UNIVERSITA' DI PALERMO

Molecular clouds as probes of cosmic-ray acceleration in supernova remnants Palavas-les-Flots, France 7-9 september 2009

X-ray emission from SNRs interacting with interstellar clouds

Marco Miceli

Dipartimento di Scienze Fisiche e Astronomiche, Università di Palermo, Italy INAF - Osservatorio Astronomico di Palermo

Summary

Introduction

Physical origin of the X-ray emission

- Hydrodynamic (HD) effects
- Effects of diffusive shock acceleration (DSA)

X-ray observations of HD effects

- Cygnus Loop
- Kes 27
- W49 B
- IC 443
- Mixed-Morphology (MM)

X-ray observations of DSA effects

- RX J1713.7-3946
- IC 443
- Kes 69 (?)

We expect to find several SNRs interacting with dense clouds because:

1. Core-collapse supernovae are expected to explode in the same environment where their progenitors were born (massive stars cannot drift far away from the star-forming region because of their very short life-times).

2. Massive stars modify the circumstellar medium with strong stellar winds in their post-MS stages (RSG, LBV, Wolf-Rayet), creating wind-blown bubbles enclosed by dense cavity wall (e.g. Ring Nebula G79.29+0.46, Rizzo et al. 2008). Therefore, SNRs can interact with wind residuals and impact on the cavity wall (see Dwarkadas 2005 and 2007).

Since around 80% of SNe are core collapse, these interactions drive the exchange of energy and mass in the interstellar medium and contribute to the chemical enrichment for future generations of stellar populations.

Introduction

Over a total of 274 SNRs in the Green catalogue **54** SNRs (~20%) interacting with MC (they were **44** in 2003 and **25** in 1998) Table 1: SNRs and MCs. Seta et al 1998, Roberts et al 2001, Torres et al. 2003

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Name	Other name	H_2	CO	X-ray	Other	Ref. & Notes
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G0.0-0.0	SgrA East				OH,3EG	Fatuzzo 2003ApJ596.1035F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G1.4-0.1					IR	Hewitt et al 09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G5.4-1.2					OH	Hewitt & Yusef-Zadeh 09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G5.7-0.0					OH	Hewitt & Yusef-Zadeh 09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G6.4-0.1	W28 (MM)		+	A	OH,3EG	1,2, Lazendic 218, Rho et al 02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G9.7-0.0					OH	Hewitt & Yusef-Zadeh 09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G16.7 + 0.1			+	N	OH	Helfand et al 03 plerion
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G21.8-0.6	Kes 69			R	OH	Yusef et al 03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G22.7-02					IR	Reach et al. 06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$G31.9 \pm 0.0$	3C391 (MM)		+	A	OH	Reach et al. 98,99, Chen et al 01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G32.8-0.1	Kes78				OH	Yusef et al 03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$G33.6 \pm 0.1$	Kes79		+	A,C	OH	Tsunemi et al 02, Sun et al 02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G34.6-0.5	W44 (MM)	+	+	R,C	OH,3EG	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G39.2-0.3	3C396				IR	Hewitt et al. 09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						OH	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		W49 B			+	IR	Miceli et al. 06. Keohane et al 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		W51 (MM)		+		OH	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$G69.0 \pm 2.7$	CTB80		+	R		12. Safi-Harb et al 95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+		A.C		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$G74.9 \pm 1.2$			+		3EG?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					A		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 - 10				,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HB21 (MM)			R.A		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					B.N		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					· ·		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-				OH	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					R		15. Lehay et al 95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		VRO42.05.01		+	R.A		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		IC443	+		N	3EG.OH	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Monoceros				3EG	15, 37, 38, Jaffe et al 98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					+		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		VelaJr					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		MSH10-53		+	,	3EG	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Kes 17				IR	Hewitt et al. 09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					+		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						OH	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		RCW103	+	+	А	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				'		OH	
G347.3-0.5 RX J1713 + A,C 3EG Uchiyama et al 02b, Butt et al 01 hadror G346.6-0.2 OH Yusef et al 03 G348.5+0.1 CTB37A + OH Yusef et al 03 G348.5-0.0 IR Reach et al 06 G349.7+0.2 + C OH Lazendic 2003HEAD35.1015L G357.7-0.1 Tornado C OH Lazendic 218, Gaensler et al 2003, Broga							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				+	A.C	· · · · ·	
G348.5+0.1 CTB37A + OH Yusef et al 03 G348.5-0.0 IR Reach et al 06 G349.7+0.2 + C OH Lazendic 2003HEAD35.1015L G357.7-0.1 Tornado C OH Lazendic 218, Gaensler et al 2003, Broga							
G348.5-0.0 IR Reach et al 06 G349.7+0.2 + C OH Lazendic 2003HEAD35.1015L G357.7-0.1 Tornado C OH Lazendic 218, Gaensler et al 2003, Broga		CTB37A		+			
G349.7+0.2 + C OH Lazendic 2003HEAD35.1015L G357.7-0.1 Tornado C OH Lazendic 218, Gaensler et al 2003, Broga				1			
G357.7-0.1 Tornado C OH Lazendic 218, Gaensler et al 2003, Broga				+	С		
0		Tornado					
	G357.7+0.3	Square			~	OH	manufacture area, consider et al 2006, broge

