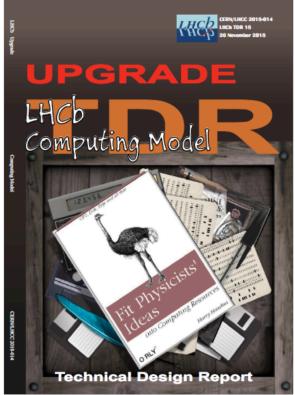
LHCb news

A.Tsaregorodtsev, CPPM-IN2P3-CNRS, Marseille Journées LCG-France, 24 mai 2019


Outline

- Computing Upgrade TDR's
- Current activities
 - TI activities
 - T2 activities
 - Opportunistic resources
- Resources needs
- Conclusions



Computing Upgrade TDR's

- The LHCC recommends (Feb 28) approving the LHCb Upgrade Software and Computing TDR and the LHCb Upgrade Computing Model TDR
- The CERN Research Board (RB) approved (Mar 5) both TDRs

LHCb-TDR-018

LHCb Recommendations

- LHCb-1 C-RSG congratulates LHCb on the successful management of their computing resources, in particular opportunistic CPU resources within WLCG and HLT farm. The usage of opportunistic resources in supercomputing centers (HPC) is small though. C-RSG recommends to invest more effort in this direction, specially given the large CPU needs foreseen for Run 3.
- LHCb-2 C-RSG recommends the implementation of an automatic procedure to delete cold data from disk using popularity monitoring and following pre-established lifetime policies.

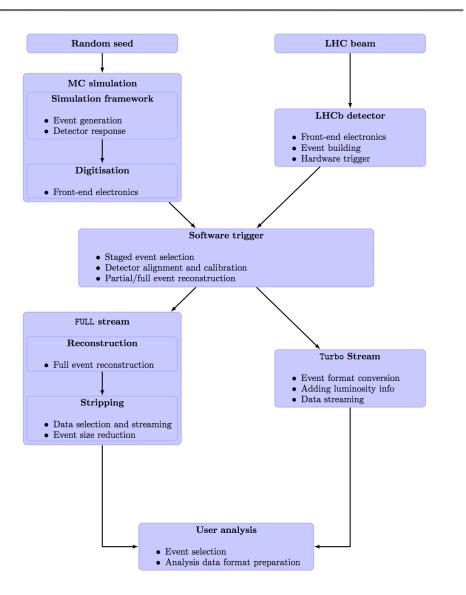
LHCb-3 C-RSG considers appropriate the resource requests for 2020 and recommends its granting.

LHCb-4 C-RSG congratulates LHCb for the enormous effort in reducing resource needs for Run 3 in view of the foreseen 10-fold increase in output event rate (and 30-fold data volume rate). Nevertheless, still large yearly resource growth factors are anticipated. We note that aggressive assumptions had to be made in order to reduce CPU, disk and tape needs to manageable levels, resulting in a significant risk. Important to retire as much of this risk as possible.

