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Spheriodal stellar systems are rotating
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Globular Clusters

8 Sollima et al.

Table 3. Detection of rotation in GCs from literature results: checkmarks, crosses and tildes mark positive, negative and 2σ detections,
respectively. Checkmarks within parenthesis mark those GCs with uncertain detections found in this work. References: Lane et al. (2010,
L10), Bellazzini et al. (2012, B12), Fabricius et al. (2014, F14), Lardo et al. (2015, L15), Kimmig et al. (2015, K15), Kamann et al. (2018,
K18), Ferraro et al. (2018, F18), Gaia Collaboration et al. (2018b, G18), Bianchini et al. (2018, B18), Vasiliev (2018, K18). Only GCs
withat least a 2σ detection have been listed.

Name L10 B12 F14 L15 K15 K18 F18 G18 B18 V18 this work

NGC 104 ! ! ! ! ! ! ! !

NGC 288 X X X ! X X X
NGC 362 X ∼ ! X X X
NGC 1261 ∼ X
NGC 1851 ! ! ! ∼ X X
NGC 1904 X ! X (!)
NGC 2808 ! ! X ! X X !

NGC 3201 ! ! ! ∼ X ∼

NGC 4372 X ! ∼ ∼

NGC 4590 X ! X X X X
NGC 5024 X X ! X ∼

NGC 5139 ! ! ! ! ! !

NGC 5272 ! X ! ! ! ∼ (!)
NGC 5286 ∼ X X
NGC 5466 ! X
NGC 5824 (!)
NGC 5904 ! ! ! ! ! ! ! !

NGC 5927 ! ∼ X X X
NGC 5986 X X ∼

NGC 6093 ! ! ∼ X (!)
NGC 6121 ! ! ∼ ∼ ∼ X X
NGC 6171 ∼ ! X X X
NGC 6205 ! ∼ X !

NGC 6218 X X ! X X X (!)
NGC 6254 X ! ! ∼ ∼ X X
NGC 6266 ! ∼ ! !

NGC 6273 ! ! !

NGC 6293 ! X
NGC 6341 ! ∼ X X (!)
NGC 6388 ! ! X X X
NGC 6397 X ∼ X !

NGC 6402 X ∼ X ∼

NGC 6441 ! X ∼ X X
NGC 6496 ∼ X
NGC 6522 ∼ X X
NGC 6539 ∼ X ∼

NGC 6541 ! ∼ X !

NGC 6553 X !

NGC 6626 ! X X !

NGC 6656 ! ! X ! ! ! ! !

NGC 6681 ∼ X X
NGC 6715 ! X X X
NGC 6723 ∼ X X
NGC 6752 X X X X ∼ ! ! ∼ (!)
NGC 6779 ! ∼ X X
NGC 6809 ∼ ∼ ∼ ! ! ∼ (!)
NGC 6838 ∼ X X X ∼

NGC 6934 ! X
NGC 7078 ! ! ! ! ! ! ! !

NGC 7089 ! ! ! ! !

NGC 7099 X X X ∼ X X (!)
Terzan 5 !

”uncertain” in our work (NGC 5272, NGC6093, NGC 6341,
NGC 6752, NGC 6809), three show a 2σ significant rotation
(NGC 4372, NGC 5986, NGC 6341), one is found to be non-
rotating (NGC 6388) and one is not included in our sample
(IC 1276). As for the Bianchini et al. (2018) work, no rota-

tion could be detected by Vasiliev (2018) in the 6 rotating
GCs with inclination angles i > 65◦ (NGC 2808, NGC 6205,
NGC 6397, NGC 6541, NGC 6553, NGC 6626), while Ter 5
is not included in his sample.

Among works based on line-of-sight velocities,
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Figure 1. GRI mosaics of all observed clusters, created from the reduced MUSE data and ordered by increasing NGC number. Note that for NGC 104 (47
Tuc) and NGC 5139 (ω Centauri), two and three pointings, respectively, with larger distances to the cluster centres are not shown. In each mosaic, north is up
and east is left.

4 DATA A NA LY SIS

In large parts, the analysis of the data cubes was done in a similar
way to our pilot study on NGC 6397. Details on the individual steps
of the spectrum extraction and the spectral analysis can be found
in Papers I and II. In the following, we restrict ourselves to a brief
summary of both steps and put emphasis on new aspects that have
been introduced since the publication of these papers.

