Cosmological aspects of scalar fields

Tristan L. Smith Swarthmore College

What can scalar fields do?

- Inflation
- Quintessence
- Scalar field DM
- 'Early dark energy'

Schive, Chiueh, and Broadhurst (2014)

Pre/re-heating

 If you don't like the QFT of scalar fields... think of them as effective models

Child, Giblin et al. (2013)

 $t(m^{-1})$

150

Scalar fields: the duct tape of the universe

Inflaton; quintessence; fuzzy DM; scalar interactions...

Higgs field... ubiquitous in string theory

Can scalar fields do everything?

NO! Their dynamics are actually quite constrained and beautiful

Scalar fields: the duct tape of the universe

Slow-roll... thawing

Attractor behavior (i.e. quintessence tracking)

Anharmonic oscillations

Parametric (self) resonance

Perturbations

Focus on minimally coupled scalar fields which are initially (nearly) homogeneous- i.e. no phase-transition after inflation

Scalar fields: background evolution

$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0$$

General story:

- The field is fixed by Hubble friction
- Once the Hubble parameter drops enough the field starts to evolve

- If there is a local minimum, field might oscillate
- If not the field evolves monotonically

Scalar fields: background evolution

Scalar fields: background evolution

$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0$$

Also follows from energy conservation:

$$\dot{\rho}_{\varphi} = -3H\rho_{\varphi}(1 + w_{\varphi})$$

$$\rho_{\varphi} \equiv \frac{1}{2}\dot{\varphi}^2 + V \qquad w_{\varphi} \equiv \frac{\frac{1}{2}\dot{\varphi}^2 - V}{\frac{1}{2}\dot{\varphi}^2 + V} \qquad H^2 = \frac{\kappa^2}{3} \left(\rho_B + \rho_{\varphi}\right)$$

The evolution of the field is beautifully described in a 'phase-space' (Copeland, Liddle, and Wands 1998)

$$X \equiv \frac{\kappa \dot{\varphi}}{\sqrt{6}H}$$

$$Y \equiv \frac{\kappa \sqrt{V}}{\sqrt{3}H}$$

$$\frac{\rho_{\varphi}}{\rho_{\text{tot}}} = X^2 + Y^2$$

$$w_{\varphi} = \frac{X^2 - Y^2}{X^2 + Y^2}$$

Does not assume φ is subdominant!

Attractor behavior

$$X' = -X\frac{3}{2} \left[(w_B + 1)Y^2 + (1 - w_B)(1 - X^2) \right] - Y^2 \sqrt{\frac{3}{2}} \lambda(\varphi)$$
$$Y' = \frac{3}{2} Y \left[1 + X^2 - Y^2 + w_B(1 - X^2 - Y^2) + \frac{\sqrt{6}}{3} X \lambda(\varphi) \right]$$

$$\lambda(\varphi) \equiv \frac{d \ln V}{d\kappa \varphi}$$

 $\lambda(\varphi) \equiv \frac{d \ln V}{d \kappa \varphi}$ Solve for fixed points (X' = Y' = 0) and assess stability. stability...

Two stable behaviors:

•
$$\lambda^2 > 3(w_B+1) \to \Omega_\varphi = \frac{3(1+w_B)}{\lambda^2}, \ w_\varphi = w_B \leftarrow \text{Tracking!}$$

•
$$\lambda^2 < 6 \to \Omega_\varphi = 1, \ w_\varphi = \frac{\lambda^2}{3} - 1 \ \leftarrow$$
 Scalar field dominates!

Scalar field phase-space

Scalar field phase-space: double exponential

$$V(\varphi) = \mu_1 e^{-\lambda_1 \varphi} + \mu_2 e^{-\lambda_2 \varphi}$$

Large (tracking) $\longrightarrow \lambda_1 = 12$ Small (domination) $\longrightarrow \lambda_2 = 0.25$

Oscillating scalar fields

$$V = V_0 \varphi^n \qquad \ddot{\varphi} + 3H\dot{\varphi} + nV_0 \varphi^{n-1} = 0$$

- Damped oscillations
- If oscillations are much faster Hubble energy is approximately conserved
- 'Cycle-averaging' we have the virial theorem

$$\frac{1}{2}\langle\dot{\varphi}^2\rangle \simeq \frac{n}{2}\langle V(\varphi)\rangle$$

$$w_{\varphi} \equiv \frac{\frac{1}{2}\dot{\varphi}^2 - V}{\frac{1}{2}\dot{\varphi}^2 + V}$$

Gives a cycle-averaged EOS

$$\langle w_{\varphi} \rangle \simeq \frac{n-2}{n+2}$$

Oscillating scalar fields

$$\ddot{\varphi} + 3H\dot{\varphi} + nV_0\varphi^{n-1} = 0 \quad \langle w_{\varphi} \rangle \simeq \frac{n-2}{n+2}$$

- For n>2 the oscillations are anharmonic
- Oscillation period depends on amplitude

$$\omega_{\varphi} = \omega_0 a^{-3w_{\varphi}}$$
$$\omega_0 \propto V_0^{1/n}$$

$$n = 4 \rightarrow 3w_{\varphi} = 1$$
$$n = 6 \rightarrow 3w_{\varphi} = 3/2$$

Oscillating scalar fields

$$\ddot{\varphi} + 3H\dot{\varphi} + nV_0\varphi^{n-1} = 0$$

We can also solve this equation for certain values of n

$$H = \frac{2}{3(1+w_B)} \frac{1}{t} \qquad \varphi = \varphi_i \left(\frac{t}{t_i}\right)^m \qquad \qquad m = -\frac{2}{n-2}$$

$$w_\varphi = -1 + (1+w_B) \frac{n}{n-1} \qquad \text{Ratra \& Peebles (1988)}$$
 Liddle & Scherrer (1998)