Pekka Sinervo, C-RSG

April 16, 2019

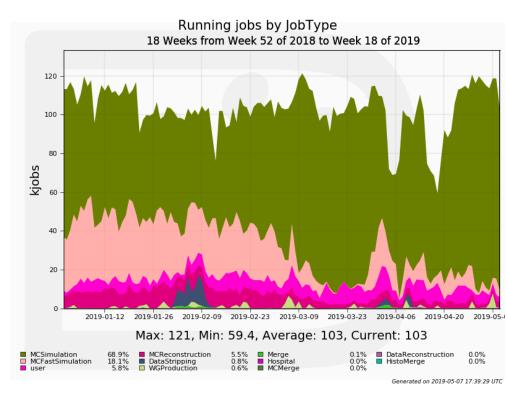
21



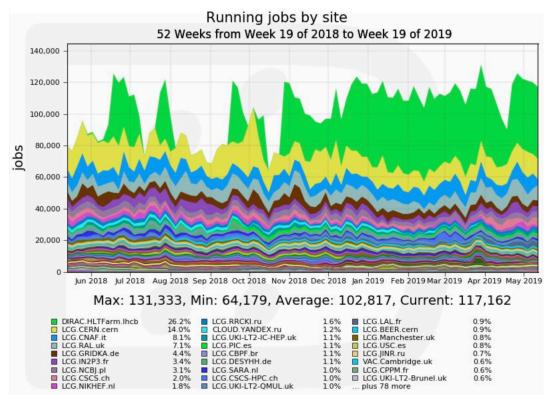
Run 2 data processing flow

- FULL stream
 - Raw data stored and (re)processed off-line

Turbo stream

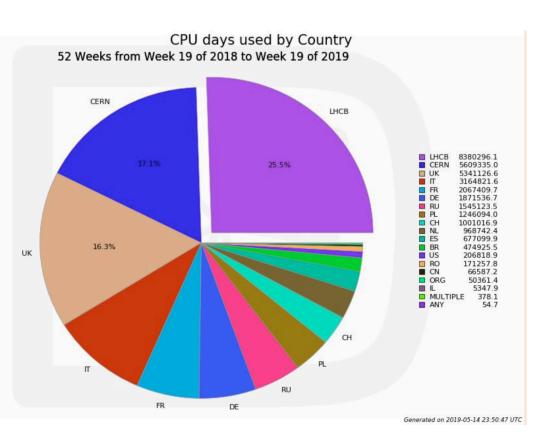

- Raw data discarded
- High level reconstructed objects are stored
 - MDF compressed format
- Format conversion and stripping before user analysis

Recent activities


- MC simulation split in full (69% of jobs) and fast simulation (18%)
- MC reco at 5.5%
- User: 5.8%
- Data stripping: 0.8%
- WG productions: 0.6%
- Average: 103k
- HLT farm fully available

Recent activities

- IO3 distinct sites in total
- HLT farm is fully available
 - ► ~40% of resources
- Mostly LCG sites
- Several nontraditional
 - CLOUD.YANDEX.ru


Generated on 2019-05-14 23:42:12 UTC

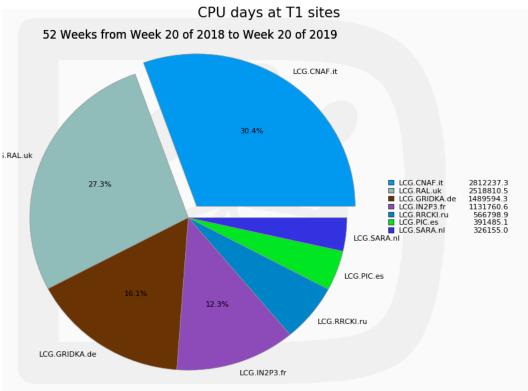
8

National contributions


- Main contributions are from TO (CERN) and from LHCb HLT farm
- The share of France
 - ► ~7% of the total
 - ~12% of the total outside CERN

Real data activities in the last year

- Data taking
 - Prompt reconstruction
 - Prompt stripping
- LS2
 - Restripping
 - WG productions
- WG productions
 - First in real data processing (30%)
 - 2 times more than in the previous year



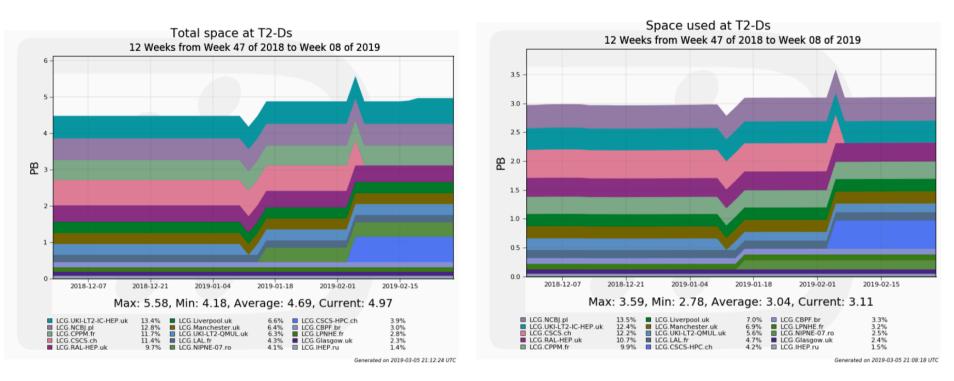
- The majority of grid sites has switched to CC7
- However, a couple of Tier 1 sites will be running SLC6 for some other weeks
 - Multiple Tier 2 sites still at SLC6
- As a consequence CC7 jobs submitted to the GRID will fail if they land on an SLC6 site
- On the contrary, SLC6 workload can run on CC7
 - Effort made to update the LHCb analysis software to be CC7 ready

