Interactions of subhalos with disks and stars : an analytical study

Martin Stref

News from the Dark 2019

Interactions of subhalos with disks and stars : an analytical study

News from the Dark 2019

Success of ΛCDM

Large-scale structures

Small-scale issues for ΛCDM ?

Small-scale structuring in $\Lambda {\rm CDM}$

Depends on the **microscopic interactions of the DM particle** (and/or the primordial power spectrum)

e.g. for WIMPs, mass of the first structures to form set by the time of **kinetic decoupling** (cf Gaétan's talk)

Subhalos and WIMP searches

Differential event rate

Local DM density Local DM velocity DF

➡ Importance of the local clustering

Indirect searches

Probe of the (extra-)Galactic DM density profile via gamma rays, neutrinos or charged cosmic rays

Inhomogeneities boost the annihilation signal [Silk & Stebbins 93, Bergström+ 99]

Milky-Way-like halo (DMO simulation Springel+ 2008)

Cosmological simulations: the resolution issue

$$\frac{\mathrm{d}^n N_{\mathrm{sub}}}{\mathrm{d}\omega^n} = N_0 \, \frac{\mathrm{d}\mathcal{P}_m(m)}{\mathrm{d}m} \times \frac{\mathrm{d}\mathcal{P}_{\mathrm{c}}(c,m)}{\mathrm{d}c} \times \frac{\mathrm{d}\mathcal{P}_{\mathrm{v}}(\vec{x})}{\mathrm{d}V}$$

Subhalo "phase-space" number density

$$\frac{\mathrm{d}^{n} N_{\mathrm{sub}}}{\mathrm{d}\omega^{n}} = N_{0} \frac{\mathrm{d}\mathcal{P}_{m}(m)}{\mathrm{d}m} \times \frac{\mathrm{d}\mathcal{P}_{\mathrm{c}}(c,m)}{\mathrm{d}c} \times \frac{\mathrm{d}\mathcal{P}_{\mathrm{v}}(\vec{x})}{\mathrm{d}V}$$

Sanchez-Conde & Prada 2014

11

Tidal interactions of subhalos in the Galaxy

• Tidal stripping by the smooth Galactic potential

• Gravitational shocking by the Galactic disk

• Gravitational shocking by stars

Tidal interactions of subhalos in the Galaxy

• Tidal stripping by the smooth Galactic potential

• Gravitational shocking by the Galactic disk

• Gravitational shocking by stars

Interaction between subhalos and the host galaxy

Tidal interactions of subhalos in the Galaxy

• Tidal stripping by the smooth Galactic potential

• Gravitational shocking by the Galactic disk

• Gravitational shocking by stars

Interaction between subhalos and the Galactic disk

Subhalos experience **disk shocking** when they cross the stellar disk [Ostriker+ 1972, Gnedin & Ostriker 1999]

$$\frac{\mathrm{d}v_z}{\mathrm{d}t} = g_z(Z_0 + \delta Z) - g_z(Z_0) \simeq \delta Z \frac{\mathrm{d}g_z}{\mathrm{d}z}$$

$$\Delta v_z = \int \mathrm{d}t \frac{\mathrm{d}v_z}{\mathrm{d}t} = \frac{\delta Z}{V_z} 2 |g_z(z=0)|$$

$$\int \frac{\delta E}{m_\chi} = \frac{1}{2} (\Delta v_z)^2 = \frac{2 g_z^2 r^2}{3 V_z^2}$$

Stellar disk

Interaction between subhalos and the Galactic disk

Impulsive approximation: inner clump dynamics is frozen

 $au_{
m disk} \, \omega_{
m sub} \ll 1 \qquad {
m with} \qquad au_{
m disk} : {
m disk \ crossing \ time}$

 ω_{sub} : orbit frequency

Not a good approximation at the center of a clump \rightarrow adiabatic protection of DM particles Gnedin & Ostriker 1999

$$\frac{\delta E}{m_{\chi}} = \frac{2 g_z^2 r^2}{3 V_z^2} \left[1 + (\tau_{\text{disk}} \,\omega_{\text{sub}})^2 \right]^{-3/2}$$

0

Tidal interactions of subhalos in the Galaxy

• Tidal stripping by the smooth Galactic potential

• Gravitational shocking by the Galactic disk

• Gravitational shocking by stars

• High-speed encounter :

$$|\Delta \vec{v}| \ll v \iff b \gg 1.2 \times 10^{-7} \,\mathrm{pc} \,\left(\frac{M_{\mathrm{s}}}{M_{\odot}}\right) \left(\frac{270 \,\mathrm{km/s}}{v}\right)^2$$

• Isolated encounter

Energy gain per particle mass :

$$\frac{\delta E}{m_{\chi}} = \frac{1}{3} \left(\frac{2 G_{\rm N} M_{\rm s}}{v b} \right)^2 \frac{r^2}{b^2} \frac{1 + \left(\frac{2 r^2}{3 b^2}\right)^2}{\left[1 + \frac{2 r^2}{3 b^2}\right]^4} \propto \begin{cases} r^2 & \text{for } r \ll b\\ r^{-2} & \text{for } r \gg b \end{cases}$$

22

Adiabatic corrections?

$$\tau_* = \frac{b}{v} \ll \tau_{\rm disc} = \frac{h_{\rm disc}}{v_{\rm z}}$$

 $\tau_* \, \omega_{
m sub} \ll 1$

Impulsive approximation justified in most cases!