4.1 Spectrum extraction

The extraction of the individual stellar spectra from the data cubes
was performed with our dedicated software presented in Kamann
et al. (2013). It determines the positions of the sources as well as
the shape of the point spread function (PSF) as a function of wave-
length and uses this information to optimally extract the spectrum
of each resolved star. For this method to work, an input catalogue
of sources is needed that provides astrometry and broad-band mag-
nitudes across the MUSE field of view. Where possible, we used
HST data from the Advanced Camera for Surveys (ACS) of Galactic
globular clusters (Sarajedini et al. 2007; Anderson et al. 2008) as
input. However, some of our clusters (NGC 1904, NGC 6266, NGC
6293, NGC 6522) were not included in the survey. In addition, our
outer pointings in NGC 104 and NGC 5139 are located outside of
the footprint of their ACS observations. In those cases, we obtained
archival HST images and analysed them with the DOLPHOT software
package (Dolphin 2000). An overview of the additional HST data
that were used can be found in Table 2.

The spectra were extracted from the cubes in a multi-step process.
First, the subset of sources from the input catalogue that is resolved
at the lower spatial resolution of the MUSE data is identified. Using
those, in a second step, a common PSF and a coordinate transfor-
mation from the input catalogue are fitted to the MUSE data. The
wavelength dependences of those quantities are modelled as smooth
functions of the wavelength afterwards. Finally, this information is
used to extract all spectra. The number of spectra that could be
extracted in this way varied with the seeing and the densities of
the clusters and was typically between 1000 and 5000 stars per
pointing.

In contrast to most spectroscopic surveys, we do not perform
any pre-selection of the observed stars, but instead aim to obtain a
spectrum of every star in the field of view. Consequently, spectra
are extracted over a wide range of signal-to-noise ratios (S/N),1

including many spectra for which the S/N is too low to perform
any meaningful analysis. In a first cut, we exclude all spectra with
S/N < 5 from any further analyses. This left us with about 813 000
spectra of about 273 000 stars. The cumulative histograms of the
remaining spectra and stars are shown in Fig. 2. Note that the shape
of the histograms, a steep rise at low S/N that gets shallower when
moving to higher S/N, is a direct consequence of the luminosity
function of the cluster stars. The number of stars per magnitude bin
increases when moving to fainter magnitudes.

1 As in Paper I, the S/N we provide is the average value for each extracted
spectrum determined with the method of Stoehr et al. (2008).
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Figure 5. Results of the kinematic analysis for three clusters from our sample, NGC 104 (top), NGC 6441 (middle) and NGC 7089 (bottom). The left-hand
panels show the radial rotation and dispersion profiles, respectively. The dashed and dotted vertical lines indicate the core and half-light radii of each cluster;
all values were taken from Harris (1996). The central panel shows the position angle of the rotation curve and its uncertainty for each radial bin. A blue dashed
line is used to indicate the cluster’s photometric semi-major axis angle as determined in Section 6.1, with the blue shaded area indicating the uncertainty and
the length of the line scaling with cluster ellipticity. The right-hand panels show Voronoi-binned maps of the mean velocity and the velocity dispersion across
the footprint covered by the MUSE data. The dashed circles indicate again the core radii of the clusters. Similar plots for the remaining clusters of our sample
are presented in Appendix A.

in our sample rotate. If we perform a visual classification of our
sample into non-rotating or rotating clusters, we find that about
60 per cent (13/22) of the clusters show obvious rotation, while
the remaining ones appear consistent with no rotation. Further in-
spection of the radial profiles of the rotating clusters reveals a pro-
nounced similarity in that the rotation signal increases with distance
to the cluster centre. It tends to disappear inside the core radius and
steadily increases between the core and the half-light radius. This
behaviour is in general agreement with the evolutionary globular
cluster models of Fiestas et al. (2006) or the equilibrium models of
Lagoute & Longaretti (1996) or Varri & Bertin (2012). It was
also found in detailed studies of individual clusters like NGC 104
or NGC 5139 (e.g. Meylan & Mayor 1986; Merritt, Meylan &

Mayor 1997; van de Ven et al. 2006; Sollima et al. 2009, see dis-
cussion below). Beyond the half-light radii, our data lack the radial
coverage to investigate any further trends. In this respect, it is inter-
esting to note that some of the clusters that we visually classified
as non-rotating (NGC 3201, NGC 6121 and NGC 6254) have large
core radii so that our data coverage is basically restricted to the
areas inside the core radii. Hence, we cannot exclude the possibility
that the clusters rotate at larger radii. This, and the fact that projec-
tion effects may also limit the amount of visible rotation in some
clusters [the inclination of most clusters is not known, but see van
de Ven et al. (2006) for NGC 5139 or Bellini et al. (2017) for NGC
104], leads us to conclude that the fraction of rotating clusters in
our sample is probably significantly higher than 60 per cent.

