

News from the Dark - LUPM - 20-22/03/2019

Spheriodal stellar systems are rotating

Nuclear Star Clusters

NGC 4244 (nearby, spiral, edge on)

Seth et al. 2008

DM halos are rotating

$$
\lambda^{\prime}=\frac{J}{\sqrt{2} M V R}
$$

Rotation in DM halos

- Theory:

Rotation emerging from tidal torques at the time of structure formation. Peebles 1969
Accretion of satellites (assembly). Vitvitska et al. 2002

- Simulations: Tidal torquing and assembly do not seem to be independent. Lopez et al. 2019
- Observations: Open question. Imprint of the rotating halo on the baryon dynamics?
- Problem: Rotation has an influence on the-dynamical evolution of the halo, and its shape. Can transform a spherical halo into a triaxial one, e.g through instabilities.

Linear Response Theory: the response matrix

How does a stellar system respond to an exterior perturbation?

Key points of the method

Angle-action variables:

Guarantee a simple (proportional) relation between the response and the perturbation

$$
\tilde{f}_{\mathbf{m}}^{1}(\mathbf{J}, \omega)=\mathbf{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{\tilde{\psi}_{\mathbf{m}}^{1}(\mathbf{J}, \omega)}{\mathbf{m} \cdot \boldsymbol{\Omega}-\omega}
$$

Projection onto Bi-Orthogonal Basis:

Transforms the differential equations into a vectorial problem

$$
\tilde{\boldsymbol{\Psi}}^{r e s p}(\omega)=\widehat{\mathbf{M}}(\omega)(\widehat{\mathbf{I}}-\widehat{\mathbf{M}}(\omega))^{-1} \cdot \tilde{\boldsymbol{\Psi}}^{\text {ext }}(\omega)
$$

Response matrix:

$$
\widehat{M}_{p q}(\omega)=-(2 \pi)^{3} \sum_{\mathbf{m}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}}}{\mathbf{m} \cdot \boldsymbol{\Omega}-\omega} \psi_{\mathbf{m}}^{(p)^{*}}(\mathbf{J}) \psi_{\mathbf{m}}^{(q)}(\mathbf{J})
$$

Unstable mode:

$$
\operatorname{det}\left[\hat{\mathbf{I}}-\widehat{\mathbf{M}}\left(\omega_{m}\right)\right]=0, \quad \operatorname{Im}\left(\omega_{m}\right)>0
$$

$$
\boldsymbol{\psi}^{r e s p}(t) \propto e^{\mathrm{i} \omega_{m} t}
$$

$\widehat{M}(\omega)$ computation

$$
\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})
$$

$\widehat{M}(\omega)$ computation

$\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$

Sum over resonance vectors

$\widehat{M}(\omega)$ computation

$\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$

Sum over resonance vectors
Integral over action space

$\widehat{M}(\omega)$ computation

$\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$

Sum over resonance vectors
Integral over action space
Gradient of the distribution function

$\widehat{M}(\omega)$ computation

$\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$

Sum over resonance vectors
Integral over action space
Gradient of the distribution function
Resonant denominator at the intrinsic frequencies

$\widehat{M}(\omega)$ computation

$\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$

Sum over resonance vectors
Integral over action space
Gradient of the distribution function
Resonant denominator at the intrinsic frequencies
Potential basis functions

$\widehat{M}(\omega)$ computation

Assumptions and Technical challenges

$$
\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})
$$

Computing the frequencies:
Requires to sample the integral in peri- and apo-centre space.

Computing the integral:
Computation on a static grid. 4 parameters allow some flexibility in the choice of the grid in peri- and apo-centres.
The regions where the denominator resonates have to be particularly well sampled.

$\widehat{M}(\omega)$ computation

Assumptions and Technical challenges

$$
\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})
$$

Computing the Bi-Orthogonal Basis:
Basis functions defined through nested integrals.
Runge-Kutta scheme implemented, with a significant gain in performance as compared to previous response matrix codes.