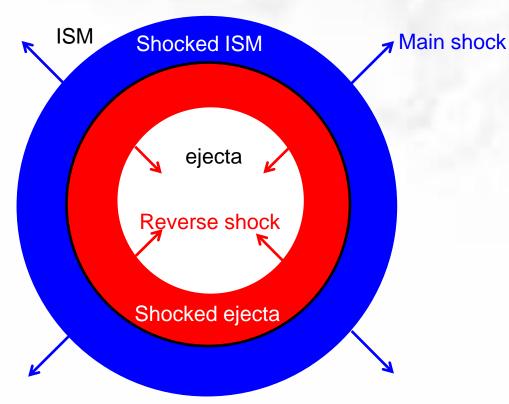
Summary

Introduction

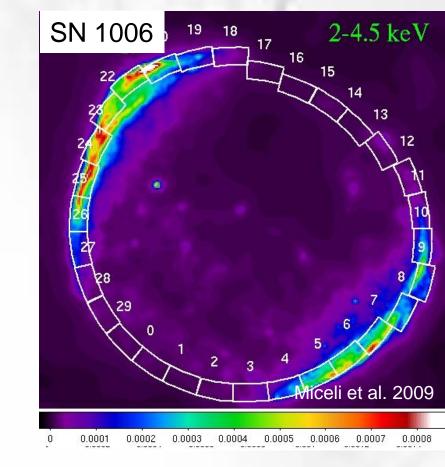
Physical origin of the X-ray emission

- Hydrodynamic (HD) effects
- Effects of diffusive shock acceleration (DSA)

X-ray observations of HD effects


- Cygnus Loop
- Kes 27
- W49 B
- IC 443
- Mixed-Morphology (MM)

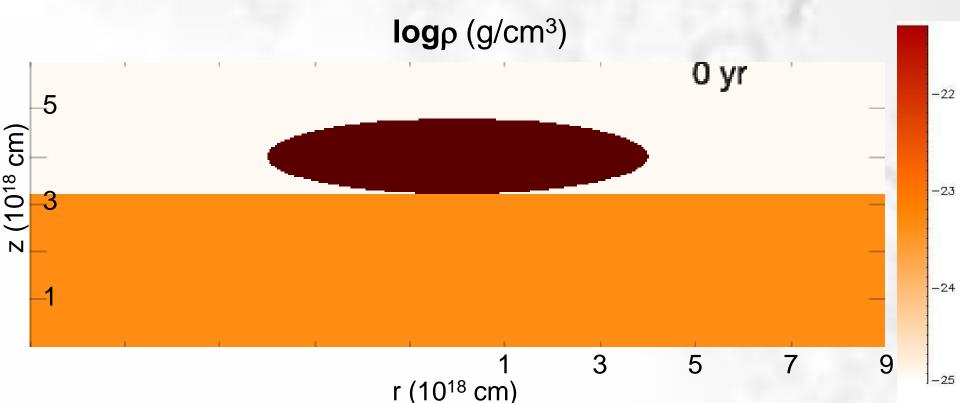
X-ray observations of DSA effects


- RX J1713.7-3946
- IC 443
- Kes 69 (?)

Physical origin of X-rays

SNRs are, by themselves, sources of thermal and non-thermal X-rays

- Thermal emission from shocked ISM
- Thermal emission from shocked ejecta

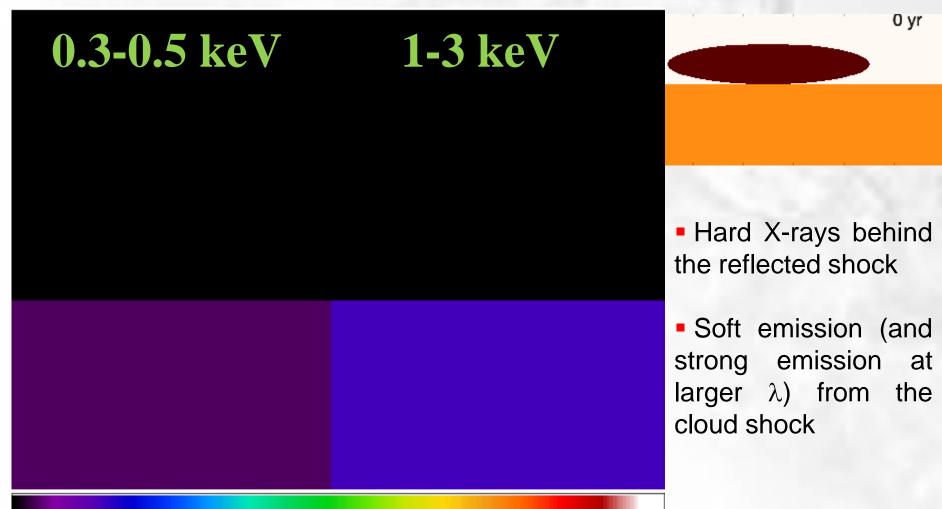


Non-thermal emission from e⁻ accelerated at the shock front

When a SNR interacts with a dense cloud additional effects are present...

