

Institut d'astrophysique de Paris

Unité mixte de recherche 7095 : CNRS - Sorbonne Université

J.-B. Fouvry, P. G. Breen, A. L. Varri, C. Pichon, D. C. Heggie

News from the Dark - LUPM - 20-22/03/2019

Spheriodal stellar systems are rotating

Nuclear Star Clusters

Simon Rozier

20.05.2019

DM halos are rotating

Bullock et al. 2001

Aubert et al. 2004

Rotation in DM halos

• Theory:

Rotation emerging from tidal torques at the time of structure formation. *Peebles 1969* Accretion of satellites (assembly). *Vitvitska et al. 2002*

- Simulations: Tidal torquing and assembly do not seem to be independent. Lopez et al. 2019
- Observations: Open question. Imprint of the rotating halo on the baryon dynamics?

• Problem: Rotation has an influence on the dynamical evolution of the halo, and its shape. Can transform a spherical halo into a triaxial one, e.g through instabilities.

Linear Response Theory: the response matrix

How does a stellar system respond to an exterior perturbation?

Key points of the method

Angle-action variables:

Guarantee a simple (proportional) relation between the response and the perturbation

$$\tilde{f}_{\mathbf{m}}^{1}(\mathbf{J},\omega) = \mathbf{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{\tilde{\psi}_{\mathbf{m}}^{1}(\mathbf{J},\omega)}{\mathbf{m} \cdot \mathbf{\Omega} - \omega}$$

Projection onto Bi-Orthogonal Basis:

Transforms the differential equations into a vectorial problem

$$\tilde{\boldsymbol{\psi}}^{resp}(\omega) = \widehat{\mathbf{M}}(\omega)(\widehat{\mathbf{I}} - \widehat{\mathbf{M}}(\omega))^{-1} \cdot \tilde{\boldsymbol{\psi}}^{ext}(\omega)$$

Response matrix:

$$\widehat{M}_{pq}(\omega) = -(2\pi)^3 \sum_{\mathbf{m}} \int d\mathbf{J} \frac{\mathbf{m} \cdot \frac{\partial f_0}{\partial \mathbf{J}}}{\mathbf{m} \cdot \mathbf{\Omega} - \omega} \psi_{\mathbf{m}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{m}}^{(q)}(\mathbf{J})$$

Unstable mode:

$$\det[\widehat{\mathbf{I}} - \widehat{\mathbf{M}}(\omega_m)] = 0, \quad \operatorname{Im}(\omega_m) > 0$$

$$\boldsymbol{\psi}^{resp}(t) \propto e^{\mathrm{i}\omega_m t}$$

$$\widehat{M}_{pq}(\omega) \!=\! (2\pi)^3 \!\sum_{\mathbf{n}} \! \int \! \mathrm{d}\mathbf{J} \frac{\mathbf{n} \!\cdot\! \partial f \!/\! \partial \mathbf{J}}{\omega \!-\! \mathbf{n} \!\cdot\! \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \, \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

$$\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

$$\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Integral over action space

$$\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \frac{\partial f}{\partial \mathbf{J}}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Integral over action space

Gradient of the distribution function

$$\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Integral over action space

Gradient of the distribution function

Resonant denominator at the **intrinsic frequencies**

$$\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Integral over action space

Gradient of the distribution function

Resonant denominator at the **intrinsic frequencies**

Potential **basis functions**

$$\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Computing the frequencies:

Requires to sample the integral in peri- and apo-centre space.

Computing the integral:

Computation on a static grid. 4 parameters allow some flexibility in the choice of the grid in peri- and apo-centres. The regions where the denominator resonates have to be particularly well sampled.

$$\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Computing the Bi-Orthogonal Basis:

Basis functions defined through nested integrals.

