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What can scalar fields do?
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• If you don’t like the QFT of scalar fields… think of them as 
effective models

• Quintessence 

• Pre/re-heating

The software calculates the means, variances, and
energy density of both fields as well as their energy and
power spectra. Two-dimensional slices of the field profile
are also generated as well as the space-averaged value of !.
The scale factor grows by a factor of about af ! 17 (when
"=# 4 ¼ 5000) compared to af ! 27 (in the canonical case
for the same final time).

Results.—The evolution of the inflaton field during both
inflation and its first few oscillations shows the effects
expected due to the presence of these noncanonical terms.
In the DBI case, as the velocity of the field grows, the
relativistic factor ! also grows, decreasing the influence
of the potential term on the acceleration of the field.
Mathematically, to guarantee the reality of !, _$ cannot
exceed f#1=2; however, in practice we see that the true
speed limit is somewhat smaller and is a consequence of
the nonlinear dynamics of the field. We can easily see the
effects of the speed limit on the oscillations of the inflaton
after inflation. In fact, the mean value of $ on the lattice
does not oscillate sinusoidally but instead reaches its maxi-
mum velocity quickly, after which it travels at a constant
speed for much of each oscillation. The evolution of $
thus approaches a sawtooth pattern as "=# 4 increases, as
predicted in Ref. [28]; see Fig. 1.

We have run simulations with initial values of ! varying
from 1 & ! & 10, consistent with the Planck 2013 con-
straint ! & 14 at 95% confidence [34]. In all simulations,
we see significant effects due to parametric resonance by
approximately t! 100m #1. We can identify parametric
resonance by the exponential amplification of particular
modes of the matter field %, which result in an exponential
increase in the variance of the matter field over time.
We can see this schematically by noting the inflaton is a
coherently oscillating field $ ¼ !ðtÞ; the mode equations
for the matter field,

€% ~k þ 3
_a

a
% ~k þ ðk2 þ g2!2Þ% ~k ¼ 0; (12)

are then damped harmonic oscillators with a time-
dependent mass. In the case of a sinusoidally varying !,
we can reduce Eq. (12), after ignoring the expansion of the
universe, to the Mathieu equation and predict the spectrum
of amplifications. If we allow ! to be a sawtooth function
whose amplitude decreases and whose period increases,
the consequences for preheating are unclear. On one hand,
we expect that the time-varying period of oscillation
should do harm to the period of parametric resonance.
Some modes will experience small amplifications during
each oscillation, but there is no assurance that any particu-
lar mode is amplified repeatedly.
On the other hand, the sawtooth is actually many Fourier

modes; it represents many forcing terms, each with differ-
ent resonance bands. Since the resonance in this case is
much broader, we might expect that more modes are in
resonance at any given time and the efficiency of para-
metric resonance is increased. Figure 2 shows the com-
parison between the canonical and the DBI cases. The %
field is efficiently amplified during the preheating process,
not hindered by the sawtooth oscillations.
Perhaps more interesting is the burgeoning impor-

tance of self-resonance. The extra terms in Eq. (4)
give rise to self-interactions that provide a mechanism
for self-resonance. Unlike in the canonical case, the
modes of $ undergo strong self-resonance in the pres-
ence of nonminimal terms. Figure 3 shows the dramatic
difference in the two regimes; indeed, for the case of
interest here, we see that the self-resonance is faster
and more efficient than the induced parametric reso-
nance in the matter field. This can be seen in Fig. 3, since
the variance of $ for the nonminimal case grows quickly in
the early stages of the simulation, whereas in the canonical
case, the variance of $ decreases during this time. The
existence of self-resonance is generic for different values of
"=# 4, becoming more significant as we depart further from
the canonical case.
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FIG. 1 (color online). Evolution of the mean inflaton field
value for simulations with "=# 4 ¼ 5000, !0 ' 8:7 (red solid
line) and the canonical case f ! 0 (blue dashed line).