No oscillations (i.e. Hubble friction wins) as long as

$$n > \frac{2(3+w_B)}{1-w_B} \quad \begin{array}{c} n > 10 \\ \text{radiation domination} \\ n > 6 \end{array}$$

matter domination

Perturbations!

$$\delta \ddot{\varphi} + 3H\delta \dot{\varphi} + \left[\frac{k^2}{a^2} + V_{,\varphi\varphi}\right] \delta \varphi = -2V_{,\varphi}\Psi + 4\dot{\varphi}\dot{\Psi}$$

 Can also write as coupled first order differential equation.... i.e., conservation of perturbed stress-energy

$$\delta'_{\varphi} = -(1 + w_{\varphi})(\theta_{\varphi} - 3\Phi') - 3\frac{a'}{a} \left(\frac{\delta P_{\varphi}}{\delta \rho_{\varphi}}\right) + w_{\varphi} \delta_{\varphi}$$

$$\theta'_{\varphi} = -\frac{a'}{a}(1 - 3w_{\varphi})\theta_{\varphi} - \frac{w'_{\varphi}}{1 + w_{\varphi}}\theta_{\varphi} + \frac{\delta P_{\varphi}/\delta \rho_{\varphi}}{1 + w_{\varphi}}k^{2}\delta_{\varphi} + k^{2}\Psi$$

Sub-horizon perturbation determined by 'sound speed'

Scalar field sound-speed

$$\frac{\delta P_{\varphi}}{\delta \rho_{\varphi}} = c_{\mathrm{ad},\varphi}^2 + c_{\mathrm{nad},\varphi}^2$$

$$c_{\mathrm{ad},\varphi}^2 = \frac{\dot{P}_{\varphi}}{\dot{\rho}_{\varphi}} \qquad c_{\mathrm{nad},\varphi}^2 = 1 \quad \text{Hu (1998)}$$

$$= 1 + \frac{2}{3H} \frac{V_{,\varphi}}{\dot{\varphi}}$$

- Once (or if) oscillations start the fluid equations are numerically unstable (perturbed KG is stable)
- · We can derive cycle-averaged effective sound-speed

Cycle-averaged sound-speed

As mass decrease suppressed k decreases

Scaling sound-speed

$$\frac{\delta P_{\varphi}}{\delta \rho_{\varphi}} = 2\left(1 + \frac{1}{3H} \frac{V_{,\varphi}}{\dot{\varphi}}\right) = 2\left(1 - \frac{|\dot{V}|}{3H\dot{\varphi}^2}\right)$$

• For power-law attractor $V\propto arphi^n$ $\frac{\delta P_{arphi}}{\delta
ho_{arphi}}=2\left[1+rac{2-n}{(n-1)(1+w_B)}
ight]$

Tristan Smith

Parametric resonance!

$$\delta \ddot{\varphi} + 3H\delta \dot{\varphi} + \left[\frac{k^2}{a^2} + V_{,\varphi\varphi}\right] \delta \varphi = -2V_{,\varphi}\Psi + 4\dot{\varphi}\dot{\Psi}$$

 When the effective frequency varies in time can get resonant growth

 $a_{\rm nl}$

1.0

Initial conditions

$$\delta \ddot{\varphi} + 3H\delta \dot{\varphi} + \left[\frac{k^2}{a^2} + V_{,\varphi\varphi}\right] \delta \varphi = -2V_{,\varphi}\Psi + 4\dot{\varphi}\dot{\Psi}$$

• Solution can be divided into : $\delta \varphi = \delta \varphi_{\rm H} + \delta \varphi_{\rm I}$ isocurvature 'adiabatic'

Generically expect isocurvature (spectator field during inflation)

$$\langle \delta\varphi(\vec{k}) \delta\varphi^*(\vec{k}') \rangle = (2\pi)^3 [P_{\delta\varphi,\mathrm{ad}}(k) + P_{\delta\varphi,\mathrm{iso}}(k)] \delta_D(\vec{k} - \vec{k}')$$
 Generated by adiabatic
$$P_{\delta\varphi,\mathrm{iso}}(k) = rA_s \left(\frac{k}{k_p}\right)^{-r/8}$$
 potential sources

Example: 'early dark energy'

• Look for a scalar field that becomes dynamical on scales observable in the CMB Poulin, Smith et al. (2018)

Constraints

How good is the fluid approximation?

Scale- and time-dependent effective sound speed

Hubble tension and scalar fields

 $n = \infty$

n = 6

 Λ CDM

dynamics

Poulin, Smith et al. (PRL in press 2019)

> n = 4n = 6

Smith, Poulin, and Amin (in prep)

Tristan Smith

23

News From The Dark

Conclusions

- Cosmological scalar fields a have diverse but constrained phenomenology
- Background dynamics described by damped (an)harmonic oscillator
- Perturbations are driven damped harmonic oscillators
 - Scale and time dependent effective sound speed
 - Parametric resonance
- As a 'generic' additional component scalar fields may play an important role in understanding current/future 'tensions'