Structure and Components of the Interstellar Medium

Katia FERRIÈRE

Laboratoire d'Astrophysique de Toulouse, Observatoire Midi-Pyrénées, France

The role of Disk-Halo Interaction in Galaxy Evolution: Outflow vs Infall

Espinho - August 18-22, 2008

- Introduction
- Ordinary matter
 - Physical characteristics
 - Spatial distribution
 - In the Galactic Bulge
- Cosmic rays
 - Observational properties
- Magnetic fields
 - Observational properties
 - Near the Galactic Center
- Conclusion

- Introduction
- Ordinary matter
 - Physical characteristics
 - Spatial distribution
 - In the Galactic Bulge
- 3 Cosmic rays
 - Observational properties
- Magnetic fields
 - Observational properties
 - Near the Galactic Center
- 6 Conclusion

The 3 basic constituents of the ISM

Ordinary matter (gas & dust)

$$n \simeq 0.003 \rightarrow > 100 \text{ cm}^{-3}$$
 $(\langle n \rangle_{\odot} \sim 1 \text{ cm}^{-3})$
 $T \simeq 10^6 \rightarrow 10 - 20 \text{ K}$

Cosmic rays

$$P_{\rm CR} \sim P_{\rm g}$$

Magnetic fields

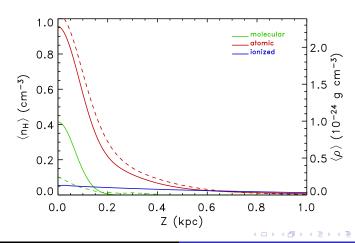
$$B \sim 5 \,\mu\text{G} \implies P_{\text{M}} \sim P_{\text{g}}$$

- Introduction
- Ordinary matter
 - Physical characteristics
 - Spatial distribution
 - In the Galactic Bulge
- Cosmic rays
 - Observational properties
- Magnetic fields
 - Observational properties
 - Near the Galactic Center
- Conclusion

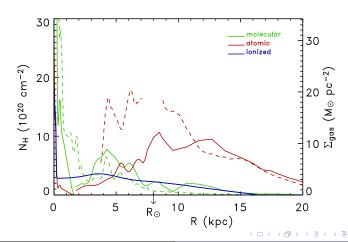
Ordinary matter

Mass

 $\sim 10 - 15$ % of the total mass of the Galactic disk


Composition

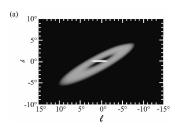
Element	Fraction by number	Fraction by mass
Hydrogen	91 %	70.6 %
Helium	9 %	27.5 %
"Metals"	0.14 %	1.9 %


Gas components

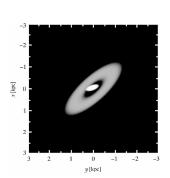
Component	T (K)	$n_{ m H}$ (cm $^{-3}$)
Molecular	10 - 20	$10^2 - 10^6$
Cold atomic	50 - 100	20 - 50
Warm atomic	6000 - 10000	0.2 - 0.5
Warm ionized	~ 8 000	0.2 - 0.5
Hot ionized	~ 10 ⁶	0.003 - 0.01

Space-averaged density near the Sun

Column density


In the Galactic Bulge

- Neutral gas (~ 91% molecular & ~ 9% atomic)
 - * Central molecular zone (CMZ)
 - Thin sheet of gas ~ parallel to GP displaced from GC
 - Projected radius ~ 200 pc
 - Thickness ~ 30 pc (molecular) & ~ 90 pc (atomic)
 - Galactic Bulge (GB) disk
 - Thicker layer of gas tilted to GP & inclined to l.o.s.
 - Projected radius ~ 1.3 kpc
 - Thickness ~ 70 pc (molecular) & ~ 200 pc (atomic)
 - Hole around CMZ
- Ionized gas (~ 83% warm & ~ 17% hot)
 - Widespread distribution throughout GB scale height ~ 1 kpc (warm) & ~ 2 kpc (hot)
 - Local concentration around GC


```
radius \sim 120 \,\mathrm{pc} & thickness \sim 40 \,\mathrm{pc}
```

CMZ & GB disk (molecular gas)

Projection onto p.o.s

Face-on view

- Introduction
- Ordinary matter
 - Physical characteristics
 - Spatial distribution
 - In the Galactic Bulge
- Cosmic rays
 - Observational properties
- Magnetic fields
 - Observational properties
 - Near the Galactic Center
- 6 Conclusion

Cosmic rays

- Near the Sun Voyager 1 CR data
 e_{CR} ≃ 1.8 eV cm⁻³
- Radial distribution
 γ-ray intensity maps
 L_{CR} ~ 13 kpc
- Vertical distribution
 CR propagation models + measured CR elemental composition
 H_{CR} ≤ 3 kpc
- Global distribution
 Synchrotron emission measurements

- Introduction
- Ordinary matter
 - Physical characteristics
 - Spatial distribution
 - In the Galactic Bulge
- Cosmic rays
 - Observational properties
- Magnetic fields
 - Observational properties
 - Near the Galactic Center
- 6 Conclusion

Magnetic fields

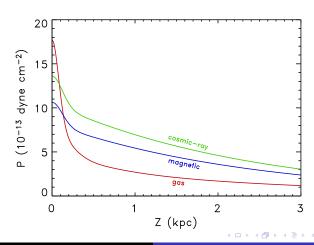
- Near the Sun Measured polarization of starlight \vec{B} is horizontal & nearly azimuthal (angle $\approx 7^{\circ}$)
- In neutral regions
 Zeeman splitting measurements
 - In atomic clouds : $B \sim a \text{ few } \mu G$
 - In molecular clouds : $B \sim (10 3000) \,\mu\text{G}$
- In ionized regions

Faraday rotation measurements

- - $B_{\rm reg} \simeq 1.5 \, \mu \text{G}$ & $B_{\rm turb} \sim 5 \, \mu \text{G}$ near \odot
- $ec{B}_{\mathrm{reg}}$ is nearly horizontal & predominantly azimuthal away from the GC
- Reversals in B_{Φ} in the disk (\Rightarrow spiral structure?)
- In general ISM

Synchrotron emission measurements

- $-B_{\rm tot} \sim 5 \,\mu{\rm G}$ near \odot \rightarrow $B_{\rm tot} \sim 7 \,\mu{\rm G}$ in MR
- Global spatial distribution ($L_{\rm B}\sim 12~{\rm kpc}$ & $H_{\rm B}\sim 4.5~{\rm kpc}$) $E \sim E \sim 2.0$


Near the Galactic Center

- Non-thermal radio filaments
 - * Morphology & radio (synchrotron) polarization measurements $\vec{B} \parallel \text{filaments} \implies \vec{B} \perp \text{GP}$
 - * Dynamical argument No distortion $\Rightarrow B \gtrsim 1 \text{ mG}$
 - * Radio (synchrotron) intensity measurements $B_{\text{equip}} \sim (50 200) \, \mu\text{G}$
- In general ISM
 Diffuse synchrotron intensity measurements
 B_{equip} ~ 10 μG
- In dense molecular clouds FIR/submm (dust thermal emission) polarization measurements \vec{B} is nearly \parallel GP

- Introduction
- Ordinary matter
 - Physical characteristics
 - Spatial distribution
 - In the Galactic Bulge
- Cosmic rays
 - Observational properties
- Magnetic fields
 - Observational properties
 - Near the Galactic Center
- 5 Conclusion

Interstellar pressures near the Sun