Hydrodynamic effects

Interaction of the shock front with a density inhomogeneity: density evolution



- Density contrast = 100
- Intercloud density = 0.1 cm⁻³
- \blacksquare Cloud mass ~ 0.1 M_{\odot}
- Shock speed = 650 km/s
- Shock temperature = 6x10⁶ K

Hydrodynamic simulation performed with the FLASH code (Fryxell et al. 2000), including thermal conduction and radiative cooling

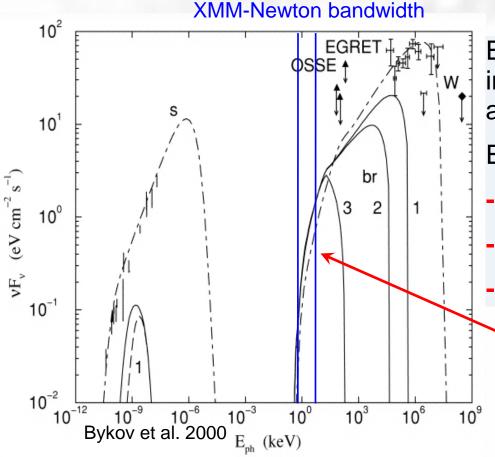
Hydrodynamic effects

Interaction of the shock front with a density inhomogeneity: X-ray emission

EPIC MOS synthesized count-rate maps (obtained with $N_H = 1 \times 10^{20} \text{ cm}^{-5}$). (see also Orlando et al. 2005, 2006, 2008 and Miceli et al. 2006)

Effects of DSA I.

Bykov et al. 2000 modelled the non-themal X-ray emission from SNR shocks interacting with a molecular cloud.


The transmitted (radiative) cloud-shock is mildly super-Alfvenic and is site of particle acceleration due to MHD turbulences (low \mathcal{M}_A are sufficient, see Bykov & Uvarov 1999)

The spectrum of accelerated particles in the cloud-shock is modeled taking account of DSA in turbulent plasma (accurately parametrized), Coulomb losses, bremsstrahlung, synchrotron, and IC, for different values of density

Example

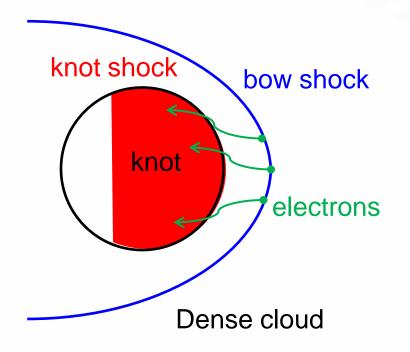
For a cloud density 10⁴ cm⁻³, with B=0.1 mG, v_{cl} =25 km/s, we have \mathcal{M}_A >1, the shock is collisionless and we can accelerate e⁻ up to ~1 GeV

Effects of DSA I.

Electrons from the cloud thermal pool in the ionized shock precursor are accelerated by the radiative shock.

Emission mechanisms:

- Synchrotron
- Inverse Compton
- Non-thermal bremsstrahlung


In X-rays MC clumps (solid line) are expected to be brighter than shell emission (dot-dashed)

- 1) V_{cl} =100 km/s, n_{cl} =10³ cm⁻³, B_{cl} =10⁻⁴G, E_{max} = 0.5 GeV
- 2) same as 1 with E_{max}=0.05 GeV
 3) V_{cl}=30 km/s, n_{cl}=10⁴ cm⁻³, E_{max}= 10 keV
- Dot-dashed) $V_{sh} = 150 \text{ km/s}$, $n_{sh} = 25$, $B_{sh} = 1.1 \times 10^{-5} \text{G}$ Points) observed fluxes in SCR 10,11,12 of IC443

Effects of DSA II. Fast-moving knots

Supersonic knots are a common feature of both young and middle-aged SNRs like **Cas A** (Fesen et al 2001), **Puppis A** (Katsuda et al. 2008), **G292.0+1.8** (Park et al. 2001), and **Vela** (Aschenbach et al. 1995, Miceli et al. 2008).