$\widehat{M}(\omega)$ computation

Assumptions and Technical challenges

$$
\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})
$$

Truncation of the sum:

Infinite sum transformed into finite by assuming that only the first several resonance vectors contribute. Motivated by the literature (Lynden-Bell, Polyachenko): significant resonances should have $\left|n_{1}\right|,\left|n_{2}\right|,\left|n_{3}\right| \leq 2$
1 additional parameter

$\widehat{M}(\omega)$ computation

Assumptions and Technical challenges

$$
\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})
$$

Adding rotation to the theory:

No rotation: $f\left(J_{r}, L\right)$
With rotation: $\quad f\left(J_{r}, L, L_{z}\right)$

System:

Spherical cluster ($\psi_{0}(r)$, Plummer potential), steady state with tunable anisotropy $\left(f_{q}(E, L)\right)$ and rotation $\left(f_{q, \alpha}\left(E, L, L_{z}\right)\right)$:

Lynden-Bell 1962

$$
f_{q, \alpha}\left(E, L, L_{z}\right)=f_{q}(E, L)\left(1+\alpha \operatorname{Sign}\left(L_{z} / L\right)\right)
$$

α rotation parameter
$\alpha=0$: no rotation
$\alpha=1$: maximal rotation

Response matrix for rotating systems

$$
\widehat{M}_{p q}(\omega)=\widehat{M}_{p q}^{0}(\omega)+\alpha \widehat{M}_{p q}^{1}(\omega)
$$

α rotation parameter
$\alpha=0$: no rotation
$\alpha=1$: maximal rotation
p and q described by their harmonic numbers $m^{p}, \ell^{p}, n^{p}, m^{q}, \ell^{q}, n^{q}$
Good properties of M^{0} : independent of m^{p}, m^{q}; proportional to $\delta_{\ell^{p}}^{\ell^{q}}$ M^{1} does not have these properties anymore: the matrix is much larger

$\widehat{M}(\omega)$ computation

Assumptions and Technical challenges

$$
\widehat{M}_{p q}(\omega)=(2 \pi)^{3} \sum_{\mathbf{n}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega-\mathbf{n} \cdot \boldsymbol{\Omega}}\left[\psi_{\mathbf{n}}^{(p)}(\mathbf{J})\right]^{*} \psi_{\mathbf{n}}^{(q)}(\mathbf{J})
$$

Truncation of the matrix:

Infinite matrix truncated in $m^{p}, \ell^{p}, n^{p}, m^{q}, \ell^{q}, n^{q}$.

- $m^{p}=m^{q}=2$: searching for bars and two-armed spirals
- Cut-off in ℓ^{p}, ℓ^{q} : assuming the first resonances only matter + the background and the instabilities are well-described by low-order ℓ terms.
- Cut-off in n^{p}, n^{q} : assuming the first radial basis functions are sufficient to describe both the background and the instabilities.
2 more parameters +1 parameter controlling the characteristic radius of the basis.

Summary:

8 parameters controlling 1 computation of $\widehat{M}^{0}(\omega)$ and $\widehat{M}^{1}(\omega)$ Convergence study needed on each of these parameters.

Identifying unstable modes in rotating systems

Nyquist diagrams: $\omega_{0} \rightarrow \operatorname{det}\left[\boldsymbol{I}-\widehat{\boldsymbol{M}}\left(\omega_{0}+i \eta\right)\right]$

Influence of rotation

Results: instability mapped in anisotropy-rotation space

Linear Response Theory

$$
\mathrm{q}: \text { anisotropy; } \alpha: \text { rotation }
$$

Results: instability mapped in anisotropy-rotation space

$$
\mathrm{q}: \text { anisotropy; } \alpha \text { : rotation }
$$

Instability in tangentially-

biased systems

Radial Orbit Instability:
 2 regimes

ROI in 2 sketches

ROI in 2 sketches

ROI in 2 sketches

Competition between attracting torque (destabilizing) and kinetic pressure in tumbling rates (stabilizing)

ROI in rotating spheres: qualitative argument

When q or $\boldsymbol{\alpha}$ increases, the dispersion in tumbling rates decreases

Conclusion - Prospects

- Stability analysis of Plummer spheres with various rotation \& anisotropy. Checked against N -body.
\rightarrow Generalized the radial orbit instability to rotating systems.
\rightarrow Discovery of a new regime of instability in tangentially anisotropic fast rotators.
- Next step: Explain the mechanisms behind the instabilities_(resonances?)

