Status of evidence for particle acceleration from high-energy observations of shell-type SNRs (*not* interacting with MCs)

Yves Gallant

LPTA, Montpellier, France

Molecular clouds as probes of CR acceleration in SNRs Palavas-les-Flots, September 7, 2009

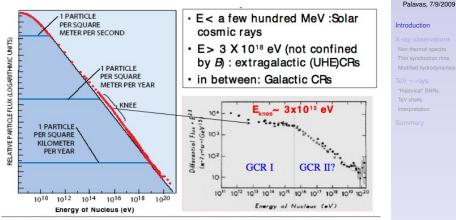
Introduction and Motivation Evidence from X-ray observations of SNRs TeV γ-rays from Supernova Remnants Summary and outlook

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

ntroductio


K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

'Historical" SNRs TeV shells interpretation

Galactic Cosmic Rays (GCRs)

- · Direct measurements only at Earth (satellites and atmosphere)
- · Known to fill the Galaxy from diffuse gamma- ray emission (EGRET)
- Known not to fill intergalactic space from non- detection of SMC (and lower inferred CR density in LMC)

Shell-type SNRs

Yves Gallant

High-energy observations of (shell-type) SNRs and the origin of Galactic Cosmic Rays

- Supernova remnants are widely considered likely sources of Galactic cosmic rays up to the "knee", $E \sim 3 \times 10^{15} \,\text{eV}$:
 - well-studied shock acceleration mechanism;
 - GCR composition compatible with and SNR origin;
 - energetics require $\sim 10\%$ of total SN energy of 10^{51} erg

Part I: X-ray observations of SNRs

- Observational evidence for accelerated e^- (synchrotron)
- indirect evidence for accelerated protons/ions (magnetic field amplification, modified hydrodynamics)

Part II : TeV γ -ray observations

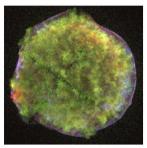
- For accelerated p (and ions), hadronic interactions with ambient matter produce π⁰, decaying into two γ-rays which we observe
- On of aims of TeV γ -ray astronomy (e.g. Drury et al. 1994)
- But how to discriminate from leptonic (IC) emission?

Shell-type SNRs

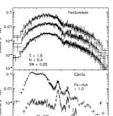
Yves Gallant

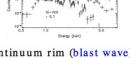
Palavas, 7/9/2009

Introduction


K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics


TeV γ -rays


"Historical" SNRs TeV shells Interpretation

X-ray evidence : the case of Tycho's SNR (1) Non-thermal spectra (Warren et al. 2005)

X-ray colors: S.Si and Fe line Emission (thermal from ejecta), 4-6 keV continuum

Continuum rim (blast wave) shows featureless power-law spectra (no detectable thermal line emission)

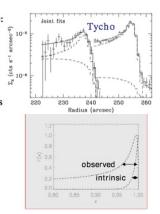
- most young shell SNRs (Cas A, Kepler, SN 1006, G347.3-0.5, G266.2-1.2, RCW 86...) display (dominant) non-thermal spectra
- if synchrotron radiation, $\Rightarrow E_{e} \sim 10-100 \text{ TeV}$ (for typical B)

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

Non-thermal spectra


(2) Morphology : Thin non-thermal rims

- Thin, non-thermal filaments at SNR edge: not expected morphology for thermal or adiabatic synchrotron emission
 - Most likely due to synchrotron losses of the high-energy emitting electrons (Vink & Laming 2003, Berezhko & Völk 2004...); implies large magnetic fields
 - Magnetic field amplification driven by CRs (Bell & Lucek 2001, Bell 2004) can help accelerate ions towards E~ 3 x 10¹⁵ eV
- Filament geometry: projection effect

 Δ For an exponential profile the de-projected width is P/4.6 (Ballet 2005)

Typical filament width = 0.05 - 0.2 pc

 Alternate explanation: sharp rim due to decay of magnetic turbulence (Pohl, Yan & Lazarian 2005); but consistent with radio morphology?