Number of stars with impact parameter < b

$$N_*(< b) = \frac{\Sigma_*}{\langle m_* \rangle} \frac{\pi b^2}{\cos \theta} = \frac{\Sigma_*}{\langle m_* \rangle} \pi b^2 \frac{v}{v_z}$$

Energy gain after one disk crossing:

$$\frac{\delta E}{m_{\chi}}\Big|_{\rm cross}\left(r\right) = \int dN_* \,\frac{\delta E}{m_{\chi}} \propto \int_{b_{\rm min}}^{b_{\rm max}} db \, b \,\frac{\delta E}{m_{\chi}}(b,r)$$

25

$$\frac{\delta E}{m_{\chi}}\Big|_{\rm cross}\left(r\right) \simeq \frac{\Sigma_{*}}{\langle m_{*} \rangle} \frac{\pi}{\sqrt{3}} \left(\frac{2 \,G_{\rm N} \,M_{\rm s}}{v}\right)^{2}$$

Nearly independent of r!

 \rightarrow homogeneous heating of the clump at disk crossing

Stars can heat small subhalos much more efficiently than the disk

Too small subhalos are completely disrupted!

New tidal radius:

$$\frac{\delta E}{m_{\chi}}(r_{\rm tidal}) = |\phi(r_{\rm tidal})|$$

Tidal radius

According to several studies [Penarrubia+ 10, van den Bosch+ 2018], subhalos can survive even if

 $r_{\rm tidal} \ll r_{\rm s}$

Star shocking might be the only effect able to completely disrupt subhalos My only two plots with the effect of stars...

Conclusions

- Fully-analytical model of Galactic subhalos, which incorporates **cosmological ingredients** and **kinematic constraints**
- **Disk shocking effects** are very effective at stripping DM clumps
- Shocking by stars seems very efficient at destroying small clumps
- Uncertainties on the small-scale power spectrum and complete disruption dominate the predicted Galactic population
- Results important for direct and indirect searches, Galactic dynamics, \ldots

Conclusions

- Fully-analytical model of Galactic subhalos, which incorporates cosmological ingredients and kinematic constraints
- Disk shocking effects are very effective at stripping DM clumps
- Shocking by stars seems very efficient at destroying small clumps
- Uncertainties on the small-scale power spectrum and complete disruption dominate the predicted Galactic population
- Results important for direct and indirect searches, Galactic dynamics, ...

Post-tides concentrations

Tidal effects destroy subhalos based on their concentration

 \rightarrow the most concentrated objects are more likely to survive

Post-tides mass function

Tidal selection of the most concentrated objects = the smallest ones

The annihilation "boost" factor

Originally pointed out by Silk & Stebbins 1993 : clustering "boosts" the annihilation rate!

Gamma rays

- Highly sensitive to $\alpha_{\!_{\rm m}}$

• Factor of a few at high latitudes

37

Gamma rays

Crucial since high latitudes can be very constraining!

Cosmic-ray antiprotons

Cosmic-ray antiprotons

Excess of antiprotons in the AMS-2 data compared to the secondary prediction [Cuoco+ 2017-2019, Cui+ 2017-2018, Cholis+ 2019]

Significant or not [~2 σ in Reinert & Winkler 2018] depending on the treatment of systematic uncertainties

DM annihilation ???

Cosmic-ray antiprotons

Phenomenological transport equation:

$$\partial_{\rm t}\Psi + \vec{\nabla} \cdot \left[\vec{V}_{\rm c}\Psi - K(E)\vec{\nabla}\Psi\right] - \partial_E \left[b(E)\Psi - D(E)\partial_E\Psi\right] + \Gamma_{\rm tot}\Psi = Q$$

DM annihilation source term:
$$Q(\vec{x}, E) = \frac{\langle \sigma_{\text{ann}} v \rangle}{2} \left(\frac{\rho(\vec{x})}{m}\right)^2 \frac{\mathrm{d}N_{\overline{p}}}{\mathrm{d}E}$$

<u>Two approaches</u>:

- Fully numerical solutions (e.g. GALPROP [Strong & Moskalenko 1998], DRAGON [Maccione+ 2011])
- Semi-analytical solutions (e.g. USINE [Maurin+ 2001,2016])

We choose a semi-analytical treatment and express the CR flux with a Green's function:

$$\frac{\mathrm{d}\Phi_{\overline{p}}}{\mathrm{d}T} = \frac{v_{\overline{p}}}{4\pi} \frac{\langle \sigma v \rangle}{2 \, m_{\chi}^2} \int \mathrm{d}E_{\mathrm{s}} \int \mathrm{d}^3 \vec{r}_{\mathrm{s}} \, G(E \leftarrow E_{\mathrm{s}}; \vec{r}_{\odot} \leftarrow \vec{r}_{\mathrm{s}}) \, \frac{\mathrm{d}N_{\overline{p}}}{\mathrm{d}E}(E_{\mathrm{s}}) \, \rho^2(\vec{r}_{\mathrm{s}})$$

antiprotons boost factor:
$$1 + \mathcal{B}_{\overline{p}}(T) = \frac{\mathrm{d}\Phi_{\overline{p}}/\mathrm{d}T|_{\mathrm{clumpy}}}{\mathrm{d}\Phi_{\overline{p}}/\mathrm{d}T|_{\mathrm{smooth}}}$$

41

Subhalo number density in the Galaxy

Potentially very large local population!

DM mass density inside subhalos

Subhalo very stripped at the centre \rightarrow low contribution to the total mass density

Results with $Mmin = 10^{-4} Msun$