Bykov (2002) showed that these knots can be sources of X-ray line-emission that is most prominent when they interact with a dense cloud

Fast non-thermal particles accelerated at the bow shock diffuse through the knot suffering Coulomb losses and ionizing the metal rich knot

Emerging X-ray emission

- 1) Thermal component: soft X-rays behind the knot shock)
- **2)** Non-thermal component: hard continuum (bremsstrahlung with Γ ~1.5) + K-shell lines

Effects of DSA II. Fast-moving knots

The Bykov 2002 model calculates the spectra of non-thermal e⁻ accounting for injection, diffusive transport, advection, Fermi acceleration, synchrotron and Coulomb losses Table 2. K-shell line from the fragment interacting with low-density

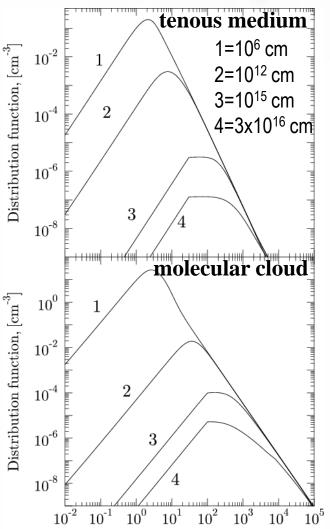


Table 2. K-shell line from the fragment interacting with low-density gas.

Line ^a		$ au_{ m max}$		
	1600	3200	6400	
O (0.5-0.6 keV)	38.0	66.5	99.8	33 880
Si (1.7-1.8 keV)	2.6	4.5	6.7	592 ^b
Ar (2.9–3.1 keV)	1.9	3.4	5.0	272 ^b
Fe (6.4-6.9 keV)	0.8	1.4	2.1	78^b
T ⁽²⁾ [10 ⁷ K]	1.2	2.8	6.6	

^{*a*} The luminosities are in 10^{36} ph s⁻¹

Table 1. K-shell line luminosities of the fragment interacting with a molecular cloud.

Line ^a		v_k (kms ⁻¹)		$ au_{ m max}$
	1080	1620	2700	
O (0.54 keV)	40.4	104	1638	33 880
Si (1.7 keV)	1.3	10	48	592 ^b
Ar (2.9 keV)	0.5	4	20	272 ^b
Fe (6.4 keV)	0.4	3	15	78 ^b
$T^{(2)}$ [10 ⁷ K]	0.3	0.5	1.0	

p/p_T (p_T=thermal upstream momentum) Miceli M., X-ray emission from SNRs interacting with clouds

Physical origin of X-rays

Hydrodynamic effects

Stratified emission (and temperature) at different distances from the cloud:

- IR, optical, and soft X-rays from the cloud shock
- Hard X-rays behind the reflected shock

Effects of particle acceleration at the shock front

- Shock in molecular clumps: enhanced non-thermal X-rays
- Fast moving knots: non-thermal continuum+line

Summary

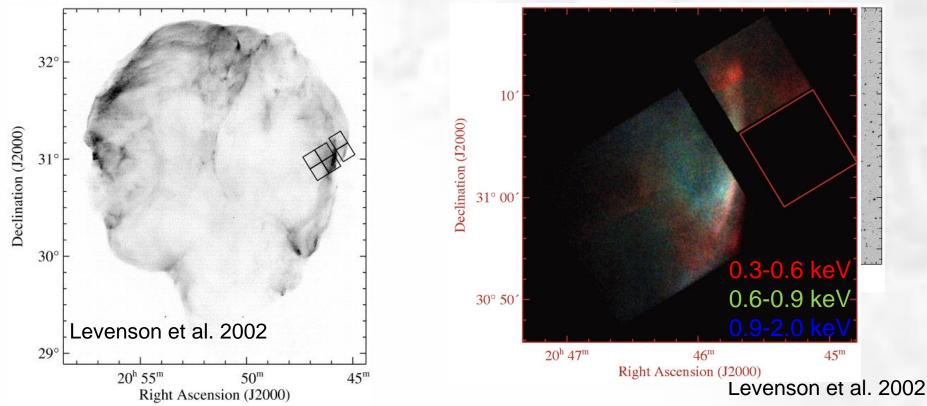
Introduction

Physical origin of the X-ray emission

- Hydrodynamic (HD) effects
- Effects of diffusive shock acceleration (DSA)

X-ray observations of HD effects

- Cygnus Loop
- Kes 27
- W49 B
- IC 443
- Mixed-Morphology (MM)

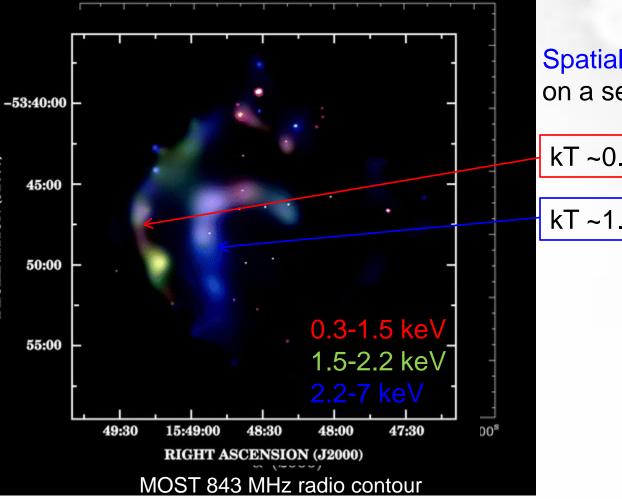

X-ray observations of DSA effects

- RX J1713.7-3946
- IC 443
- Kes 69 (?)