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

Introductio

X-ray observations Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

"Historical" SNRs TeV shells Interpretation

Methodology : Self-consistent magnetic field

- Isotropic turbulence + diffusion laws up/downstream
 - <u>Radiatively limited rims</u>:

 $t_{acc}(E_{emax}) = t_{sync}(E_{emax})$

• Compare ΔR_{obs} / P with size of the rim:

 $\Delta \mathbf{R}_{rim}(\mathbf{D},\mathbf{B}) = f(\Delta \mathbf{R}_{adv},\Delta \mathbf{R}_{diff}) \text{ Berezhko & Voelk 2004}$

 $\Rightarrow \Delta \mathbf{R}_{\rm rim}, \mathbf{E}_{\rm emax} \Rightarrow \mathbf{B}(\alpha, r, \mathbf{V}_{\rm sh}, \mathbf{E}_{\rm ph-cut-off}, \Delta \mathbf{R}_{\rm obs})$

SNR	(r=4)	$B(\alpha=1, r=4) \mu G$	B(1,10)	B(1/3,4)
Cas A	3.2	390	280	350
Kepler	4.5	340	250	300
Tycho	10	530	400	400
SN 1006	1	110	95	100
G347.5-0.5	1	96	84	92

Parizot, Marcowith, Ballet & Gallant 2006

The magnetic field is highly amplified in SNR displaying X- ray filaments

Shell-type SNRs

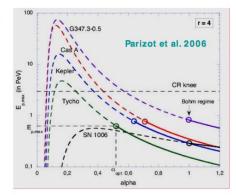
Yves Gallant

Palavas, 7/9/2009

Introductio

X-ray observations

Ion-thermal spectra


Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

"Historical" SNRs TeV shells Interpretation

Maximum energy and constraints on turbulence

- $B \Rightarrow E_{pmax}(\alpha)$ for protons $t_{acc}(E_{pmax}) = t_{SNR}$
- <u>Constraints on α </u>: Dashed lines are the rejected values of α : $D(E_{pmax}) < D_{Bohm}$
- $E_{pmax} < E_{knee}$ (3 PeV)
- "Worse" for r = 10

It is difficult to reach/go beyond the knee even with B-field amplification

Caveat: Turbulence assumed *isotropic*: $\kappa_{perp} = \kappa_{parallel}$

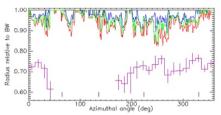
Shell-type SNRs

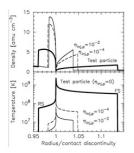
Yves Gallant

Palavas, 7/9/2009

ntroductio

K-ray observations Non-thermal spectra Thin synchrotron rims Modified hydrodynamics


TeV γ -rays


"Historical" SNRs TeV shells Interpretation

Summary

(3) Indirect evidence for accelerated ions : modified hydrodynamics

- Warren et al. (2005) measured ratio between blast wave (BW) and contact discontinuity (CD) radii : mean 0.96
 - ejecta / shocked ambient medium CD subject to Rayleigh-Taylor instability => protruding fingers; correcting for this bias, still get ~ 0.93
 - pure gas dynamics: expect 0.86 or less

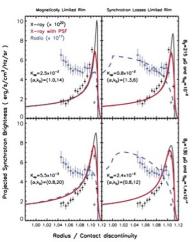
- Decourchelle, Ellison & Ballet (2000) showed this can be explained by significant accelerated ion pressure
 - Caveat: turbulent *B*-field pressure not taken into account

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

Introductio


X-ray observations Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

"Historical" SNRs TeV shells Interpretation

More detailed studies in Tycho (Cassam-Chenaï et al. 2007)