MNRAS 473, 5591–5616 (2018)
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Elliptical & Spheroidal Galaxies

Emsellem et al. 2007

The SAURON project – IX 403

Figure 1. SAURON stellar velocity fields for our 48 E and S0 galaxies (see Paper III), the global outer photometric axis being horizontal. Colour cuts were
tuned for each individual galaxy as to properly emphasize the observed velocity structures. A representative isophote is overplotted in each thumbnail as
a black solid line, and the centre is marked with a cross. Galaxies are ordered by increasing value of λRe (from left to right-hand side, top to bottom; see
Section 3). Slow rotators are galaxies on the first two rows. NGC numbers and Hubble types are provided in the lower-right and upper-right corners of each
panel, respectively. Tick marks correspond to 10 arcsec.

C⃝ 2007 The Authors. Journal compilation C⃝ 2007 RAS, MNRAS 379, 401–417
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Nuclear Star Clusters

NGC 4244 
(nearby, spiral, edge on)

Seth et al. 2008

et al. 2005). Nonetheless, we are able to make an accurate
measurement of the central dispersion of the cluster, ! ¼ 28 "
2 km s#1. Convolution of the templates with this dispersion sub-
stantially (by a factor of 2) improves the"2 of their fit to the cen-
tral spectrum of the cluster, giving a reduced "2 of 0.9 and 1.1
using the GNIRS and NIFS templates, respectively. The bottom
panel of Figure 2 shows amap after clipping data with S/N < 15
or errors in the dispersion >10 km s#1. The velocity dispersion
drops along themajor axis to values of 10Y20 km s#1 at precisely
the area where rotation is seen most strongly indicating that we
are indeed seeing a relatively cold rotating disk. This dispersion
is close to the limit of what we can reliably recover from our rela-
tively low resolution observations, thus these values may repre-
sent upper limits. It is unclear whether the increased dispersion
we see in the center is a result of unresolved rotation or a gen-
uinely hot component.

The use of the templates fromNIFS and GNIRS give very sim-
ilar results for both the velocities and dispersions. The GNIRS
templates selected for fitting the spectra are primarily at spectral
types close to those (KYMgiants) represented by the three NIFS
spectra. For almost all the spectra, our measured non-Gaussian
h3 and h4 components of the LOSVDwere consistent with zero.
However, due to our low S/N and resolution, we would not ex-

pect to be able to detect any non-Gaussian signatures (Cappellari
& Emsellem 2004).

3.3. Stellar Populations and Connection to Kinematics

From the optical data described in Paper I, the NGC 4244NSC
has two distinct stellar populations—a bluer population domi-
nates in the midplane with a redder population dominating above
and below the plane. This is clearly seen in the HST-based color
map shown in the top panel of Figure 3. We would expect the
NIFS data to resolve these different populations despite the 2 times
lower resolution. If wemake amapof theCO line strength (Fig. 3,
bottom), the bluer areas of the HST image clearly have stronger
CO absorption than the redder areas above themidplane. The CO
line strength is determined by comparing the average depth of
the line at rest wavelengths of 22957" 52 8 to the continuum
measured just to the blue of the CO band head [12CO (2, 0);
Kleinmann & Hall 1986]. We also measured these values for the
GNIRS template stars for comparison. The CO line strength val-
ues for the NSC range from $0.10 above and below the major
axis typical of late G-type giant stars (TeA $ 4800 K), to $0.25
along the major axis, typical of K3YK6 giants (TeA $ 4100 K).
We caution that the CO depth depends on the gravity of the stars
as well as their effective temperature. We note that whileMg, Ca,

Fig. 2.—Top: Color indicates the measured radial velocity for the Voronoi
binned data using templates observedwithNIFS. Gray areas indicate spectra with
S/N < 10 and /or errors >15 km s#1. Rotation of $30 km s#1 is clearly visible
along the major axis. Contours show the K-band image at 15.5, 14.5, 13.5, and
12.5 mag arcsec#2. The black bar indicates 10 pc (0:4700). Bottom: Velocity dis-
persion measurements with S/N > 15 and errors < 10 km s#1. The dispersion
drops away from the center, indicating a relatively cold disk population.

