Specifications

Yoshinari Hayato for WG4

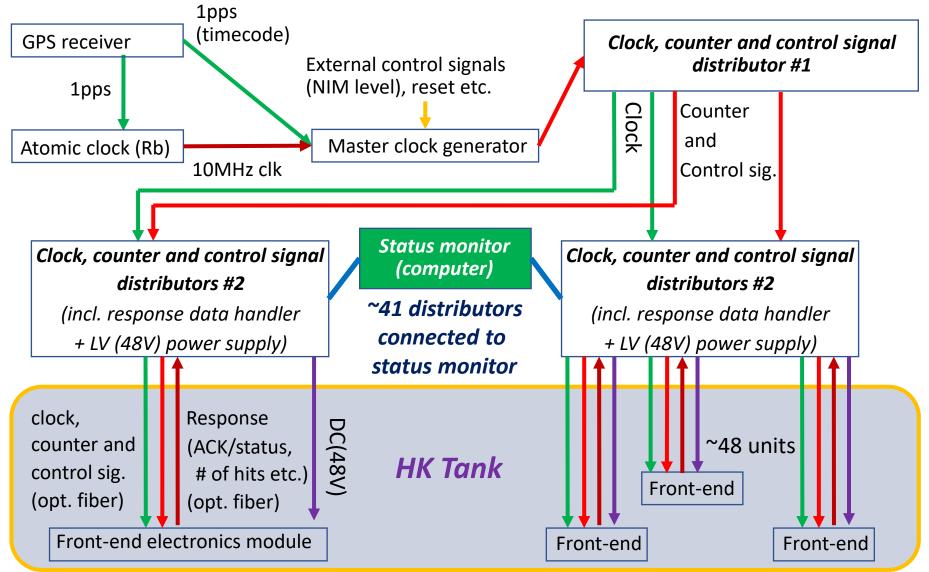
High voltage PS requirements

Major requirements

- Positive output
- Voltage 0 ~ 2600V
- Peek current may exceed 500mA
- Resistance ~ 6Mohm nominal 200 ~ 300mA
- Power consumption

Item	Requirements
Output voltage	0 to 2600 V
Accuracy	<0.2%~(1500 to 2500 V)
	< 3V (0 to 1500V)
Output current	$> 0.5 \mathrm{mA/channel}$
Output stability	< 0.2% / year
Accuracy of voltage monitor	< 0.2%
Accuracy of current monitor	< 0.5%
Ramp up/down speed	Tunable from 100 to 500 V/s
Ripple noise level	< 10mV p-p at 10kHz
Temperature dependence	$50 \mathrm{ppm/K}$
Failure rate (per channel)	<1% / 10 years
Power consumption	<~1W / channel @ nominal

Digitizer requirements


Major requirements

- Self triggering per channel.
- Wide dynamic range.
- Continuous A/D conversion.
- Small channel deadtime (<1us) is acceptable.
- Good timing resolution.
- Low power consumption.

Current baseline option Charge to time converter (QTC) CLC 101 (Iwatsu/ICRR)

	Item	Requirements
	Trigger	self triggering for each channel
•	PMT impedance	50Ω
	Signal reflection	<0.1%
	Discriminator threshold	<0.25 p.e. (well below 1 p.e.)
	Processing speed/hit	$<1 \ \mu s$
	(channel dead time)	
	Maximum hit rate	>1 MHz for each channel
	Charge dynamic range	0.1 to 1250 p.e. $(0.2 \mbox{ to } 2500 \mbox{ pC})$
	Charge resolution	RMS~ 0.05 p.e. (below 25 p.e.)
	Timing LSB	<0.5ns
	Timing resolution	RMS < 0.3 ns at 1 p.e.
		RMS <0.2 ns above 5 p.e.
	Power consumption	<1W per channel

Schematic diagram of the synchronization system

48 front-end elec. modules are connected to 1 distributor

There will be ~41 distributors #2. (#1 and #2 could be identical)

Timing system requirements

Major requirements #1 clock

- Distribute 125MHz (62.5MHz?) clock to all the front-end electronics modules.
- Transmission via Multi-mode optical fiber
- Jitter have to be smaller than ~100ps.
- Reference clock is provided by an external GPS receiver. (10MHz?)
- Delay compensation scheme is necessary.
- However, fixed delay of a few ns is acceptable.
- Delay or phase change is not allowed even after the reset or power cycle.

Timing system requirements

Major requirements #2 counter

- Distribute 32bit counter and auxiliary information to the frontend electronics modules.
- Counter is generated in the master module. Reset is requested by the DAQ system.
- Auxiliary information includes TDC reset, reset and FPGA firmware, i.e. distribution of the new firmware, etc.
- Each front-end electronics module sends back status information, like # of hits in 17 micro sec. (=TDC counter reset interval), status of the module, LV and HV monitor values etc.