The Cygnus Loop (effects at small scales)

Middle-aged SNR (~8000 yr, Levenson et al 98; @500 pc, Blair et al. 99) interacting with a cavity wall.

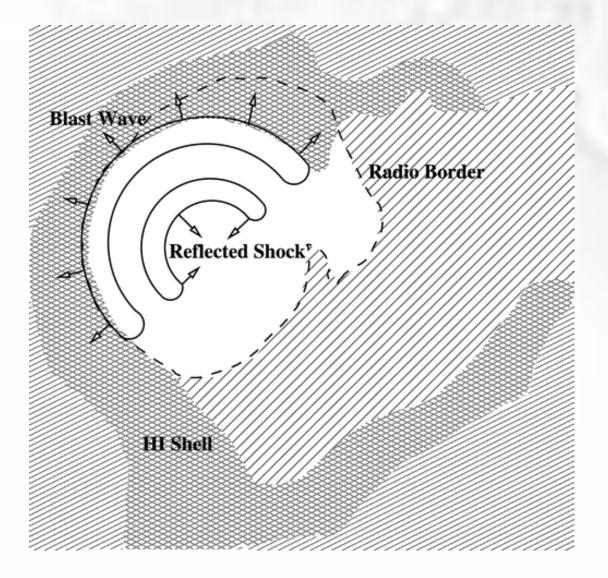
Chandra obs. of the W region (Levenson et al. 02)



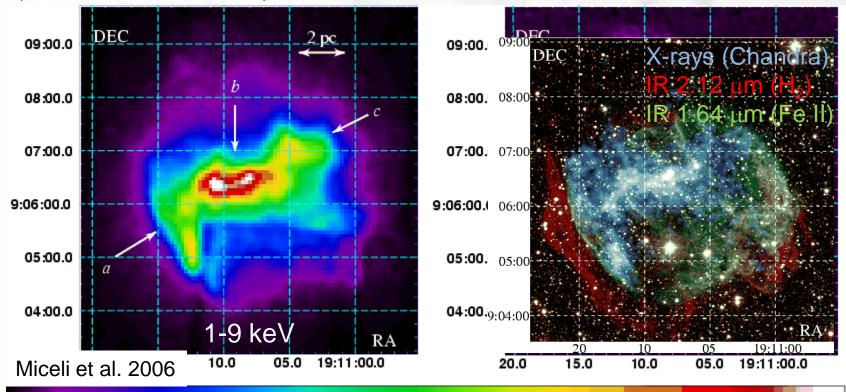
Stratified emission (and temperature) at different distances from the cloud:

- IR, optical, and soft X-rays (kT=0.03 keV) from the cloud shock
- Hard X-rays behind the reflected shock (kT=0.2 keV)

Kesteven 27 (effects at large scales)

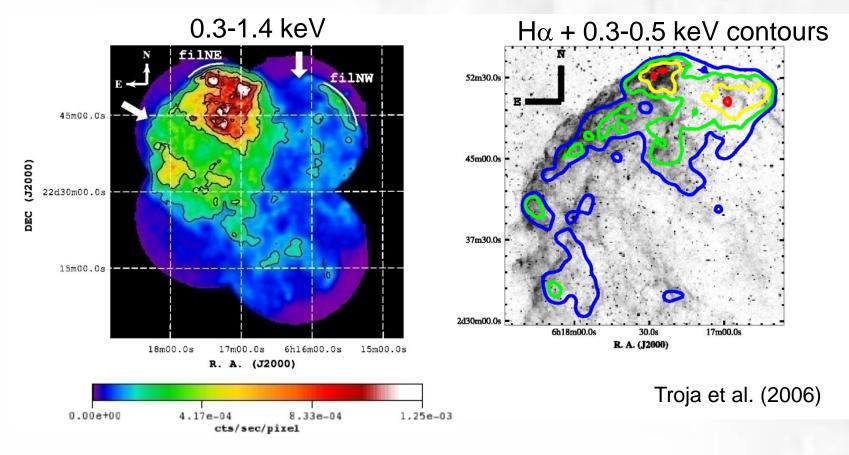

Thermal composite SNR (cool rim, hot interior) at ~4 pc, embedded in a H I cloud and interacting with it (McClure-Griffiths et al. 01). Analysis of Chandra data by Chen et al. 2008:

Spatially resolved spectral analysis on a set of 10 regions

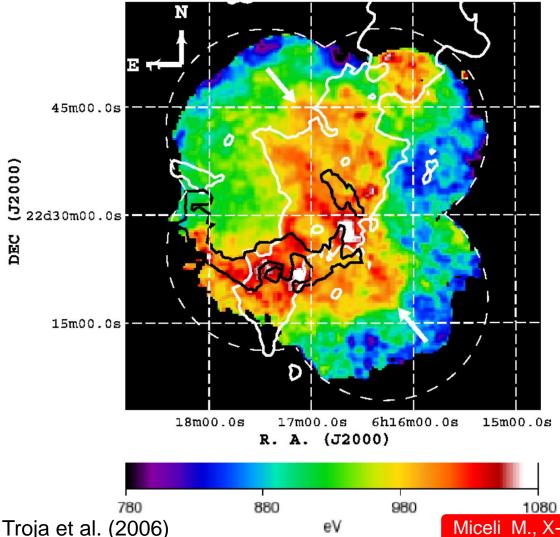

kT ~0.5 keV, n~2 cm⁻³

Kesteven 27 (effects at large scales)