Fig. 3.—Top: 200 ; 200 image of the F606W# F814W color map from theHST
ACS data described in Paper I. The image has been rotated to match the orienta-
tion of the NIFS data. The contours indicate the F814W surface brightness and
were chosen to roughly match the K-band contours in Fig. 2 and in the bottom
panel. The black bar indicates 10 pc (0:4700). Bottom: 200 ; 200 image of CO line
strength, with larger values indicating deeper CO lines. The contours showK-band
contours as in Fig. 2.

SETH ET AL.1000 Vol. 687

10 pc

4042 A. Feldmeier-Krause et al.

Figure 1. Kinematic data (top row) and respective uncertainties (bottom row). The columns denote velocity V, velocity dispersion σ , Gauss–Hermite moments
h3 and h4. White pixels are due to excluded bright stars.

Schödel et al. (2014). We used the extinction and emission cor-
rected 4.5 µm image to measure the light distribution. The image
was smoothed to a scale of 5 arcsec pixel−1, and extends over
∼270 pc × 200 pc. We excluded a central circle with r = 0.6 pc
(∼15.4 arcsec) to avoid contribution from ionized gas emission and
young stars. In addition, we masked out the young Quintuplet star
cluster (Figer, McLean & Morris 1999), and the dark 20-km s−1

cloud M-0.13-0.08 (Garcı́a-Marı́n et al. 2011).
We used the MGE_FIT_SECTORS package (Cappellari 2002) to derive

the surface brightness distribution. The Multi-Gaussian-Expansion
(MGE) model (Emsellem, Monnet & Bacon 1994) has the advan-
tage that it can be deprojected analytically. We measured the pho-
tometry of the two images along the major axis and the minor axis.
We assumed that the cluster’s major axis is aligned along the Galac-
tic plane, as found by Schödel et al. (2014), and constant. The centre
is the position of Sgr A*, which is the radio source associated with
the Galactic Centre supermassive black hole. We fitted a scale fac-
tor to match the photometry of the two images in the region where
they overlap (16–27.8 arcsec). Then we measured the photometry
on each image along 12 angular sectors, and converted the NACO
photometry to the Spitzer flux. Assuming fourfold symmetry, the
measurements of four quadrants are averaged on elliptical annuli
with constant ellipticity. Using the photometric measurements of
the two images, we fitted a set of two-dimensional Gaussian func-
tions, taking the point spread function (PSF) of the NACO image
into account.

A comparison with the surface brightness profile of Fritz et al.
(2016, their fig. 2) showed that our profile is steeper in the central
∼30 arcsec. A possible reason is the small overlap region of the
Spitzer and NACO images, and that the Spitzer flux could be too
high at the centre. Maybe the PAH emission correction of the Spitzer
image was too low. The mid-infrared dust emission is significant
out to almost 1 arcmin. Fritz et al. (2016) used NACO H- and
KS-band images in the central r = 20 arcsec. Out to 1000 arcsec
(∼39 pc) they used Hubble Space Telescope WFC3 data (M127

Table 1. The MGE fit parameters for the 4.5 µm Spitzer/IRAC dust ex-
tinction and PAH emission corrected image in combination with the NACO
H-band mosaic scaled to Spitzer flux. Iscaled is the peak surface brightness
used in the dynamical modelling, σMGE is the standard deviation and qMGE
is the axial ratio of the Gaussian components. Iunscaled is the peak surface
brightness before scaling to Fritz et al. (2016).