- Observe X-ray spectral steepening behind shock (synchrotron losses)
- Lack of thermal emission from rim: $n_0 < 0.6$ cm⁻³
- Use cosmic-ray-modified hydrodynamics to reproduce distance between blast wave and contact discontinuity
- Consider synchrotron-loss vs magnetic damping-limited rims, radio and X-ray profiles
- Magnetic damping scenario fails to explain radio profile

Shell-type SNRs

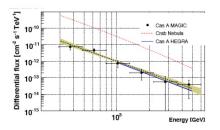
Yves Gallant

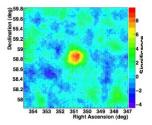
Palavas, 7/9/2009

Introductio

X-ray observations Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays


"Historical" SNRs TeV shells Interpretation


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Summary

(Next to) youngest Galactic SNR : Cassiopeia A

- age~330 yr (no clear SN observation)
- VHE emission discovered by *HEGRA* (Aharonian et al. 2001, *A&A* **370**, 112)
- 232 hours (!), significance 5 σ
- unresolved, centroid in Cas A
- Confirmed by *MAGIC* : 5.2 σ in 47 h (Albert et al. 2007) and by *VERITAS*

- spectra compatible
- steep spectrum : $\Gamma = 2.4 \pm 0.2$
- $L_{1-10 \text{ TeV}} \sim 3 \times 10^{33} \text{ erg/s}$ ($D \approx 3.4 \text{ kpc}$)
- sharp synchrotron X-ray rims, etc. ⇒ high *B* ~ mG
- hadronic emission favoured

Shell-type SNRs

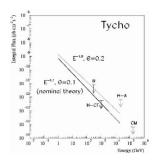
Yves Gallant

Palavas, 7/9/2009

ntroductio

K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics


TeV γ -rays

"Historical" SNRs TeV shells Interpretation

Other young (historical) shell-type SNRs

Tycho (SN 1572)

- deepest upper limit: *HEGRA* 2001 (*A&A* **373**, 292) with 65 hours
- $L_{1-10 \text{ TeV}} < 10^{33} \text{ erg/s}$ (assuming $D \approx 2.3 \text{ kpc}$ and $\Gamma = 2$)
- synchrotron X-rays \Rightarrow *B* > 22 μ G

Kepler (SN 1604)

- recent HESS upper limit (A&A 488, 219)
- $L_{1-10 \text{ TeV}} < 2 \times 10^{33} \text{ erg/s}$ (assuming $D \approx 4.8 \text{ kpc}$ and $\Gamma=2$) (distance uncertain by $\pm 1.5 \text{ kpc} \Rightarrow \text{ factor} \sim 2 \text{ in } L_{1-10 \text{ TeV}}$)

Shell-type SNRs

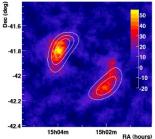
Yves Gallant

Palavas, 7/9/2009

ntroductio

-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics


TeV γ -rays

"Historical" SNRs TeV shells Interpretation

Summary

Other historical shell-type SNR : SN 1006

- ~30' diameter shell
- CANGAROO-I claimed bright NE hotspot (Tanimori et al. 1998), not confirmed by HESS (2005, A&A 437, 135) nor CANGAROO-III
- after 130 h, *HESS* detection! (Naumann-Godo et al., ICRC 2009)
- flux $\Rightarrow L_{1-10 \text{ TeV}} \sim 6 \times 10^{32} \text{ erg/s}$ (assuming $D \approx 2.2 \text{ kpc}$)

Shell-type SNRs

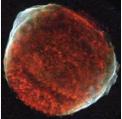
Yves Gallant

Palavas, 7/9/2009

Introductio

K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics


TeV γ -rays

"Historical" SNRs TeV shells Interpretation

- Morphology seems to match X-ray synchrotron (contours: XMM map smoothed to match HESS PSF)
- Leptonic scenario $\Rightarrow B \sim 30 \ \mu G$ (lower than inferred from rims)
- Hadronic scenario : given low ($n \sim 0.05 \text{ cm}^{-3}$) medium density, requires flat ($p \approx 2$) spectrum for reasonable energetics
- whether protons or electrons, shows distribution of accelerated particles in SN 1006

