News from (/in/about) the dark

Episode 4:

WANTED: Dark matter clustering properties from subgalactic to cosmological scales

Montpellier - May 20-22 2019

Summary

Special thanks to:

Secretary (travel/stay): Lydie Le Clainche Secretary (logistic): Amel Chennouf

Local dynamics, Galactic dynamics, Gaia (Benoit, Giacomo, James, Simon, Thomas, Mihal, Chervin, Jean-Baptiste)

* Gaia: a new era in precision astrometry

- total halo mass
- core vs cusp
- phase-space distribution
- test different dark matter properties: clustering on small scales, local density, global density, etc.
- many new things: local features, minor mergers around the Galactic center, etc.

* Data: look messy at first sight, not so easy to analyze (efficiencies, calibration, systematics, etc.) ...

- * ... But: controlled analytical methods (deriving from CBE) actually powerful to make sense of data!
 - action-angle methods a good way to interpret the stellar population behavior
 - local structure in velocity space understood from perturbed CBE: impact of the (distant) bar can be probed locally!
- * ... And complemented by numerical experiments
 - Sagittarius stream may also impact on the local velocity fields of stars
- * ... Streams! Constraints on global halo shape/potential + subhalos to come
- * Back to f_0 (unperturbed DF)

- minimal (spherical symmetry + isotropy) self-consistent analytical methods (improved Eddington) in ~10% agreement wrt zoom-in simulations for DM velocity moments

- can be improved to account for axisymmetry, or rotating halos

- * Theoretical improvement in dynamical stability studies (analytical methods)
 - rotating halos \rightarrow new instabilities found
 - cusps/cores
- * Statistical theory
 - well suited to test extra-DM scenarios (small-scale perturbers)
 - \rightarrow Fuzzy DM fluctuations can be treated as effective massive particles: only statistical properties of grav. field matter
 - \rightarrow Scattering off stars induce diffusion => constraints in the ballpark!

LCDM cosmology, small-scale structures, small-scale issues (Annalisa, Arturo, Martin, Gaétan, Raphaël, Kim)

- * Cosmological simulations
 - \rightarrow go bigger 500 Mpc
 - \leftarrow go more resolved
 - Baryonic physics based on semi-empirical recipes (gas cooling/heating, stellar evolution, metal enrichment from tables)
 - Absent: radiative transfer, radiation pressure, chemistry
 - Baryonic physics somewhat calibrated on observations
 - Still predictive for non-calibrated observables
 - TNG: core/cusp +diversity issues not yet assessed (when?)
- * Stellar formation recipes
 - go from simple to more sophisticated recipes
 - strong differences
 - issue of calibration vs theory / how to rescale subgrid models
- * Subhalos: analytical studies (LCDM can be adapted to any shape of initial power spectrum)
 - analytical models reproduce qualitative features observed in simulations (spatial distribution + properties of subhalos)
 - can go down to free-streaming mass scale!
 - detailed study of tidal shocks induced by baryons: disk shocking, star encounters
 - preliminary: smallest masses ($< 1M_{sun}$) strongly depleted
 - can be fully connected to effective particle physics models
- * Subhalos / satellite galaxies: numerical studies (idealized simulations)
 - understand evolution of infalling subhalos
 - very resilient to tides
 - internal structure evolves: some modeling available
 - make sense of some observations: anticorrelation between inner density of dwarves and pericenter
- * Small-scale issues: SIDM
 - no longer the core-cusp $pb \rightarrow core-cup problem$;-) (a new prediction: SIDM turns cusps into cups!)
 - solve the diversity problem
 - Interesting new feature pointed out: core collapse + phase diagram

Dark ages, first stars, Ly-alpha, 21 cm (Riccardo, Laura, Yuxiang)

* Ly-alpha

- improved analysis extending capability to capture different shapes in the power spectrum
- very strong constraints on models that truncate the power spectrum (WDM, fuzzy DM)
- * 21 cm and dark matter
 - WIMPs are more complex than a cross section (mediators, mass degeneracies in exotic particle spectrum)
 - use of 21cmfast
 - impact of DM on reionization
 - important role of DM clustering on small scales
- * 21 cm and first stars

- a very complex problem (treat mean free path of photons of different energies in cosmological volumes with forming galaxies)

- a lot of recent improvements to include the impact of small halos
- future improvement will rely on balance between inputs from cosmological simulations and semi-analytical models
- 21 cm as a future constraint on structure formation (luminosity functions, etc.)

Scalar field cosmology: primordial black holes and time-dependent (Sébastien, Tristan)

* PBHs

- we are all coming from PBH ejecta!
- a new scenario for baryogenesis: relies on spectator scalar field (e.g. the axion field)
- anthropic selection in the field parameter space:
- should be careful with observational constraints (e.g. impact of clustering)

* Scalar fields in cosmology

- often considered as artificial patches, but actually very constrained, and cannot lead to arbitrary predictions
- a new theory for understanding swings ;-) ... and cosmological features (e.g. Hubble tension)

Scalar field cosmology: primordial black holes and time-dependent (Sébastien, Tristan)

* PBHs

- we are all coming from PBH ejecta!
- a new scenario for baryogenesis: relies on spectator scalar field (e.g. axion)
- should be careful with observational constraints (e.g. impact of clustering)

* Scalar fields

- a new theory for understanding swings ... and cosmological features (e.g. Hubble tension)

Mille mercis pour votre participation et vos contributions !

News from the Dark – Next 2020: Strasbourg (TBC) 2021: Annecy (TBC) 2022: Montpellier stay tuned...