Iscaled σMGE qMGE Iunscaled
(104 L⊙,4.5 µm pc−2) (arcsec) (104 L⊙,4.5 µm pc−2)

0.86 1.7 0.30 312
32.4 10.4 0.34 164
89.8 15.0 0.82 257
18.5 52.1 0.95 30.0
17.0 98 0.36 29.3
7.1 154 0.95 7.4
4.8 637 0.36 4.9
3.2 2020 0.30 3.2
1.3 4590 0.81 1.3

and M153 filters) and public VISTA Variables in the Via Lactea
Survey images (H and KS bands; Saito et al. 2012). We lowered the
intensities of the central Gaussians by scaling our averaged profile
to the one-dimensional flux density profile of Fritz et al. (2016).
As a result the amplitudes of the inner Gaussians become smaller,
but the outer Gaussians (σ MGE > 100 arcsec ∼ 4 pc) are nearly
unchanged. We list the components of the MGE in Table 1 and
plot the surface brightness profile in Fig. 2 (upper panel). We also
show the projected axial ratio qproj as a function of radius in the
lower panel of Fig. 2. Out to the central 1 pc, qproj is increasing
from 0.4 to 0.7. Schödel et al. (2014) found a mean axial ratio
of 0.71 ± 0.02 for the nuclear star cluster. This is in agreement
with our maximum value of qproj. However, qproj decreases at larger
radii, as the contribution from the nuclear stellar disc becomes more
important and the light distribution therefore flatter.

MNRAS 466, 4040–4052 (2017)
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DM halos are rotating

Bullock et al. 2001
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Rotation in DM halos
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• Theory:  
Rotation emerging from tidal torques at the time of structure formation. 
Accretion of satellites (assembly). 

• Simulations: Tidal torquing and assembly do not seem to be independent. 

• Observations: Open question. Imprint of the rotating halo on the baryon dynamics?

• Problem: Rotation has an influence on the dynamical evolution of the halo, and its shape. 
Can transform a spherical halo into a triaxial one, e.g through instabilities.

Peebles 1969

Lopez et al. 2019

Vitvitska et al. 2002
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Complex frequency ! = !0 + i⌘
= precession rate!0

= growth rate⌘
unstablestable;⌘ < 0 ! ⌘ > 0 !

Mode?
det[I � cM(!)] = 0

How does a stellar system respond to an exterior perturbation?

⟶ Projection

Basis
Z

dx (p)⇤(x)⇢(q)(x) = ��qp

Galaxies are self-gravitating

• Self-gravitating amplification

Collective e↵ects
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Secular Evolution
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• Matrix method - (Kalnajs (1976))
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Linear response
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Linear Response Theory: the response matrix
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Key points of the method

Response matrix: ̂M pq(ω) = − (2π)3 ∑
m

∫ dJ
m ⋅

∂f0
∂J

m ⋅ Ω − ω
ψ (p)*

m (J)ψ (q)
m (J)

Unstable mode: 

ψ̃resp(ω) = ̂M (ω)( ̂I − ̂M (ω))−1 ⋅ ψ̃ext(ω)

ψresp(t) ∝ eiωmtdet[ ̂I − ̂M (ωm)] = 0, Im(ωm) > 0

f̃1
m(J, ω) = m ⋅

∂f0
∂J

ψ̃1
m(J, ω)

m ⋅ Ω − ω

Angle-action variables: 
Guarantee a simple (proportional) relation between the response and the perturbation

Projection onto Bi-Orthogonal Basis: 
Transforms the differential equations into a vectorial problem
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computation
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computation

Sum over resonance vectors
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computation

Sum over resonance vectors

Integral over action space
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computation

Sum over resonance vectors

Integral over action space

Gradient of the distribution function
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computation

Sum over resonance vectors

Integral over action space

Gradient of the distribution function

Resonant denominator at the intrinsic frequencies
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computation

Sum over resonance vectors

Integral over action space

Gradient of the distribution function

Resonant denominator at the intrinsic frequencies

Potential basis functions
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computation 
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Assumptions and Technical challenges

Computing the frequencies: 
Requires to sample the integral in peri- and apo-centre space.

