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What can scalar fields do?

e

_ Poulin, Sm/th etal. (2019)
- Inflation

* Quintessence
- Scalar field DM
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* Pre/re-heating
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- If you don’t like the QFT of scalar fields... think of them as
effective models
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Scalar fields: the duct tape
of the universe

Inflaton; quintessence; fuzzy DM; scalar
Interactions...

Higgs field... ubiquitous in string theory

Can scalar fields do everything?

NO! Their dynamics are actually quite
constrained and beautiful
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Scalar fields: the duct tape
of the universe

Slow-roll... thawing

Attractor behavior (i.e. quintessence
tracking)

Anharmonic oscillations

Parametric (self) resonance
Perturbations

Focus on minimally coupled scalar fields which are initially
(nearly) homogeneous- i.e. no phase-transition after inflation
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Scalar fields: background evolution
p+3Hp+V,=0

General story:
* The field is fixed by Hubble friction

« Once the Hubble parameter drops
enough the field starts to evolve

- If there is a local minimum, field might oscillate

- If not the field evolves monotonically
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Scalar fields: background evolution
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Scalar fields: background evolution
e+3Hp+V,=0
Also follows from energy conservation:
P = —3Hpy(1 + wy)

1 .2 2

sp° =V K

iQOQ—FV sz E(IOB_'—/OSD)
2

1,
5%024“/ Wy =

Py

The evolution of the field is beautifully described in a
‘Phase-space’ (copeiand, Liddle, and Wands 1998)
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Does not assume ¢ Is subdominant!
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Attractor behavior

X' = _Xg [(wB +1)Y? + (1 —wg)(1 —X2)} —Y? gk(w)
Y’:SY 1+X2—Y2+w3(1—X2—Y2)+?XA(90)
dlnV
A =
(P) =0

Solve for fixed points ( X’ = Y’ = () and assess
stability...

Two stable behaviors:
3(1 -+ wB)
)\2

)\2
e M <6— Qy, =1, w, = EN 1 <+ Scalar field dominates!

¢ A\ > J(wp +1) = Q, = , W, = wp <+ Tracking!
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Scalar field phase-space
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Scalar field phase-space: double exponential

Large (tracking) — )\1 = 12
Small (domination) — )\2 = 0.25
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Oscillating scalar fields

V = V" gb+3Hgb+nVOg0”_1 =0
- Damped oscillations

- If oscillations are much faster Hubble energy is
approximately conserved

1011

- ‘Cycle-averaging’ we have the v
virial theorem <
A =DV
o3V
5% +V i 6
- Gives a cycle-averaged EOS §
L2 e e
<w90> — n - 9 ® z
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Oscillating scalar fields

oo . n_l n - 2
o+ 3Hp +nVyp =0 (w,) >~
n + 2
- For n>2 the oscillations are anharmonic
 Oscillation period depends on amplitude
Wy = woa Ve n=4— 3w, =1
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Oscillating scalar fields

b+ 3Hp+nVop" ' =0

- We can also solve this equation for certain values of n

2 1 t\" 2
H = _ — o | = — _
31+wg)t £ ¥ <t) - =

T
_ Ratra & Peebles (1988)
w, = —14+ (1 +w
Y ( B) n—1 Liddle & Scherrer (1998)

- No oscillations (i.e. Hubble friction wins) as long as

23+ wp) ~ w—py 1> 10

1 — w B radiation domination

—

matter domination
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Perturbations!

2

5¢+%Hﬂhb%{ %xqw15¢::—2w¢w+ﬂ@ab
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- Can also write as coupled first order differential
equation.... i.e., conservation of perturbed stress-energy

a
a’ w,
0 = —"(1—3w,)f, — —2

- Sub-horizon perturbation determined by ‘sound speed’
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Scalar field sound-speed

0P, _

2
ad,p + Cnad,go

2
Chad,p = 1 Hu (1998)

- Once (or if) oscillationg’start the fluid equations are
numerically unstable Aperturbed KG is stable)

- We can derive cycle-averaged effective sound-speed
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Cycle- averaged sound speed
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fields don’t cluster
- As mass decrease suppressed k decreases
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Scaling sound-speed
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Parametric resonance!
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5+ 3HS¢ + L2 - V,W} Sp = —2V, U + 40

- When the effective frequency varies in time can get
resonant growth
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Initial conditions

2

5¢ + 3HSp + LQ

- Vmw} 0p = =2V, W + 495‘1’

» Solution can be divided into : 0 = 0y + d1

/ N\

isocurvature ‘adiabatic’

- Generically expect isocurvature (spectator field during
inflation)

(0p(k)3* (K')) = (21)°[Pspaa(k) + Pspiso (k)]0 (k — K')

/ 2 —7r/8
Generated by adiabatic P(;%iso(k) = rA, (_>

potential sources kp
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Example: ‘early dark energy’

- Look for a scalar field that becomes dynamical on scales
observable in the CMB Prouiin, Smith et al. (2018)
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Constraints
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How good is the fluid approximation?

Scale- and time-dependent effective sound speed

exact KG solution
------- approx. fluid solution
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Hubble tension and scalar fields

a» -4 %%.

‘c

@D n=« s
@ -G
ANCDM

Poulin, Smith et al.
(PRL in press 2019)

B n
B n

4
§

Smith, Poulin, and
Amin (in prep)

I E— — —
0.060.120.180.24 .8—-3.6-34 67.570.072.575.0
Log10(ac) H,
Py

Tristan Smith Ptot 23 News From The Dark




Conclusions

- Cosmological scalar fields a have diverse but constrained
phenomenology

- Background dynamics described by damped (an)harmonic
oscillator

- Perturbations are driven damped harmonic oscillators

- Scale and time dependent effective sound speed

« Parametric resonance

* As a ‘generic’ additional component scalar fields may
play an important role in understanding current/future
‘tensions’
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