0 50 100 150 200
10 14

10 12

10 10

10 8

10 6

t m 1

2
m

pl
2

FIG. 2 (color online). Variance of the matter % fields. The red
(solid) lines represent the fields when "=# 4 ¼ 5000 (initial
! ¼ 8:7), and the blue (dotted) lines represent the canonical
(f ! 0) case.
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• Scalar field DM 

Figure 1: Comparison of cosmological large-scale structures formed by standard CDM and by wave-
like dark matter, ψDM. Panel (a) shows the structure created by evolving a single coherent wave function
for ΛψDM calculated on AMR grids. Panel (b) is the structure simulated with a standard ΛCDM N-body
code GADGET-212 for the same cosmological parameters, with the high-k modes of the linear power spec-
trum intentionally suppressed in a way similar to the ψDMmodel to highlight the comparison of large-scale
features. This comparison clearly demonstrates that the large scale distribution of filaments and voids is in-
distinguishable between these two completely different calculations, as desired given the success of ΛCDM
in describing the observed large scale structure. ψDM arises from the low momentum state of the conden-
sate so that it is equivalent to collisionless CDM well above the Jeans scale.

CDM, including the surprising uniformity of their
central masses,M(< 300 pc)≃ 107 M⊙, and shallow
density profiles1–4. In contrast, galaxies predicted by
CDM extend to much lower masses, well below the
observed dwarf galaxies, with steeper, singular mass
profiles5–7. Adjustments to standard CDM address-
ing these difficulties consider particle collisions16, or
warm dark matter (WDM)17. WDM can be tuned to
suppress small scale structures, but does not provide
large enough flat cores18, 19. Collisional CDM can
be adjusted to generate flat cores, but cannot sup-
press low mass galaxies without resorting to other
baryonic physics20. Better agreement is expected
for ψDM because the uncertainty principle coun-
ters gravity below a Jeans scale, simultaneously sup-
pressing small scale structures and limiting the cen-
tral density of collapsed haloes8, 9.

Detailed examination of structure formation
with ψDM is therefore highly desirable, but, un-
like the extensive N-body investigation of standard

CDM, no sufficiently high resolution simulations of
ψDM have been attempted. The wave mechanics
of ψDM can be described by Schrödinger’s equa-
tion, coupled to gravity via Poisson’s equation13
with negligible microscopic self-interaction. The dy-
namics here differs from collisionless particle CDM
by a new form of stress tensor from quantum un-
certainty, giving rise to a comoving Jeans length,
λJ ∝ (1+ z)1/4m−1/2

B , during the matter-dominated
epoch15. The insensitivity of λJ to redshift, z, gener-
ates a sharp cutoff mass below which structures are
suppressed. Cosmological simulations in this con-
text turn out to be much more challenging than stan-
dard N-body simulations as the highest frequency
oscillations, ω , given approximately by the matter
wave dispersion relation, ω ∝ m−1

B λ−2, occur on the
smallest scales, requiring very fine temporal resolu-
tion even for moderate spatial resolution (see Sup-
plementary Fig. S1). In this work, we optimise
an adaptive-mesh-refinement (AMR) scheme, with
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Schive, Chiueh, and Broadhurst (2014)

• ‘Early dark energy’

Poulin, Smith et al. (2019)
• Inflation 
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Scalar fields: the duct tape 
of the universe
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Inflaton; quintessence; fuzzy DM; scalar 
interactions…

Higgs field… ubiquitous in string theory

Can scalar fields do everything?

<latexit sha1_base64="(null)">(null)</latexit>

NO! Their dynamics are actually quite 
constrained and beautiful
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Scalar fields: the duct tape 
of the universe
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Parametric (self) resonance 

Attractor behavior (i.e. quintessence 
tracking)
Anharmonic oscillations

Slow-roll… thawing

Focus on minimally coupled scalar fields which are initially 
(nearly) homogeneous- i.e. no phase-transition after inflation

Perturbations
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Scalar fields: background evolution
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• The field is fixed by Hubble friction

• Once the Hubble parameter drops 
enough the field starts to evolve

• If there is a local minimum, field might oscillate

General story:

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

• If not the field evolves monotonically
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Scalar fields: background evolution
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Exits slow-roll when 
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‘background’ EOS
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During slow-roll the field only explores a small part of 
its potential:

<latexit sha1_base64="(null)">(null)</latexit>

…. ‘exact’ time of slow-roll exit is in the 
eye of the beholder
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Scalar fields: background evolution
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Also follows from energy conservation:
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The evolution of the field is beautifully described in a 
‘phase-space’ (Copeland, Liddle, and Wands 1998) 

<latexit sha1_base64="(null)">(null)</latexit>
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Does not assume     is subdominant!
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Attractor behavior
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<latexit sha1_base64="(null)">(null)</latexit>Solve for fixed points (                       ) and assess 
stability… 
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Two stable behaviors: 

• 
<latexit sha1_base64="(null)">(null)</latexit>
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• 

Tracking!