Bipolar morphology of particle acceleration

- SN 1006 : explosion in nearly uniform, undisturbed medium?
 - Type Ia : no stellar progenitor wind
 - High above the Galactic plane
- Rothenflug et al. (2004) : X-ray image compatible with synchrotron "polar caps", not with "equatorial band"
- Suggests that **parallel** shocks, and not **perpendicular**, are where particle acceleration is most efficient

Shell-type SNRs

Yves Gallant Palavas, 7/9/2009

ntroductior

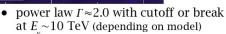
K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

"Historical" SNRs TeV shells Interpretation

Summary


Young SNRs in TeV gamma-rays

- Other historical shell–type SNRs somewhat less luminous in TeV *y*-rays than Cas A
- Lower surrounding medium density(?), or less efficient particle acceleration

SNRs with shell morphology in TeV γ -rays

RX J1713.7-3947 (or G347.3-0.5)

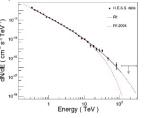
- VHE γ-ray emission discovered by CANGAROO (Muraishi et al. 2000)
 - first resolved SNR shell in VHE y-rays (HESS 2004, Nature 432, 75)
 - very good spatial correlation with (non-thermal) X-rays (ASCA 1-3 keV) (*HESS* 2006, *A&A* **449**, 223)
 - large zenith angle observations ⇒ spectrum 0.3-100 TeV (*HESS* 2007, *A&A* 449, 223)

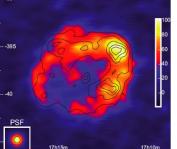
- $L_{1-10 \text{ TeV}} \sim 10^{34} \text{ erg/s}$ (assuming $D \approx 1.3 \text{ kpc}$)
- leptonic emission scenario $\Rightarrow B \sim 9 \ \mu G$

Shell-type SNRs

Yves Gallant

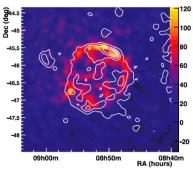
Palavas, 7/9/2009

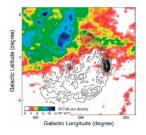

ntroductior


-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays


"Historical" SNRs TeV shells Interpretation



TeV $\gamma\text{-ray}$ shells

RX J0852.0-4622 (or G266.2-1.2, "Vela Junior")

- Detection of a thin, 2° diameter shell (*HESS* 2005, *A&A* 437, L7)
- *CANGAROO–II* detected NW rim (Katagiri et al. 2005), *–III* confirmed the shell (Enomoto et al. 2006)
- High spatial correlation with X-rays (ROSAT, ASCA); no clear correlation with CO (*HESS* 2007, *ApJ* 661, 236)

- power law Γ =2.24±0.04_{stat}±0.15_{sys} (indication of steepening at high energies)
- $L_{1-10 \text{ TeV}} \sim 6 \times 10^{33} \text{ erg/s at "far" } D \approx 1 \text{ kpc}$
- leptonic emission scenario $\Rightarrow B \sim 7 \ \mu G$

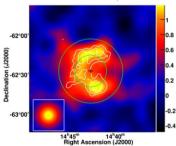
▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

ntroductior


X-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

"Historical" SNRs TeV shells

Probable TeV shell : **RCW 86** (or MSH 14–63)

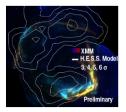
(HESS 2009, ApJ 692, 1500)

- ~4σ excess earlier reported by CANGAROO (Watanabe et al. 2003)
- 8.5 σ in 31h : clear detection
 - hint of shell morphology (more data needed), like synchrotron X-ray and radio shell
- no hint of strong enhancement at SW dense interaction region