LHCb usage of T1 at CC/IN2P3

- ~ 12% of T1 LHCb resources
 - Without T0 at CERN
- Running smoothly with no major problems

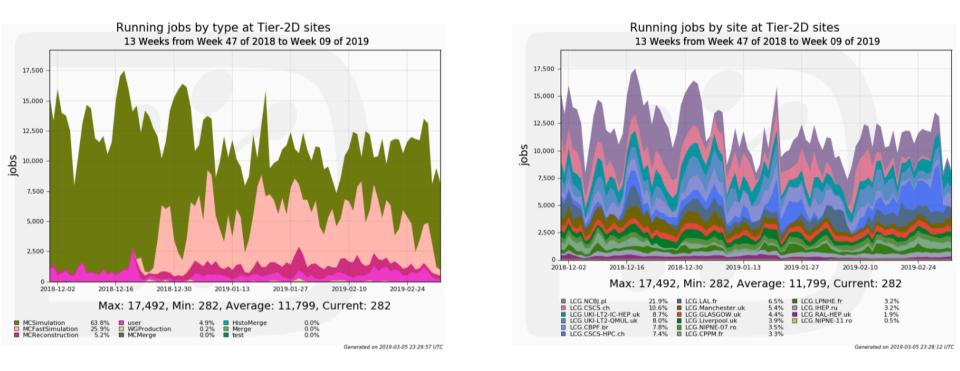
Generated on 2019-05-23 00:23:04 UTC

LH

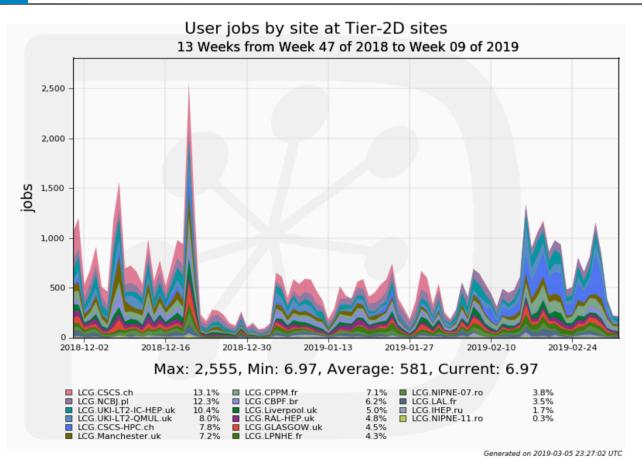


T2-D storage

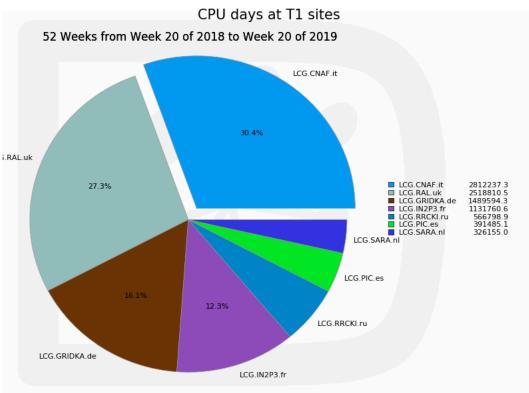
Name	Туре	Online (TB)	Free (TB)	Pledge (TB, Federation)
CBPF.br	DPM	143 43 300, Latin Am		300, Latin America Fd.
CPPM.fr	DPM	550	550 243 500, CPPM Mar	
CSCS-HEP.ch	dCache	700	205	920, CHIPP
Glasgow.uk	DPM	110	35	300, ScotGrid
IHEP.ru	dCache	64	20	65, Russian Data- Intensive GRID
IMPERIAL.uk	dCache	710	325	300*, London Tier 2
LAL.fr	DPM	200	56	300*, GRIF Paris
LPNHE.fr	DPM	130	31	300*, GRIF Paris
Liverpool.uk	DPM	308	92	600*, NorthGrid
Manchester.uk	DPM	300	88	600*, NorthGrid
NCBJ.pl	DPM	600	187	
NIPNE.ro	DPM	400	162	400, Romanian Tier-2 Fd.
RAL-HEP.uk	dCache	455	126	300, SouthGrid
UKI.uk	StoRM	300	147	300*, London Tier 2
TOTAL		4970	1760	3985