Switching off some resonance vectors gives good results in the case of the ROI.

Thanks for your attention

Backup

The matrix formalism

Projection of the potential and density onto a bi-orthogonal basis solving the Poisson equation

$$
\begin{aligned}
\Delta \psi=4 \pi G \rho \rightarrow \text { Projection } \begin{aligned}
\delta \psi(\boldsymbol{x}) & =\sum a_{p} \psi^{(p)}(\boldsymbol{x}) \\
\delta \rho(\boldsymbol{x}) & =\sum a_{p} \rho^{(p)}(\boldsymbol{x})
\end{aligned} \\
\text { Kalnajs 1976 } \quad \text { Basis } \int \psi^{(p)}=4 \pi G \rho^{(p)}
\end{aligned}
$$

$$
\begin{array}{ccc}
\text { Self-induced perturbation } & \text { External perturbation } & \text { Total perturbation } \\
\psi^{s 1}(\mathbf{x}, t)=\sum_{p} a_{p}(t) \psi^{(p)}(\mathbf{x}) & \psi^{e}(\mathbf{x}, t)=\sum_{p} b_{p}(t) \psi^{(p)}(\mathbf{x}) & \psi^{1}(\mathbf{x}, t)=\sum_{p} c_{p}(t) \psi^{(p)}(\mathbf{x})
\end{array} c_{p}=c
$$

The response matrix

Laplace transform $\quad \tilde{a}_{p}(\omega)=-(2 \pi)^{3} \sum_{\mathbf{m}} \int \mathrm{d} \mathbf{J} \tilde{f}_{\mathbf{m}}^{1}(\mathbf{J}, \omega) \psi_{\mathbf{m}}^{(p)^{*}}(\mathbf{J})=-(2 \pi)^{3} \sum_{\mathbf{m}} \int \mathrm{d} \mathbf{J} \mathbf{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{\tilde{\psi}_{\mathbf{m}}^{1}(\mathbf{J}, \omega)}{\mathbf{m} \cdot \boldsymbol{\Omega}-\omega} \psi_{\mathbf{m}}^{(p)^{*}}(\mathbf{J})$

$$
\begin{gathered}
\tilde{X}(\omega)=\int_{-\infty}^{\infty} \mathrm{d} t X(t) e^{\mathrm{i} \omega t} \quad \text { Linearized Vlasov: } \tilde{f}_{\mathbf{m}}^{1}(\mathbf{J}, \omega)=\mathrm{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{\tilde{\psi}_{\mathbf{m}}^{1}(\mathbf{J}, \omega)}{\mathrm{m} \cdot \boldsymbol{\Omega}-\omega} \\
\tilde{a}_{p}(\omega)=-(2 \pi)^{3} \sum_{q} \tilde{c}_{q}(\omega) \sum_{\mathbf{m}} \int \mathrm{d} \mathbf{J} \mathbf{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{1}{\mathbf{m} \cdot \boldsymbol{\Omega}-\omega} \psi_{\mathbf{m}}^{(p) *}(\mathbf{J}) \psi_{\mathbf{m}}^{(q)}(\mathbf{J}) \\
\tilde{\psi}_{\mathbf{m}}^{1}(\mathbf{J}, \omega)=\sum_{q} \tilde{c}_{q}(\omega) \psi_{\mathrm{m}}^{(q)}(\mathbf{J})
\end{gathered}
$$

Matrix equation $\quad \tilde{\mathbf{a}}(\omega)=\widehat{\mathbf{M}}(\omega) \cdot \tilde{\mathbf{c}}(\omega) \quad$ or $\tilde{\mathbf{a}}(\omega)=\widehat{\mathbf{M}}(\omega)(\widehat{\mathbf{I}}-\widehat{\mathbf{M}}(\omega))^{-1} \cdot \tilde{\mathbf{b}}(\omega)$