Yves Gallant

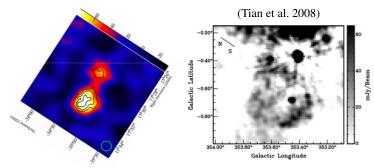
Palavas, 7/9/2009

Introductio


K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays


"Historical" SNRs TeV shells Interpretation

- fairly steep power law, $\Gamma = 2.54 \pm 0.12_{stat}$
- $L_{1-10 \text{ TeV}} \sim 7 \times 10^{33} \text{ erg/s}$ assuming $D \approx 2.5 \text{ kpc}$
- leptonic emission scenario $\Rightarrow B \sim 30 \ \mu G$ (compatible with X-ray rims, Vink et al. 2006)
- hadronic scenario : extrapolated proton spectrum too high, need *Γ*≈2 and cutoff (also compatible with spectral data)

A new non-thermal shell : HESS J1731-347

- discovered in *HESS* Galactic plane survey; $\Gamma = 2.3 \pm 0.1 \pm 0.2$
- coincident radio shell discovered with ATCA data: G 353.6–0.7

Shell-type SNRs

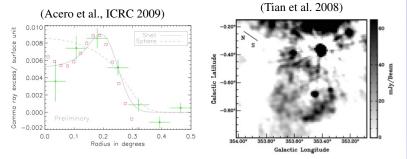
Yves Gallant Palavas, 7/9/2009

Introductio

K-ray observations

Von-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays


"Historical" SNRs TeV shells Interpretation

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Summary

A new non-thermal shell : HESS J1731-347

- discovered in *HESS* Galactic plane survey; $\Gamma = 2.3 \pm 0.1 \pm 0.2$
- coincident radio shell discovered with ATCA data: G 353.6–0.7

• further *HESS* observations: hint of limb-brightening ($\sim 2\sigma$ level)

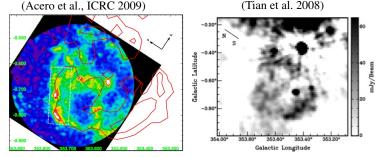
Shell-type SNRs

Yves Gallant Palavas, 7/9/2009

Introductio

K-ray observations

Von-thermal spectra Thin synchrotron rims Modified hydrodynamics


TeV γ -rays

"Historical" SNRs TeV shells Interpretation

Summary

A new non-thermal shell : HESS J1731-347

- discovered in *HESS* Galactic plane survey; $\Gamma = 2.3 \pm 0.1 \pm 0.2$
- coincident radio shell discovered with ATCA data: G 353.6–0.7

• further *HESS* observations: hint of limb-brightening ($\sim 2\sigma$ level)

- X-ray observations of (part of) shell reveal rims of emission with non-thermal spectra! (no evidence for thermal emission)
- X-ray absorption gradient suggest SNR lies behind a CO cloud
- ► $D > 3.5 \,\mathrm{kpc} \Rightarrow L_{1-10 \,\mathrm{TeV}} > 2 \times 10^{34} \,\mathrm{erg/s}, R > 15 \,\mathrm{pc}$

Yves Gallant Palavas, 7/9/2009

Introductio

K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

"Historical" SNRs TeV shells Interpretation

Summary

TeV γ -ray shells : general properties

- dominantly non-thermal X-ray emission (thermal only in RCW 86, SN 1006 and especially Cas A)
- weak radio synchrotron emission (except younger SNRs)
- ► similar TeV luminosities, L_{1-10 TeV} ~ 10³⁴ erg/s (historical SNRs ~ 10³³ erg/s)

Leptonic emission scenario

- might explain spatial correlation with synchrotron X-rays
- ► implies fairly low $B \sim 10 \,\mu\text{G}$ (in one-zone model), in apparent contradiction with evidence for turbulent *B*-field amplification
- ► TeV shell widths larger than X-ray filaments (e.g. Renaud 2009): if rapid *B*-field damping behind the shock, may be compatible with weak *spatially-averaged B* value
- difficult to fit TeV spectral shapes in one-zone model

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

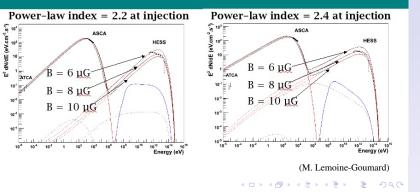
Introductio

K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

'Historical" SNRs TeV shells


Interpretation

One-zone spectral modeling of G 347.3-0.5

Primary population: electrons ?