T2-D Total and Used space

Total available space increased by 0.5 PB in the last six months


T2-D running jobs

About 10% of the jobs was running at the T2-D sites


User jobs at T2-D sites

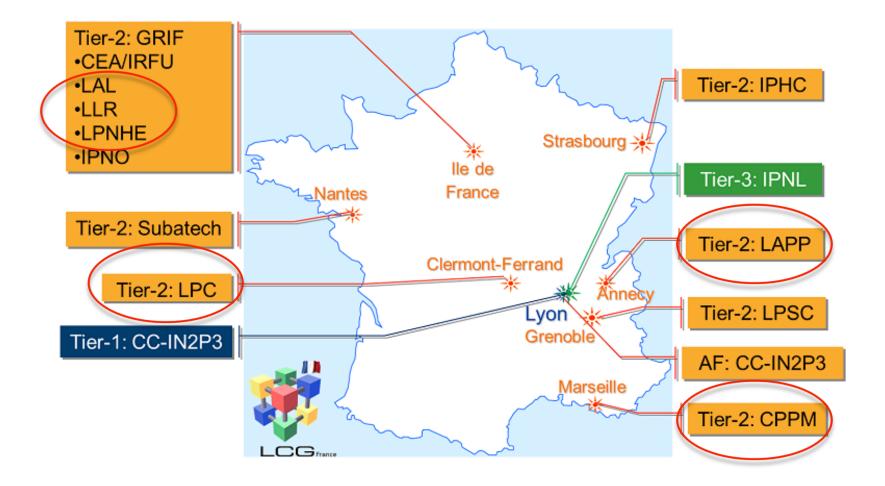
User jobs represent about 5% of the T2-D sites load

LHCb usage of T1 at CC/IN2P3

- ~ 12% of T1 LHCb resources
 - Without T0 at CERN
- Running smoothly with no major problems

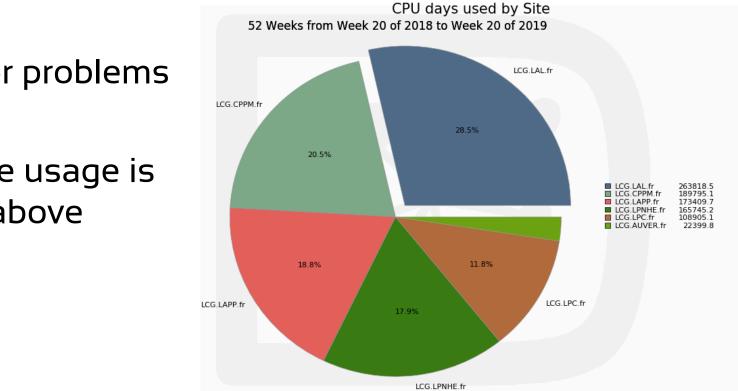
Generated on 2019-05-23 00:23:04 UTC

LH



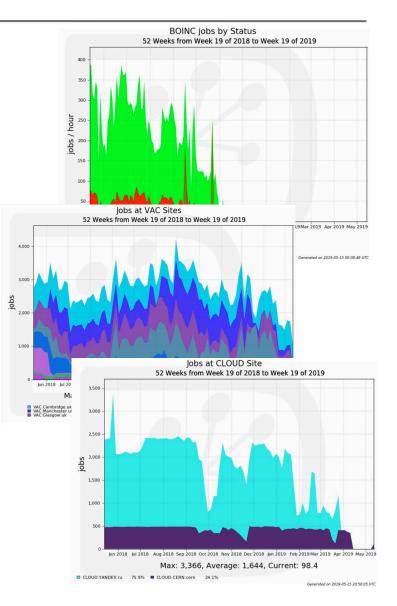
T2's usage in LHCb

- Main usage in the LHCb Computing Model is for the Monte-Carlo production
 - No input data
 - Produced data stored in a near TI
- With the introduction of mesh-processing T2-D centers were added
 - Monte-Carlo production
 - Provide disk space for storing DST data
 - Can run also jobs of the type stripping, user analysis, etc