Computing the integral: 
Computation on a static grid. 4 parameters allow some flexibility in the choice of the 
grid in peri- and apo-centres.  
The regions where the denominator resonates have to be particularly well sampled.
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computation 
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Assumptions and Technical challenges

Computing the Bi-Orthogonal Basis: 
Basis functions defined through nested integrals. 
Runge-Kutta scheme implemented, with a significant gain in performance as compared  
to previous response matrix codes.
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computation 
Assumptions and Technical challenges

Truncation of the sum: 
Infinite sum transformed into finite by assuming that only the first several resonance 
vectors contribute. Motivated by the literature (Lynden-Bell, Polyachenko): significant 
resonances should have  
1 additional parameter

|n1 | , |n2 | , |n3 | ≤ 2
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System: 
Spherical cluster (        , Plummer potential), steady state with tunable 
anisotropy (             ) and rotation (                   ):

ψ0(r)
fq(E, L) fq,α(E, L, Lz)

Dejonghe 1987 Lynden-Bell 1962

fq,α(E, L, Lz) = fq(E, L)(1 + α Sign(Lz /L))
    rotation parameter 
          : no rotation   
          : maximal rotation

α
α = 0
α = 1

computation 
Assumptions and Technical challenges

Adding rotation to the theory: 
No rotation:  
With rotation: 

f(Jr, L)
f(Jr, L, Lz)
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Response matrix for rotating systems
̂M pq(ω) = ̂M 0

pq(ω) + α ̂M 1
pq(ω)

    rotation parameter 
          : no rotation   
          : maximal rotation

α
α = 0
α = 1

Good properties of M0: independent of              ; proportional to  
M1 does not have these properties anymore: the matrix is much larger

p and q described by their harmonic numbers mp, ℓp, np, mq, ℓq, nq

mp, mq δℓq

ℓp

ℓp
=
2

ℓp
=
3

ℓp
=
4

ℓq=2 ℓq=3 ℓq=4
M pq

0

ℓp
=
2

ℓp
=
3

ℓp
=
4

ℓq=2 ℓq=3 ℓq=4
M pq

1
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computation 
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Assumptions and Technical challenges

Truncation of the matrix: 
Infinite matrix truncated in                                    . 
•                      : searching for bars and two-armed spirals 
• Cut-off in           : assuming the first resonances only matter + the background and 

the instabilities are well-described by low-order    terms. 
• Cut-off in           : assuming the first radial basis functions are sufficient to describe 

both the background and the instabilities. 
2 more parameters + 1 parameter controlling the characteristic radius of the basis.

mp, ℓp, np, mq, ℓq, nq

mp = mq = 2

ℓ
ℓp, ℓq

np, nq

Summary: 
8 parameters controlling 1 computation of              and 
Convergence study needed on each of these parameters.

̂M 0(ω) ̂M 1(ω)
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Nyquist diagrams:
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q: anisotropy; 𝛼: rotation

Linear Response Theory N-body simulations

Results: instability mapped in anisotropy-rotation space
η(𝛼,q) = growth rate
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q: anisotropy; 𝛼: rotation

Linear Response Theory N-body simulations

Tangentially anisotropic 
Fast rotation

Radially  
anisotropic 

(ROI)

Results: instability mapped in anisotropy-rotation space
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η

!22

Instability in tangentially- 
biased systems
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η

Fast ROI

Slow ROI

Radial Orbit Instability:  
2 regimes
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ROI in 2 sketches
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ROI in 2 sketches
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ROI in 2 sketches

Competition between attracting torque (destabilizing) and kinetic 
pressure in tumbling rates (stabilizing)
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ROI in rotating spheres: qualitative argument

When q or 𝝰 increases, the dispersion in tumbling rates decreases
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Conclusion - Prospects

• Stability analysis of Plummer spheres with various rotation & anisotropy. Checked 
against N-body. 

       ⟶ Generalized the radial orbit instability to rotating systems. 

       ⟶ Discovery of a new regime of instability in tangentially anisotropic fast rotators. 

• Next step: Explain the mechanisms behind the instabilities (resonances?) 
Switching off some resonance vectors gives good results in the case of the ROI.
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Thanks for your attention
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The matrix formalism

⟶ Projection

Basis
Z

dx (p)⇤(x)⇢(q)(x) = ��qp

� = 4⇡G⇢

Kalnajs 1976

Galaxies are self-gravitating

• Self-gravitating amplification

Collective e↵ects

� 
ext Boltzmann

�F

Z
dv

�⇢
self

Poisson

� 
self

Secular Evolution
===================)

(or linear instability)

• Matrix method - (Kalnajs (1976))

=) Representative basis ( (p)
, ⇢

(p))
to solve Poisson once for all.

8
<

:

� (p)= 4⇡G⇢(p) ,Z
dx (p)⇤(x) ⇢(q)(x) = ��qp .