•Need about 8 µG B field to match flux ratios •Simplest electronic models don't work well

- Simple one-zone model
- Electrons & protons injected with the same spectral shape
- Energy losses + escape of particles out of the shell taken into account

Shell-type SNRs

Yves Gallant

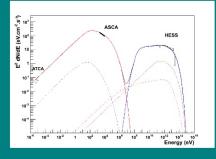
Palavas, 7/9/2009

Introductio

K-ray observations

lon-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays


'Historical" SNRs TeV shells

Interpretation

One-zone spectral modeling of G 347.3-0.5

Primary population: protons ?

- Spectral shape at injection : power-law w/exponentional cut-off $E_{cut} = 120 \text{ TeV}$ and index = 2.0
- Energy injected = 10^{50} ergs
- Electron/proton ratio = 5×10^{-4}
- Magnetic field = $35 \mu G \& Density = 1.5 \text{ cm}^{-3}$

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

ntroductio

K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

'Historical" SNRs TeV shells

Interpretation

Summary

(M. Lemoine-Goumard)

・ロト・西ト・田・・田・ シック

TeV γ -ray shells : general properties

Hadronic emission scenario

- no obvious explanation for high correlation with X-rays, and poor correlation with surrounding medium density
- ► **all** TeV-detected SNRs have $\Gamma > 2.0$ or cutoff at $E_{\gamma} \sim 10 \text{ TeV} \Rightarrow E_p \sim 10^{14} \text{ TeV}$ —well short of "knee"
- spectrum must flatten to Γ ~ 2 at lower energies (as seen in G 347.3 and hinted in others), otherwise CR energetics prohibitive
- ► relatively high surrounding medium density $(n \sim 1 \text{ cm}^{-3})$ required to explain G 347.3, Vela Jr and HESS J1731
- ▶ but upper limits on *n* from lack of thermal X-ray emission are a few×0.01 cm⁻³ (assuming $k_BT \sim \text{keV}$)
- Caveat: distances to these SNRs uncertain; most precise estimates often rely on unmodified shock jump conditions

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

ntroductio

(-ray observations

lon-thermal spectra Thin synchrotron rims Nodified hydrodynamics

TeV γ -rays

"Historical" SNRs TeV shells

Interpretation

Summary and Outlook

Summary on shell-type SNRs

- indirect evidence for hadron acceleration from X-ray and other observations (magnetic amplification, shock modification)
- ambiguity between hadronic and leptonic interpretation of γ-ray emission : correlation with synchrotron, not clearly with matter
- ▶ no clear evidence that $E_{\text{max}} \sim 3 \times 10^{15} \text{ eV}$ can be attained by p

Outlook on SNRs interacting with MCs

- ► often clear correlation with dense matter ⇒ hadronic interpretation natural; "probes of CR acceleration"?
- ▶ likely correlated dense photon fields (thermal IR from dust, stellar photons from embedded recently-formed stars...)
 ⇒ more detailed study of **leptonic** scenarios necessary
- ▶ key observational issue : angular resolution in γ -rays
- important theoretical issue : changes in shock acceleration, evolution and modification due to interaction with dense cloud (spectrum and maximum energy of accelerated particles...)

Shell-type SNRs

Yves Gallant

Palavas, 7/9/2009

Introductio

K-ray observations

Non-thermal spectra Thin synchrotron rims Modified hydrodynamics

TeV γ -rays

'Historical" SNRs TeV shells interpretation