Sites T2 en France

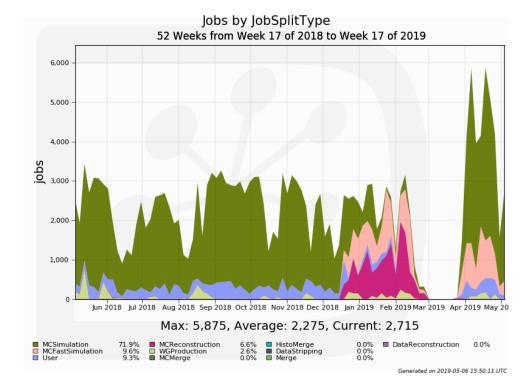
T2's usage in France


Generated on 2019-05-23 00:12:14 UTC

- No major problems
- Resource usage is usually above pledges

Non-traditional LHCb sites

- BOINC discontinued
 - < 1% CPU
 - Limited manpower
 - Scalability problems
- VAC sites
 - ► 3% CPU
 - Stable (A. McNab)
- Cloud sites
 - Declining
 - Limited manpower
 - Scalability problems

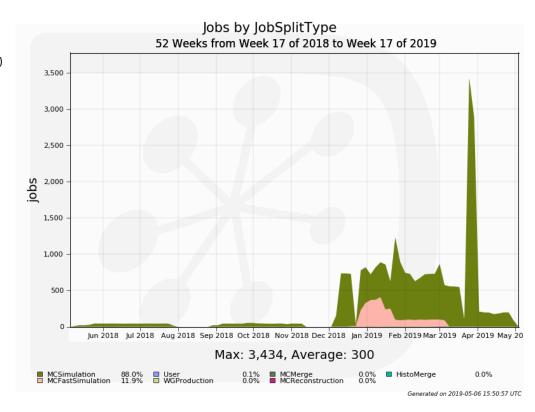


HPC: LCG.CSCS.ch

cscs.ch

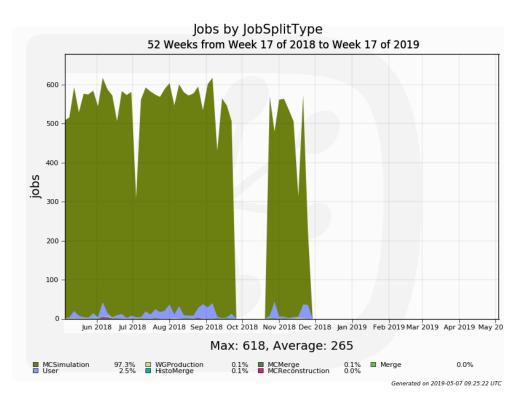
swiss national supercomputing centre (5th in top500 list)

a LCG site, for us (ARC CE + slurm) ... so this was "transparent" for us


HPC: DIRAC.SDumont.br

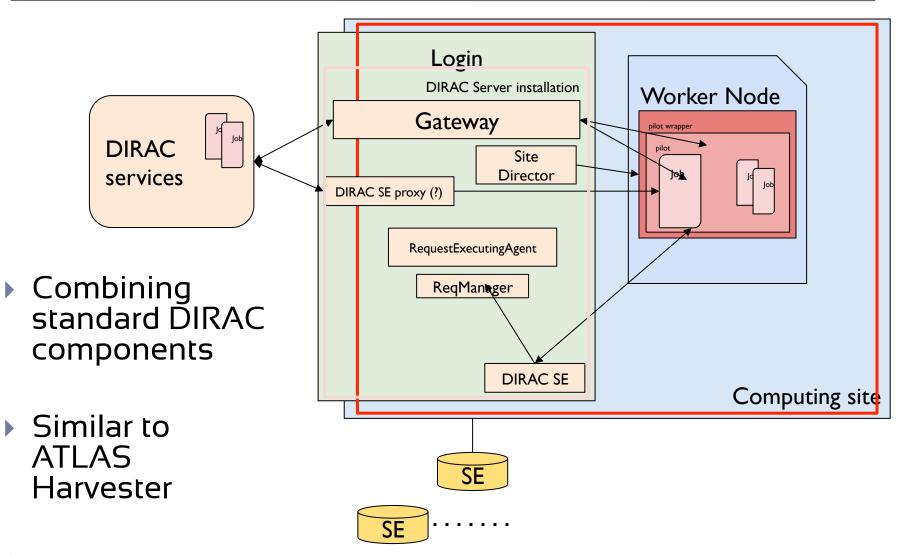
HPC at LNCC

nicely documented in Portuguese only :)