Scalar field dominates!
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Scalar field phase-space
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Scalar field phase-space: double exponential 
<latexit sha1_base64="(null)">(nul l)</latexit> Small (domination)
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Large (tracking)
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Oscillating scalar fields
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• If oscillations are much faster Hubble energy is 
approximately conserved

• Damped oscillations
<latexit sha1_base64="(null)">(null)</latexit>

• ‘Cycle-averaging’ we have the 
virial theorem 

• Gives a cycle-averaged EOS

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

The ULA potential is given by

VnðϕÞ ¼ Λ4ð1 − cosϕ=fÞn; ð2Þ

where f is the energy scale at which the globalUð1Þ related
to axions is spontaneously broken. The ULA homogeneous
energy-density and pressure are

ρa ¼
1

2
_ϕ2 þ VnðϕÞ; ð3Þ

Pa ¼
1

2
_ϕ2 − VnðϕÞ: ð4Þ

The Hubble equation can be written

H¼H0EðaÞ¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmðaÞþΩrðaÞþΩΛþΩaðaÞ

p
; ð5Þ

where ΩX ≡ ρX=ρcrit and ρcrit ¼ 3H2
0M

2
P, where MP ≡

ð8πGÞ−1=2 is the reduced Planck mass. In order to solve
these equations numerically it is useful to redefine the
variables so that they are dimensionless. If we define
Θ≡ ϕ=f, m≡ Λ2=f, α≡ f=MP, x≡H0t, and μ≡
m=H0 these equations can be written

VnðΘÞ ¼ μ2α2ð1 − cosΘÞn; ð6Þ

Θ00 ¼ −3EΘ0 − α−2
dVn

dΘ
; ð7Þ

ΩaðaÞ ¼
1

3

"
1

2
α2Θ02 þ VnðΘÞ

#
; ð8Þ

where a prime indicates a derivative with respect to x.
Before the field starts to oscillate it undergoes “slow-

roll” evolution (that is, _ϕ2=2 ≪ V and the dynamics are
dominated by Hubble friction) which we will refer to as an
“early dark energy” (EDE) phase. To obtain a useful
parametrization for all the models under consideration,
we have found an analytic approximation to the initial field
evolution. First, we expand the potential to linear order
around the initial field value Θi to obtain a solution for the
field evolution (assuming that Θ0

i → 0 as x → 0):

ΘðxÞ≃Θi þ
sinðΘiÞð0F1½12 ð3pþ 1Þ;Ax2& − 1Þ

n cosΘi þ n − 1
;

≃Θi −
μ2nx2 sinΘið1 − cosΘiÞn−1

2ð3pþ 1Þ
þOðA2x4Þ ð9Þ

where 0F1 is the confluent hypergeometric function and

A≡ 1

4
μ2nð1 − cosΘiÞn−1ð1 − n cosΘi − nÞ; ð10Þ

and where Θi is the initial value of the field at x ¼ 0 and
a0=a ¼ p=x so that during radiation domination p ¼ 1=2

and during matter domination p ¼ 2=3. When numerically
solving for the evolution of the homogeneous scalar field,
we take the initial field value to be 0 < Θi < π and the
initial velocity of the field is determined by the curvature of
the potential at Θi through Eq. (9). We set p ¼ 1=2 since
the field is always initialized during radiation domination.
After a period of slow-roll evolution, the field transitions

to an oscillatory phase with a decreasing amplitude due to
the dilution of the field’s energy density from expansion.
The potential during the oscillating phase takes the form
VnðΘÞ≃2−nμ2α2Θ2n so that for n ¼ 1 the field undergoes
simple harmonic oscillation with a frequency which is
independent of its amplitude and for n > 1 the oscillations
are anharmonic and the frequency depends on the ampli-
tude. We show the evolution of Θ for the three forms of the
potential considered here in Fig. 1.
Once oscillating, over timescales shorter than a Hubble

time the field evolves according to the equation of motion

Θ00 þ α−2
dVn

dΘ
¼ 0: ð11Þ

Furthermore if we assume that the oscillation frequency
ϖ ≫ H, the total energy will be approximately conserved
over several oscillations so that we have