W49 B (effects on the ejecta)

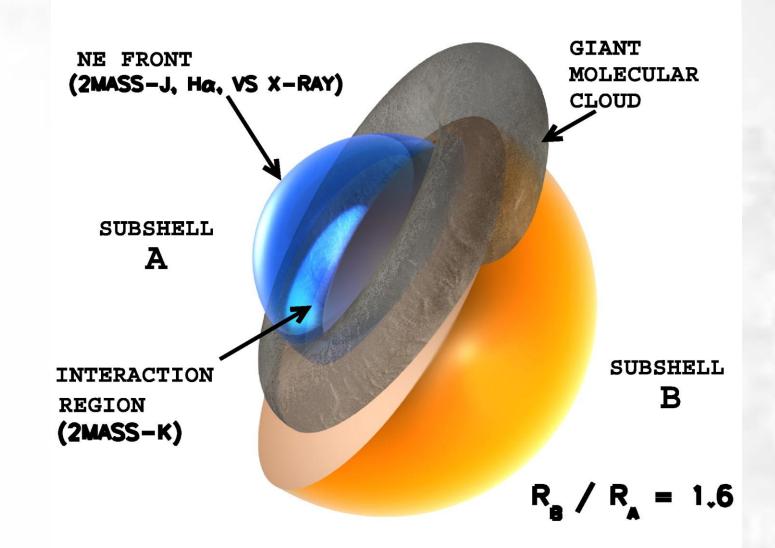

One of the brightest ejecta-dominated SNR in X-rays (age~1000yr, D~8 kpc) XMM-Newton observation analized by Miceli et al. (2006, 2008) and Spitzer IR data (Keohane et al. 2007)

The hot (kT~2 keV) and tenuous (n~2.5 cm⁻³) ejecta (see Miceli et al. 06) form a jet (Miceli et al. 08) distorted by the interaction with a dense cavity wall (n_{H_2} ~3000 cm⁻³, see Keohane 07)

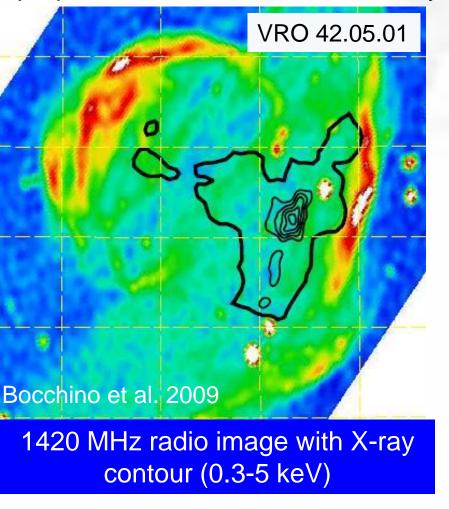

IC 443 (atomic and molecular clouds)

Mixed-Morphology SNR (D~1.5 kpc) evolving in a complex environment: dense cloud (n~10², see Rho et al 01) at NE, molecular cloud from NW to SE. X-ray observation analyzed by Troja et al. (2006)

IC 443 (atomic and molecular clouds)


Median energy (0.3-1.4 keV) = tracer of absorption Quiscent CO (white) Interacting H_2 (black)

- Image analysis
 The cloud is in front of IC443
- Spectral analysis
 The density increases at NE


Miceli M., X-ray emission from SNRs interacting with clouds

IC 443 (atomic and molecular clouds)

Mixed-morphology SNRs

MM SNR (Rho & Petre 98): radio shell, centrally-peaked thermal X-rays with flat T profile. All MM SNR interact with dense clouds. All the models proposed associate the whole X-ray emission with the **ISM**

Lazendic and Slane 2006 report a list of 26 MMSNRS, **10 of which show enhanced metal abundances**. X-ray emitting ejecta have also been observed in the MMSNRs IC 443 (Troja et al. 2008) and **VRO 42.05.01** (Bocchino et al. 2009).

Current models are not valid for this metal-rich subclass, since they do not account for the ejecta. Contribution of the reflected shock on the ejecta?