- Used DIRAC SSH CE
 slurm batch
- basic setup ~easy
- but: several issues,
 bad communication, so
 bad operations

HPC: DIRAC.OSC.us

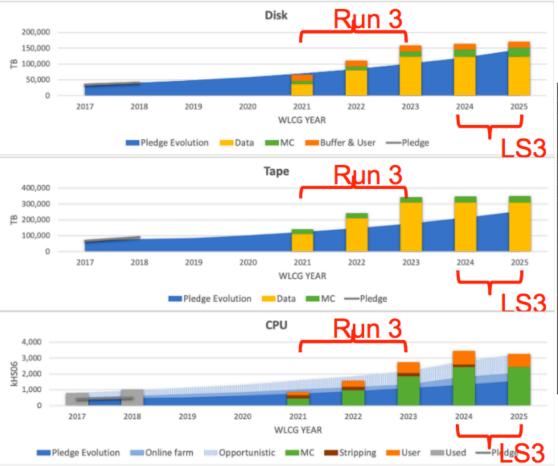
- Ohio SuperComputer
 "SSH" CE, and easy setup
- unused since a while...


Easy integration when:

- 1. WNs have outbound connectivity
- 2. LHCb CVMFS endpoints mounted on the WNs
- 3. x86, SLC6 or CC7 "compatible"

 \rightarrow This has been the case for CSCS, SDumont, OSC

When some of the requirements above are not met, we can try to go around them, but this requires dedicated work (and anyway it may not be possible, case by case)


Resources needs in 2019-2021

LHCb		2019			20	20	2021	
		CRSG	Pledged	Pledged / CRSG	Request	2020 req./ 2019 CRSG	Request	2021 req. / 2019 CRSG
	Tier-0	86	86	100%	98	114%	125	145%
WLCG CPU	Tier-1	271	268	99%	328	121%	409	151%
	Tier-2	152	193	127%	185	122%	229	151%
	HLT	10	0	0%	10	100%	50	500%
	Sum	519	547	105%	621	120%	813	157%
Others		n/a	0	n/a	10	n/a	50	n/a
Total		519	547	105%	631	122%	863	166%
	Tier-0	14.1	13.40	95%	17.2	122%	19.5	138%
Disk	Tier-1	27.9	29.00	104%	33.2	119%	39	140%
	Tier-2	6.8	4	59%	7.2	106%	7.5	110%
	Total	48.8	46.4	95%	57.6	118%	66	135%
Таре	Tier-0	35	35.00	100%	36.1	103%	52	149%
	Tier-1	50.9	53.10	104%	55.5	109%	90	177%
	Total	85.9	88.1	103%	91.6	107%	142	155%

 Increase in 2020 due to generation of large simulated samples to tune the reconstruction and selection algorithms to be run in the HLT

Resources needs in 2021-2025

Mo	del assu	ımpti	ons					
L (cm ⁻² s ⁻¹)	2×10 ³³	2×10 ³³						
Pileup	6							
Running time (s)	5 × 10 ⁶	5 × 10 ⁶ (2.5 × 10 ⁶ in 2021)						
Output bandwidth (GB/s)	10							
Fraction of Turbo events	73%							
Ratio Turbo/FULL event size	16.7%							
Ratio full/fast/param. simulations	40:40:20							
Data replicas on tape	2							
Data replicas on disk 2 (Turbo); 3 (FULL, TurCal)								
Resou	irce req	uirer	nents					
WLCG Year	Disk (PB)		Tape (PB)		CPU (kHS06)			
2021 2022 2023 2024 2025	66 111 159 165 171	1.1 1.7 1.4 1.0 1.0	142 243 345 348 351	1.5 1.7 1.4 1.0 1.0	863 1.579 2.753 3.467 3.267	1.4 1.8 1.7 1.3 0.9		

27

Conclusions

- Computing Upgrade TDRs are approved
- Smooth running of LHCb Computing project, most of the computing resources is for the MC production
- Smooth running of the french sites (T1, T2, T2-D)
- Successful in using opportunistic resources
 - Not much HPC usage
- Significant increase in the resources needs in 2020-2023
 - Flat needs afterwards till 2025