1

2
Θ02 þ α−2VnðΘÞ ¼ α−2VnðΘmÞ; ð12Þ

where Θm is the maximum field value, reached when
Θ0 ¼ 0. We can use the virial theorem to write h1=2Θ02i ¼
nα−2hVni so that

hΩΘi≃
1

3

μ2α2

2n
Θ2n

m ≃Ωa;0a−3ð1þwnÞ; ð13Þ

FIG. 1. The evolution of the background field with μ ¼ 106,
α ¼ 0.05, and Θi ¼ π − 0.1 for the three forms of the axion
potential explored in this paper.
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Poulin, Smith et al. (2018)
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Oscillating scalar fields
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• For n>2 the oscillations are anharmonic
<latexit sha1_base64="(null)">(null)</latexit>

• Oscillation period depends on amplitude
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this can get 
computationally 
expensive!
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Oscillating scalar fields
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• We can also solve this equation for certain values of n
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• No oscillations (i.e. Hubble friction wins) as long as
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Ratra  & Peebles (1988)
Liddle  & Scherrer (1998)

<latexit sha1_base64="(null)">(null)</latexit>

matter domination
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radiation domination
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Perturbations!
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• Can also write as coupled first order differential 
equation…. i.e., conservation of perturbed stress-energy

<latexit sha1_base64="(null)">(null)</latexit>
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• Sub-horizon perturbation determined by ‘sound speed’
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Scalar field sound-speed
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Hu (1998)
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• We can derive cycle-averaged effective sound-speed

• Once (or if) oscillations start the fluid equations are 
numerically unstable  (perturbed KG is stable)

<latexit sha1_base64="(null)">(null)</latexit>
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Cycle-averaged sound-speed
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• As derived in Poulin, Smith et al. (2018)
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• Effective sound speed is both time and scale dependent

• On ‘small’ scales                 … enhanced pressure/less 
clustering 

<latexit sha1_base64="(null)">(null)</latexit>

• On ‘large’ scales                
<latexit sha1_base64="(null)">(null)</latexit>

Except for n=2 
oscillating scalar 
fields don’t cluster

•      … a new length-scale!
<latexit sha1_base64="(null)">(null)</latexit>
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FIG. 2. Adiabatic matter power-spectra generated with the modified camb described in Sec. III, with varying axion mass and
energy-density fraction ⌦a/⌦d at fixed total dark-matter density fraction ⌦d. Power is suppressed for modes that enter the
horizon when the axion sound speed cs ⇠ 1.

matter power-spectrum is suppressed at small scales. We
see that lower values of ma or higher values of ⌦a/⌦d

cause progressively more severe suppression, indicating
that LSS data can be used to constrain ULA properties.
The e↵ect is present on linear scales k ⇠< 0.1 Mpc�1, and
so the linear power-spectrum can be used to impose tight
constraints to ULAs when ma . 10�25 eV.

We can gain some insight into the suppression of the
power spectrum by examining the evolution of a variety
of modes for a single ULA mass (ma = 10�26 eV), as
shown in Fig. 3. If k < kJ(a) at all times (as is the case
if k = 10�4

h Mpc�1), the mode locks onto the CDM
solution after an early period of DE-like behavior.

If k ⇠ kJ(a) initially (as is the case if k = 0.1h Mpc�1),
the mode shows suppressed growth initially, but has the
same scaling with a as the CDM case at late times, when
k > kJ(a), yielding an overall suppression of power.
Finally, if at early times, k ⇠> kJ (as is the case for
k = 0.3 Mpc�1) the ULA perturbation oscillates rapidly
until very late times (a ⇠ 10�2

> aosc), yielding a signif-
icant suppression of small-scale power. This illustrates
why the matter power-spectrum is suppressed on small
scales (as in Fig. 2) at the level of the mode evolution as a
function of scale factor a. We discuss the detailed impact
of altered mode evolution on cosmological observables in
Sec. IV.