Response matrix $\quad \widehat{M}_{p q}(\omega)=-(2 \pi)^{3} \sum_{\mathbf{m}} \int \mathrm{d} \mathbf{J} \frac{\mathbf{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}}}{\mathbf{m} \cdot \boldsymbol{\Omega}-\omega} \psi_{\mathbf{m}}^{(p)^{*}}(\mathbf{J}) \psi_{\mathbf{m}}^{(q)}(\mathbf{J})$

Condition for an unstable mode:

$$
\operatorname{det}\left[\widehat{\mathbf{I}}-\widehat{\mathbf{M}}\left(\omega_{m}\right)\right]=0, \quad \operatorname{Im}\left(\omega_{m}\right)>0
$$

$$
\mathbf{a}(t) \propto e^{\mathrm{i} \omega_{m} t}
$$

Linearizing the Vlasov equation

System:

Spherical cluster $\left(\psi_{0}(r)\right.$, Plummer potential), steady state with tunable anisotropy $\left(f_{q}(E, L)\right)$
and rotation $\left(f_{q, \alpha}\left(E, L, L_{z}\right)\right)$:

$$
f_{q, \alpha}\left(E, L, L_{z}\right)=f_{q}(E, L)\left(1+\alpha \operatorname{Sign}\left(L_{z} / L\right)\right)
$$

Angle-action variables:

The actions \mathbf{J} are constants of the motion, so the angles do not appear in the Hamiltonian. $\dot{\mathbf{q}}=\frac{\partial H}{\partial \mathbf{p}}$
Spherically-symmetric system $\longrightarrow 3$ actions available
Spherically-symmetric system $\longrightarrow 3$ actions available Binney \& Tremaine 2008
Dejonghe 1987
Lynden-Bell 1962

Then the corresponding angles are straightforward (linear in time).
Usual choice:

$$
J_{1}=J_{r}=\frac{1}{\pi} \int_{r_{p}}^{r_{a}} v_{r} \mathrm{~d} r \quad J_{2}=J_{\phi}=L=r v_{T} \quad J_{3}=J_{z}=\mathbf{L} \cdot \mathbf{e}_{\mathbf{z}}
$$

Vlasov: $\frac{\partial f}{\partial t}+\frac{\partial f}{\partial \boldsymbol{\theta}} \cdot \boldsymbol{\Omega}(\mathbf{J})=0 \quad$ Linearized Vlasov: $\frac{\partial f^{1}}{\partial t}+\frac{\partial f^{1}}{\partial \boldsymbol{\theta}} \cdot \boldsymbol{\Omega}(\mathbf{J})-\frac{\partial H}{\partial \mathbf{J}} \quad \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{\partial \psi^{1}}{\partial \boldsymbol{\theta}}=0$
Fourier transform in angles: 2π-periodicity implies all functions can be written $X(\boldsymbol{\theta}, \mathbf{J}, t)=\sum_{\mathbf{m}} X_{\mathbf{m}}(\mathbf{J}, t) e^{\mathrm{im} \cdot \boldsymbol{\theta}}$
Laplace transform in time: $\tilde{X}(\omega)=\int_{-\infty}^{\infty} \mathrm{d} t X(t) e^{\mathrm{i} \omega t}$

$$
\tilde{f}_{\mathbf{m}}^{1}(\mathbf{J}, \omega)=\mathbf{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{\tilde{\psi}_{\mathbf{m}}^{1}(\mathbf{J}, \omega)}{\mathbf{m} \cdot \boldsymbol{\Omega}-\omega}
$$

$$
\begin{gathered}
\text { Complex frequency } \omega=\omega_{0}+i \eta \\
\omega_{0}=\text { precession rate } \\
\eta=\text { growth rate } \\
\eta<0 \rightarrow \text { stable; } \eta>0 \rightarrow \text { unstable }
\end{gathered}
$$

