvili, 2003
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Particle escape from SNRs ... .,

Enaz |GeV]

~10 GeV

Ptuskin & Zirakashvili, 2003
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Particle escape from SNRs ... 4.

This is a supernova remnant

RXJ1713 WAS a CR PeVatron

PeV particles are accelerated at

the beginning of Sedov phase
(~200yrs), when the shock speed is
high!



This is a supernova remnant

RXJ1713 WAS a CR PeVatron

PeV particles are accelerated at
the beginning of Sedov phase
(~200yrs), when the shock speed is
high!

they quickly escape as the shock
slows down




Particle escape from SNRs ... ..

This is a supernova remnant

RXJ1713 WAS a CR PeVatron

PeV particles are accelerated at

the beginning of Sedov phase
(~200yrs), when the shock speed is
high!

they quickly escape as the shock
slows down

Highest energy particles are
released first, and particles with
lower and lower energy are
progressively released later

a SNR is a PeVatron for a very
short time



This is a supernova remnant

RXJ1713 WAS a CR PeVatron

PeV particles are accelerated at

the beginning of Sedov phase
(~200yrs), when the shock speed is
high!

they quickly escape as the shock
slows down

Highest energy particles are
released first, and particles with
lower and lower energy are
progressively released later

a SNR is a PeVatron for a very
short time

still no evidence for the
existence of escaping CRs






Both SNR and surrounding
molecular clouds emit gammas




Gamma rays from escaping particles:
Aharonian & Atoyan, 1996 (CR accelerator)
Gabici & Aharonian, 2007 (SNRs)
Follow up papers:

Torres et al, 2008
Rodriguez-Marrero et al, 2008
Gabici et al, 2009

Both SNR and surrounding
molecular clouds emit gammas




Particle escape from SNRs ... 4.

Gamma rays from escaping particles:
Aharonian & Atoyan, 1996 (CR accelerator)
Gabici & Aharonian, 2007 (SNRs)

Follow up papers:

A Torres et al, 2008
8 Rodriguez-Marrero et al, 2008

Us 77@\ Gabici et al, 2009

s, sites of star formation

S

Bo.'.h SNR Clnd Sur'r'ounding OrionNebuI?Mosaiczm HST - WFPC2

PRC95-45a - ST Scl OPO - November 20, 1995
C. R. O’Dell and S. K. Wong (Rice University), NASA

molecular clouds emit gammas| 10°MosM=<10°M. 0.5 pc <R =20 pc




Gamma rays from MCs illuminated by CRs

t = 400 yr d—1 kpe
1 PeV dsnr/cl = 100 pc

My = 10* Mg
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs

U-L t = 32000 ; d=1 kpc
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs
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MWL implications

GeV-TeV connection... ...and PeV-hard X connection

l I|I|II1 TT | 1 | I|I|I|1 T 1 III|||I1 II|III|I| |II||I|1 II|IIIII| ||I||||1 II|I|III| |:
d = 50 pc d = 200 pc
I ",
Y I -
0.1 F\:"% Mg =
E\: - = v ]
C | [ ]
— 1 v " 7
? \ i g ]
: T
> \i
= 10-2 -
g \
AN
2 i\
t A
: vio
1o |- % -
Eo: . on F
: Lo Iv T
: 0N T
: oAt
; k '.__-i \_‘_
H =1
-4 IE-'IIII 11 | 1l |III|J J'I-IIIII‘ 1 NN Lo 11 11 Lam 1 1l 1
10-310-210-! 10 102 10% 10-210-' 1 10 10% 10°

—

CR "“sea”

t=3500 yr
t=2000 yr
t=8000 yr
t=32000 yr
t=128000 yr

E [TeV]

Gabici, Aharonian & Casanova, 2009

10-10 ¢

_10-1 |

E2 F(E) [erg/cm?/s

10-18

10-% 0.00010.001 0.01

Fermi N
r HESS

0.1
E [TeV]

1

10 100 1000



MWL implications

GeV-TeV connection... ... and PeV-hard X connection

PeV cosmic rays in a molecular cloud...

pp—ppnt w7

L p
Ly e

B E \°
syn ~ 20 [ = keV
“ey (3OMG> (1OOT6V) ‘

We can search for PeVatrons in X-rays!

Ee =~ 100 TeV

Gabici, Aharonian & Casanova, 2009




MWL implications

M=10° Mo : R=20pc ;: n=120cm™3 ; B=20x G ; D=1kpc ; D10=10%cm?/s

Peak from CR background Peak from CR from SNR
(steady) (time dependent)
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A great variety of spectra are expected

Gabici, Aharonian & Casanova, 2009




MWL implications

M=105 Mo ; R=20pc ; n=120cm-3 ; B=20x G ; dsne/mc=100pc ; D=1kpc

= 2000 yr
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MWL implications

M=105 Mo ; R=20pc ; n=120cm-3 ; B=20x G ; dsne/mc=100pc ; D=1kpc
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MWL implications

M=105 Mo ; R=20pc ; n=120cm-3 ; B=20x G ; dsne/mc=100pc ; D=1kpc
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The role of the magnetic field

We cannot increase the
field arbitrarily...

Mag. energy < Grav. energy

B2 3 GM2
81 B=We =g

Log(E2 F) [erg/cm?/s]

M Ry \°
B, <
l_30(105M@) (20 pc) nG

Log(E) [keV]

Gabici, Aharonian & Casanova, 2009



Multimessenger observations -> neutrinos

Gabici&Aharonian(2007) d=1 kpc
To detect R AL B b SELALLL BEURALLL IELRALL B dsnr/cl = 100 pc
M i 7 4
urcec with - | CLOUD, 50 pc | CLOUD, 200 pc — - :j\écllgwlfm]y/i
neutrino
telescope we | &
need ~1 Crab glo-12
: thick -> gammas
f; thin -> neutrinos
=

10-19 [

10-1 PTTTN ERETI ERTIT W lll‘ﬁiLLLLLLLul_LLLLthl_
0.1 1 10 100 1 10 100

Detection -> very massive MC very close to the SNR




ITTI - Some comments on the galactic
gamma-ray background



Galactic gamma-ray background

Atomic hydrogen

column density -> 10%! + 2.3 10?2 ¢cm2 diffuse

Molecular hydrogen

e ;
X S5 B

column density -> 1.2 102! + 2,85 10?2 ¢cm™2 clouds

Gamma rays

diffuse | +| clouds )

gamma | = CRs X (




Galactic gamma-ray background

Atomic hydrogen

atomic hydrogen |

Cq

Moleculan

sources or diffuse emission?

or

What is the background?

Molecular clouds: are we dealing with

fuse
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