The ULA hypothesis may have additional implica-
tions for cosmological structure formation. These in-
clude cored density profiles in dwarf-spheroidal galax-
ies [31, 120, 137–141], suppressed number densities of
Milky Way satellites [140] (providing a possible solution
to well-known discrepancies between small-scale obser-
vations and the ⇤CDM model, reviewed in Ref. [142]),
vortices/caustics in DM halos [139, 143], altered reioniza-

FIG. 3. Evolution of the fractional DM density-perturbation
� when ⌦a/⌦d = 1 (solid), for a ULA mass of ma = 10�26 eV
and a series of wave numbers k (as shown in the figure), com-
pared to standard CDM (dashed). The overall normalization
of the mode amplitude is arbitrary here. The range of k-values
encompasses di↵erent behaviors, with suppression of growth
relative to CDM when k ⇠ kJ(a), oscillation when k > kJ(a)
and growth as CDM when k < kJ(a). This leads to an overall
suppression of power for large-k modes.

tion due to delayed high-redshift galaxy formation [144],
and pulsar-timing searches for gravitational wave emis-
sion caused by coherently oscillating density profiles in
DM halos [145]. These techniques all depend on the non-
linear physics of ULAs in DM halos. For the rest of this
work, we restrict our attention to the linear theory of
ULA perturbations, which we now develop.

Hlozek et al. (2015)

• As mass decrease suppressed k decreases             

decreasing mass
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Scaling sound-speed
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• For power-law attractor
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Parametric resonance!
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• When the effective frequency varies in time can get 
resonant growth

<latexit sha1_base64="(null)">(null)</latexit>

initially ignore expansion (H ¼ 0, a¼ 1) and the gravita-
tional perturbations (!k ¼ 0) in Eq. (18).

3. Resonance in Minkowski space

The equation of motion for !’k then becomes

€!’ k þ ½k2 þU00ð’Þ&!’k ¼ 0: (25)

Since the homogeneous field ’ is periodic in time, U00ð’Þ
is periodic as well as long as U00ð’Þ ! constant, which
occurs for potentials with anharmonic terms (as is the case
with our potential in (1). This yields an oscillator with a
periodically varying frequency, whose solutions can be
analyzed via standard Floquet methods (for example,
see [70]). For the interested reader, we review the main
aspects of Floquet analysis in the Appendix. Under certain

conditions (see Appendix A), Floquet’s theorem guaran-
tees that the general solution to Eq. (25) can be written as

!’kðtÞ ¼ e"ktPþðtÞ þ e' "ktP' ðtÞ; (26)

where ( "k are the Floquet exponents and P( ðtÞ are peri-
odic functions with the same period as U00ð’Þ.7 The
Floquet exponent "k depends on the amplitude of the
‘‘pump’’ field ’osc, as well as the wave number k. There
exists an unstable, exponentially growing solution if the
real part of the Floquet exponent < ð"kÞ ! 0. In Fig. 4(a),
we show j< ð"kÞj as a function of the amplitude ’osc and
wave number. The color represents the magnitude of the

a
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FIG. 5 (color online). (a) Evolution of !’k with k ) 0:05m * 0:01 Mpc' 1. During matter domination, !’k / a2 and grows
relatively slowly. However, after aosc, the mode grows exponentially fast due to parametric resonance. At anl the fluctuations become
nonlinear and linear evolution is no longer applicable. (b) Evolution of the scalar gravitational perturbation (k ) 0:05m). Before
resonance, the evolution is similar to that expected in usual slow-roll quintessence (or #CDM thin, black line) model. It is constant
deep in the matter-dominated era and starts decaying as quintessence takes over. Unlike slow-roll quintessence, after aosc the potential
grows rapidly until anl. This leads to a scale-dependent signal in observations that are sensitive to the gravitational potential. (c) The
evolution of the WIMP overdensity is not significantly affected by the resonant growth. The departure from #CDM in this case is
almost entirely due to the slight deviations in the expansion history. The normalization is set to one for all the above modes at a¼ ai.