 (p)

10 / 47
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Projection of the potential and density onto a bi-orthogonal basis solving the Poisson equation

ψ s1(x, t) = ∑
p

ap(t)ψ (p)(x) ψ e(x, t) = ∑
p

bp(t)ψ (p)(x) ψ1(x, t) = ∑
p

cp(t)ψ (p)(x) cp = ap + bp

External perturbationSelf-induced perturbation Total perturbation

ap(t) = − ∫ dx ρs1(x, t) ψ (p)*(x) = − ∑
m

∫ dx ρs1
m (J, t)eim⋅θ ψ (p)*(x) = − ∑

m
∫ dxdv f1

m(J, t)eim⋅θ ψ (p)*(x)

Bi-orthogonal basis X(θ, J, t) = ∑
m

Xm(J, t)eim⋅θ ρ = ∫ dv f

ap(t) = − ∑
m

∫ dJdθ f1
m(J, t)eim⋅θ ψ (p)*(x) = − (2π)3 ∑

m
∫ dJ f1

m(J, t) ψ (p)*
m (J)

Change of canonical variables X(θ, J, t) = ∑
m

Xm(J, t)eim⋅θ
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The response matrix
Laplace transform ãp(ω) = − (2π)3 ∑

m
∫ dJ f̃1

m(J, ω) ψ (p)*
m (J) = − (2π)3 ∑

m
∫ dJ m ⋅

∂f0
∂J

ψ̃1
m(J, ω)

m ⋅ Ω − ω
ψ (p)*

m (J)

ãp(ω) = − (2π)3 ∑
q

c̃q(ω)∑
m

∫ dJ m ⋅
∂f0
∂J

1
m ⋅ Ω − ω

ψ (p)*
m (J)ψ (q)

m (J)

Matrix equation ã(ω) = ̂M (ω) ⋅ c̃(ω)

Response matrix ̂M pq(ω) = − (2π)3 ∑
m

∫ dJ
m ⋅

∂f0
∂J

m ⋅ Ω − ω
ψ (p)*

m (J)ψ (q)
m (J)

Condition for an unstable mode: det[ ̂I − ̂M (ωm)] = 0, Im(ωm) > 0

ã(ω) = ̂M (ω)( ̂I − ̂M (ω))−1 ⋅ b̃(ω)

f̃1
m(J, ω) = m ⋅

∂f0
∂J

ψ̃1
m(J, ω)

m ⋅ Ω − ω
Linearized Vlasov:

ψ̃1
m(J, ω) = ∑

q

c̃q(ω)ψ (q)
m (J)

or

a(t) ∝ eiωmt

X̃(ω) = ∫
∞

−∞
dt X(t) eiωt
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Angle-action variables:  
The actions J are constants of the motion, so the angles do not appear in the Hamiltonian. 
Spherically-symmetric system ⟶ 3 actions available 
Then the corresponding angles are straightforward (linear in time).

Usual choice: J1 = Jr =
1
π ∫

ra

rp

vr dr J2 = Jϕ = L = r vT J3 = Jz = L ⋅ ez

∂f
∂t

+
∂f
∂θ

⋅ Ω(J) = 0Vlasov:
Ω(J) =

∂H
∂J

fq,α(E, L, Lz) = fq(E, L)(1 + α Sign(Lz /L))

System: 
Spherical cluster (        , Plummer potential), steady state with tunable anisotropy (             )  
and rotation (                   ):

ψ0(r) fq(E, L)
fq,α(E, L, Lz)

Dejonghe 1987

Lynden-Bell 1962

Binney & Tremaine 2008

∂f1

∂t
+

∂f1

∂θ
⋅ Ω(J) −

∂f0
∂J

∂ψ1

∂θ
= 0Linearized Vlasov:

Fourier transform in angles: 2𝝅-periodicity implies all functions can be written X(θ, J, t) = ∑
m

Xm(J, t)eim⋅θ

Laplace transform in time: X̃(ω) = ∫
∞

−∞
dt X(t) eiωt

f̃1
m(J, ω) = m ⋅

∂f0
∂J

ψ̃1
m(J, ω)

m ⋅ Ω − ω

Linearizing the Vlasov equation

·q =
∂H
∂p

Complex frequency ! = !0 + i⌘
= precession rate!0

= growth rate⌘
unstablestable;⌘ < 0 ! ⌘ > 0 !