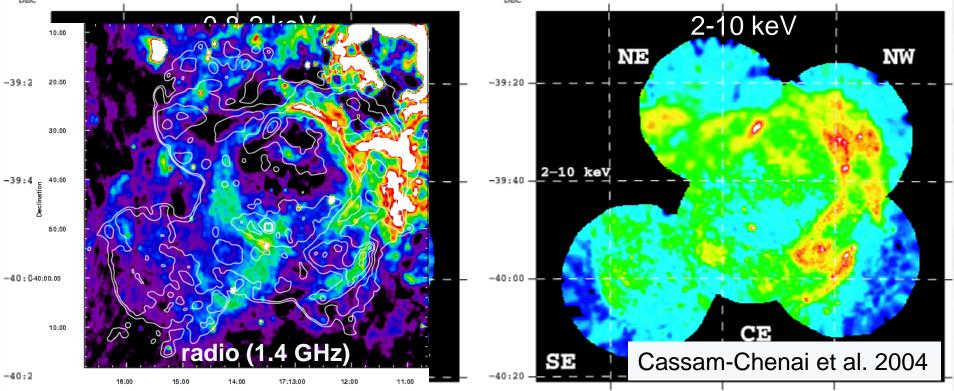
Summary

Introduction

Physical origin of the X-ray emission

- Hydrodynamic (HD) effects
- Effects of diffusive shock acceleration (DSA)

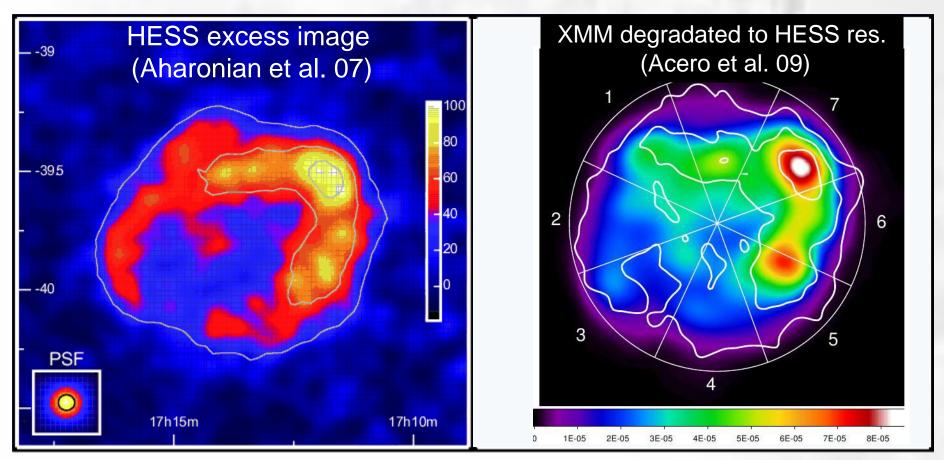
X-ray observations of HD effects

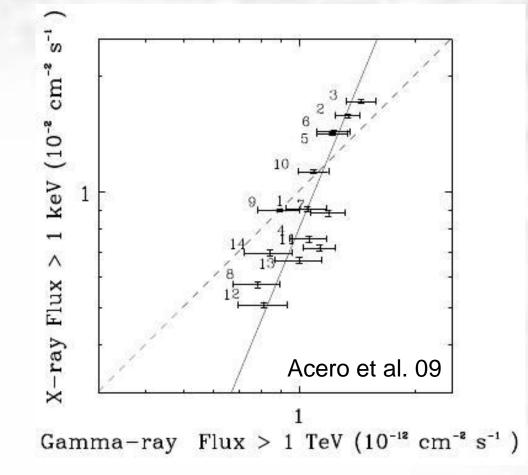

- Cygnus Loop
- Kes 27
- W49 B
- IC 443
- Mixed-Morphology (MM)

X-ray observations of DSA effects

- RX J1713.7-3946
- IC 443
- Kes 69 (?)

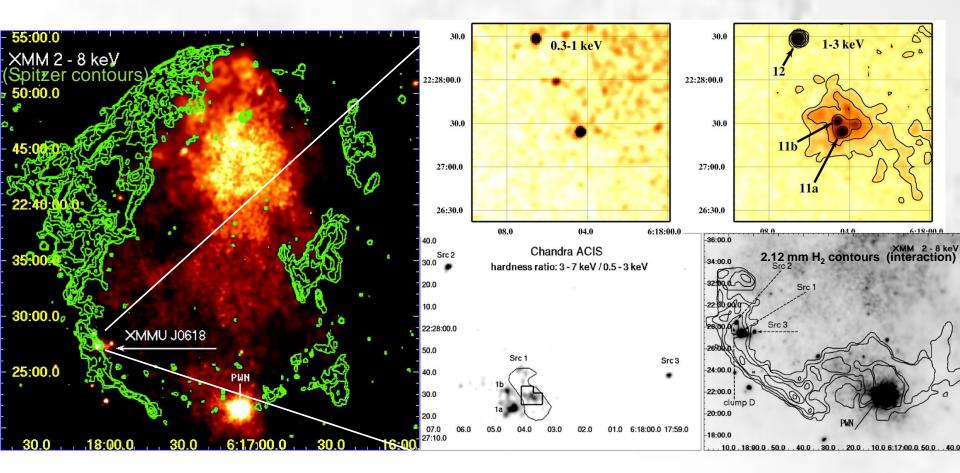
RX J1713.7-3946


Shell-type, young SNR (remnant of AD393? D~1kpc) interacting with a MC in the NW and SE (Fukui et al. 03, Cassam-Chenai et al. 04, Moriguchi et al.05) XMM observation (Cassam-Chenai 04): non-thermal emission (n<2x10⁻² cm⁻³)