7When the Floquet exponents are zero, there exist another
class of solutions !’kðtÞ / tP1ðtÞ and !’kðtÞ / P2ðtÞ, where
P1;2ðtÞ are periodic functions.

AMIN, ZUKIN, AND BERTSCHINGER PHYSICAL REVIEW D 85, 103510 (2012)

103510-8

Amin, Zukin, and Bertschinger (2012)
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• Solution can be divided into :
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isocurvature ‘adiabatic’

• Generically expect isocurvature (spectator field during 
inflation)
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Generated by adiabatic 
potential sources
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• Look for a scalar field that becomes dynamical on scales 
observable in the CMB 4

FIG. 2: The minimum multipole affected by modified ex-
pansion is plotted as a function of redshift in the standard
ΛCDM cosmology. Only multipoles above this had associated
wavenumbers k within the horizon at redshift z. For measure-
ments of the primary CMB anisotropy up to ℓmax ∼ 3000,
say, one can therefore probe the expansion history out to
zmax ∼ 105.

time at recombination, so that the location of the peaks
in harmonic space scales as ℓp ∝ η0/ηrec. Since η is in-
versely proportional to H then an increase in H (e.g.
due to the extra dark energy density needed for early
acceleration) leads to a decrease in η. If H is increased
after recombination then η0 decreases whereas ηrec re-
mains unchanged and the peaks move to smaller ℓ; if H
is increased before recombination then ηrec is decreased
whereas η0 remains nearly unchanged (since it receives
most of its contribution from late times), leading to a
shift in the peaks towards larger values of ℓ.
Finally, for the models that we consider the redshift of

recombination zrec ≈ 1090 is left nearly unchanged. We
can understand this by noting the redshift of recombi-
nation is approximately determined when the expansion
rate is equal to the interaction rate between photons and
free electrons,

XenbσT = H , (12)

where nb is the baryon number density, Xe the ionization
fraction, and σT the Thomson scattering cross section.
If H is larger at a given redshift z during recombina-
tion then due to the detailed balance equations the free
electron fraction will similarly be larger (the faster the
universe is expanding at a given redshift the harder it
will be for free electrons to combine with protons). This
balance (described in more detail in [17] for the standard

model and in [18] for general H) leads to zrec remaining
nearly unchanged.

B. Post-Recombination Effects

Modifying the expansion history in the post-
recombination phase produces two distinct physical ef-
fects on the CMB temperature power spectrum. Both
arise from the change in expansion history rather than
the photon perturbation per se. One physical effect is
that modifying the expansion history changes the angu-
lar diameter distance to the surface of last scattering,
leading to a shift in the location of the acoustic peaks in
the power spectrum, as already discussed. Note that be-
cause the modification is strictly post-recombination, no
change occurs in the sound horizon length, so the shift is
given purely by the angular distance change.
For a sharp transition lasting a small fraction of an

e-fold, one can calculate the effect analytically:

δdlss
dlss

≈ −
3

7

Ωm

Ωw

1
√
ΩmdΛ

a7/2d N(1 + wj) , (13)

where dΛ is the distance to CMB last scattering in the
standard, no transition case. The main effect is from
the high dark energy density before the transition, rather
than the transition (period with wj = 1) itself. Note that
for small N the key parameter, other than the timing of
the transition ad, is an “equivalent width” N(1 +wj) or
area of the deviation from w = −1 in ln a. For large N ,
the shift increases more rapidly than in Eq. (13).
Observations made by WMAP [19] have constrained

the location of the first acoustic peak to within 0.3%.
As a first look, nearly analytically, we can use this mea-
surement to exclude regions of the Nacc-aacc parameter
space, fixing all recent universe parameters and testing
for post-recombination expansion modifications. As seen
in Fig. 3, almost no early acceleration is permitted, ex-
cept for a tiny region near z ≈ 103 amounting to less than
0.14 e-folds of acceleration. The Planck satellite deter-
mination of the acoustic peak location to 0.09% would
completely rule out early acceleration (recall that there
is a modification of the Hubble parameter due to excess
energy density even if it does not rise to the level of caus-
ing acceleration). Apart from Nacc, one can also directly
limit the modification to the expansion as given by the
dashed (WMAP level) and dotted (Planck level) curves in
Fig. 3. We revisit the constraints rigorously in Sec. III E.
The second effect is that the change in the expansion

rate leads to the decay of the gravitational potentials,
giving rise to a modified integrated Sachs-Wolfe (ISW)
effect. The location of the extra ISW power is related to
the time of the expansion modification, with earlier tran-
sitions leading to an effect at higher multipoles (where
cosmic variance is not as severe).
Figure 4 shows the changes induced in the CMB power

spectrum from a period of early acceleration lasting for
Nacc = 0.1 e-folds, with the top panels corresponding
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governing the location of the maximum in the matter power
spectrum depends on the duration of matter domination.
Any modification of this ratio leads to an overall shift of the
spectrum. It is affected by the presence of an EDE, but the
additional matter component (for the n ¼ 1 case) partially
counteracts the effect of the EDE. Hence, the power
spectrum in the n ¼ 2 and 3 case is shifted in the same
way, and slightly more than in the n ¼ 1 case. Second, the
additional pressure support leads to suppression of power
on small scales in a manner that depends on each fluid
sound speed, and thus differs for each n .

V. CURRENT CONSTRAINTS TO ULAS

Using current measurements of the CMB and other
probes of large-scale structure we place constraints on the
energy density of ULAs as a function of the time when they
become dynamical. As mentioned before, although the
CMB decouples around z ∼ 1000, each multipole carries
with it information about the evolution of the universe
around the time the scales that form it entered the causal
horizon. This, in principle, makes the CMB sensitive to
cosmological dynamics as long ago as z ∼ 105–106 [4,20].
To perform this analysis we consider a series of fixed

values for zc at which we constrain the energy density in the
ULA. In addition to this we assume a uniform prior on
the initial field value, Θi, which in turn implies a particular
prior on the ULA’s oscillation frequency today, ϖ0 [see
Eq. (20)].

A. Description of the data sets and analysis

We run Monte Carlo Markov chains using the public
code MONTE PYTHON [39]. We perform the analysis with a
Metropolis Hasting algorithm, assuming flat priors on
fωb; θs; As; n s; τreio;ωcdmg and a logarithmic prior on Ωa.
We scan over 9 points in 1þ zc logarithmically distributed
between 1 and 108. We also vary n to be equal to (1,2,3).
We make use of Planck high-l and low-l TT, TE, EE and
lensing likelihood. We include the anisotropic BAO data at
z ¼ 0.2–0.75 from the BOSS DR12 data release [56] and
isotropic BAO data at z ¼ 0.105 [57] and z ¼ 0.15 [58].
We include the Joint Likelihood Analysis (JLA) of super-
novae, which includes measurements of the luminosity
distance of SN1a up to redshift z ∼ 1 [34].
Although not specified here for brevity, there are

many nuisance parameters that we analyze together with
the cosmological ones. To this end, we make use of a
Choleski decomposition which helps in handling the large
number of nuisance parameters [59]. We consider chains to
be converged using the Gelman-Rubin [60] criterion
R − 1 < 0.05. The constraints on the density of ULAs today
as a function of their dilution redshift 1þ zc are shown in
Fig. 6. These have the characteristic “belly” or U-shape first
estimated in Refs. [61,62], then generated more robustly

from a Boltzmann code with MCMC methods in Ref. [15],
and confirmed in Ref. [45].6

B. Late time constraints

Constraints on the ULA at late times are driven by
measurements of the luminosity distance up to z ≃ 1 using
the JLA data set [34] and angular diameter distance
[56–58]. Note that even for zc ¼ 0 the field evolves away
from wϕ ¼ −1- in particular, fitting the parametrization
wϕðzÞ ¼ wa;0 þ wa;1½1 − 1=ð1þ zÞ& to the three forms of
the potential gives an axion equation of state

n ¼ 1 → wa;0 ¼ −0.50; wa;1 ¼ −0.79; ð37Þ

n ¼ 2 → wa;0 ¼ −0.37; wa;1 ¼ −1.18; ð38Þ

n ¼ 3 → wa;0 ¼ −0.31; wa;1 ¼ −1.36: ð39Þ

The values of these parameters show the behavior we
expect as a function of n : as n increases the scalar field’s
energy density decreases more rapidly, leading to a smaller
wa;0 and wa;1 with increasing n .
The JLA data (combined with measurements of the

temperature anisotropy from Planck, polarization measured
by WMAP and measurements of the BAO) yield a con-
straint of w0 ¼ −0.957' 0.124 and w1 ¼ −0.336' 0.552
[34], where wðzÞ ¼ w0 þ w1½1 − 1=ð1þ zÞ&. If we choose