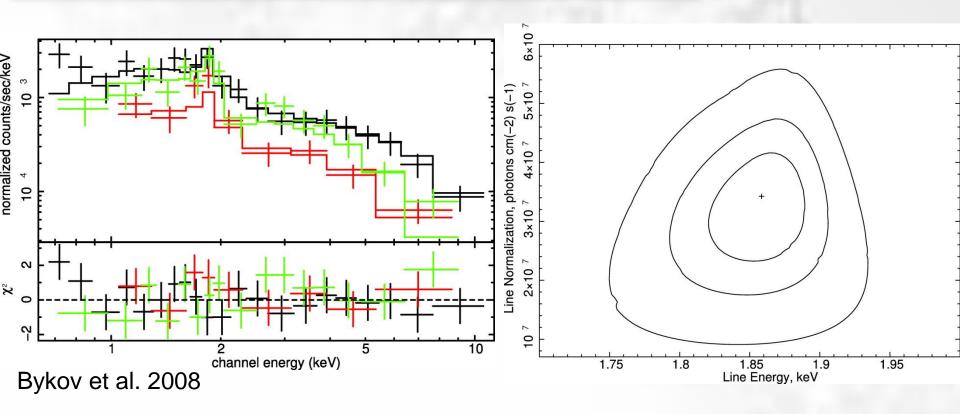

The X-ray non-thermal emission is brighter in the interaction region Where the shock propagates through the cloud the spectrum is steeper (Γ ~2.3-2.7) than where it propagates in a low-density medium (Γ ~1.9-2.2)

RX J1713.7-3946

Comparison between X-rays and. Γ -rays (Acero et al. 09, Aharonian et al. 07)

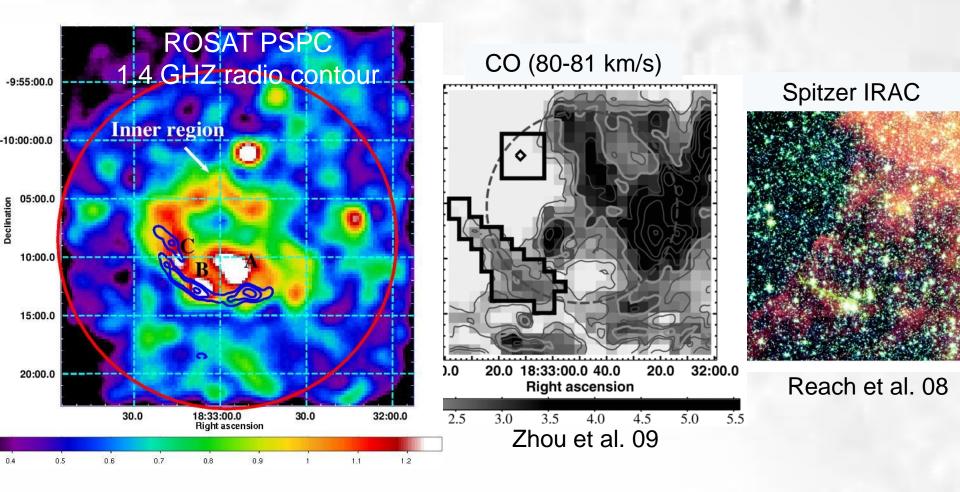

RX J1713.7-3946

Non-linear correlation between X-ray and Γ -ray fluxes


IC 443 (fast moving knots)

Bykov et al. (2005, 2008) identified X-ray emission from fast-moving knots

Near IR emission is observed in the knot region (as expected from radiative shocks propagating in a dense environment (Bykov et al. 2008)


IC 443 (fast moving knots)

The spectrum is composed by hard non-thermal emission (Γ ~1.1) + Si line (at 99% confidence level). X-ray flux and spectral properties in agreement with predictions for a knot of 0.2 pc size, M=0.01 M_{\odot}, travelling at 500 km/s through a medium with density ~100 cm⁻³

Kes 69 (fast moving knots?)

MM-SNR interacting with a MC (Zhou et al. 09)

New XMM-Newton data are arriving...stay tuned!

Thermal X-ray emission

Soft X-rays: (transmitted shock): physical condition in the MC (cloud-shock velocity, post-shock temperature, density)

Hard X-rays: (reflected shock): physical conditions in the ISM (temperature, density) and in the ejecta (T, n, synthesized abundances)

Non-thermal X-ray emission

Shock in dense clouds: trace the interaction region, study effects of DSA

Fast-moving knots: spatial distribution of ejecta, abundances, observation of the high-velocity tail of the ejected knots (important for dynamics of the SN explosion)