FIG. 6. Top panel—Constraints on the density of the ULA
today as a function of its dilution time 1þ zc. Bottom panel—
Constraints on the fraction of the total energy content in the form
of a ULA at ac ≡ ð1þ zcÞ−1.

6This shape seems to be somewhat generic in models for which
a species behaves as something other than matter up until a
critical transition redshift zc. For example, if the dark matter is
generated at late times by the decay of a relativistic species, as in
the late-forming dark matter model of Ref. [63], a qualitatively
similar constraint plot results.

VIVIAN POULIN et al. PHYS. REV. D 98, 083525 (2018)

083525-10
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degenerate with DM degenerate 
with radiation

dilutes faster 
than rad
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DE-like
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spectra is shown in Fig. 12. We also show the case of
neglecting perturbations of the ULA for comparison.
By looking at Fig. 11, one can see that our parametrization

captures well the overall behavior of the density perturba-
tions. While it fails at following all of the oscillations, the
envelope (i.e., the amplitude) of these is well reproduced.
The agreement improves when the ULA starts oscillating,
since our parametrization is designed for that regime.
In Fig. 12, one can see that the CMB TT and EE power

spectra are calculated at a few percent accuracy. The
agreement is better for n ¼ 1 (it is always below a percent
point) and degrades when going to higher power of n. This
is expected as the WKB approximation, valid when the
field oscillations are much more rapid than the Hubble
time, breaks-down for n ≥ 3. One can also gauge the

impact of including perturbations: it is particularly impor-
tant to avoid creating large deviations at multipoles
l≲ 100. Remarkably, below multipoles of a few hundred
the agreement is always well below a percent when
including perturbations. Perturbations also have an impact
at high multipoles, especially in the n ¼ 1 and 2 case, but
does not improve the agreement very significantly in the
n ¼ 3 case. From this quick comparison, we conclude that
it is safe to use our parametrization given the precision of
Planck data and the fact that we merely derive constraints
on the ULAs abundances. However, we note that given the
accuracy of next generation CMB experiments at high
multipoles, searches for ULA in future cosmological data
might require the evolution of the full KG equations
(especially in the n > 1 cases).

FIG. 11. The exact and approximate evolution of density
perturbations with wave number k ¼ 1 Mpc−1 (top panel) and
k ¼ 10−3 Mpc−1 (bottom panel) for n ¼ 1, 2, 3 and ðμ; αÞ ¼
ð105; 0.05Þ. The initial field values Θi were set to 1.5,2.5,3,
respectively.

FIG. 12. Residuals of the CMB TT (top panel) and EE (bottom
panel) power spectra calculated in the fluid approximation with
respect to solving exactly the KG equations for n ¼ 1, 2, 3 and
ðμ; αÞ ¼ ð105; 0.05Þ. The initial field values Θi were set to
1.5,2.5,3. We show the case of neglecting perturbations of the
ULA for comparison.

COSMOLOGICAL IMPLICATIONS OF ULTRALIGHT … PHYS. REV. D 98, 083525 (2018)
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Scale- and time-dependent effective sound speed
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Approximate dynamics
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Exact dynamics

Smith, Poulin, and 
Amin (in prep)

Poulin, Smith et al. 
(PRL in press 2019)
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• Cosmological scalar fields a have diverse but constrained 
phenomenology 

• Background dynamics described by damped (an)harmonic 
oscillator

• Perturbations are driven damped harmonic oscillators

• Scale and time dependent effective sound speed
• Parametric resonance

• As a ‘generic’ additional component scalar fields may 
play an important role in understanding current/future 
‘tensions’