Runge-Kutta scheme implemented, with a significant gain in performance as compared to previous response matrix codes.

$$\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum_{\mathbf{n}} \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Truncation of the sum:

Infinite sum transformed into finite by assuming that **only the first several resonance** vectors contribute. Motivated by the literature (Lynden-Bell, Polyachenko): significant resonances should have $|n_1|, |n_2|, |n_3| \le 2$

1 additional parameter

$$\widehat{M}_{pq}(\omega) \!=\! (2\pi)^3 \!\sum_{\mathbf{n}} \! \int \! \mathrm{d}\mathbf{J} \frac{\mathbf{n} \cdot \frac{\partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \, \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$$

Adding rotation to the theory:

No rotation: $f(J_r, L)$ With rotation: $f(J_r, L, L_z)$

System:

Spherical cluster ($\psi_0(r)$, Plummer potential), steady state with tunable anisotropy ($f_q(E, L)$) and rotation ($f_{q,\alpha}(E, L, L_z)$):

Dejonghe 1987

Lynden-Bell 1962

$$f_{q,\alpha}(E, L, L_z) = f_q(E, L)(1 + \alpha \operatorname{Sign}(L_z/L))$$

 α rotation parameter $\alpha = 0$: no rotation $\alpha = 1$: maximal rotation

Response matrix for rotating systems

$$\widehat{M}_{pq}(\omega) = \widehat{M}^0_{pq}(\omega) + \alpha \ \widehat{M}^1_{pq}(\omega)$$

 α rotation parameter

- $\alpha = 0$: no rotation
- $\alpha = 1$: maximal rotation

p and q described by their harmonic numbers m^p , ℓ^p , n^p , m^q , ℓ^q , n^q

Good properties of M⁰: independent of m^p, m^q ; proportional to $\delta_{\ell^p}^{\ell^q}$ M¹ does not have these properties anymore: the matrix is much larger

$\widehat{M}(\omega) \text{ computation}$ Assumptions and Technical challenges $\widehat{M}_{pq}(\omega) = (2\pi)^3 \sum \int d\mathbf{J} \frac{\mathbf{n} \cdot \partial f / \partial \mathbf{J}}{\omega - \mathbf{n} \cdot \mathbf{\Omega}} [\psi_{\mathbf{n}}^{(p)}(\mathbf{J})]^* \psi_{\mathbf{n}}^{(q)}(\mathbf{J})$

Truncation of the matrix:

Infinite matrix truncated in m^p , ℓ^p , n^p , m^q , ℓ^q , n^q .

- $m^p = m^q = 2$: searching for bars and two-armed spirals
- Cut-off in ℓ^p , ℓ^q : assuming the first resonances only matter + the background and the instabilities are well-described by low-order ℓ terms.
- Cut-off in *n^p*, *n^q*: assuming the first radial basis functions are sufficient to describe both the background and the instabilities.

2 more parameters + 1 parameter controlling the characteristic radius of the basis.

Summary:

8 parameters controlling 1 computation of $\widehat{M}^{0}(\omega)$ and $\widehat{M}^{1}(\omega)$ Convergence study needed on each of these parameters.

Identifying unstable modes in rotating systems

q: anisotropy; α : rotation

Results: instability mapped in anisotropy-rotation space

q: anisotropy; α : rotation

Instability in tangentiallybiased systems

ROI in 2 sketches

ROI in 2 sketches

ROI in 2 sketches

Competition between attracting torque (destabilizing) and kinetic pressure in tumbling rates (stabilizing)

ROI in rotating spheres: qualitative argument

When q or α increases, the dispersion in tumbling rates decreases

Conclusion - Prospects

- Stability analysis of Plummer spheres with various rotation & anisotropy. Checked against N-body.
 - \rightarrow Generalized the radial orbit instability to rotating systems.
 - \rightarrow Discovery of a new regime of instability in tangentially anisotropic fast rotators.

• Next step: Explain the mechanisms behind the instabilities (resonances?) Switching off some resonance vectors gives good results in the case of the ROI.

Thanks for your attention

Backup

The matrix formalism

Projection of the potential and density onto a bi-orthogonal basis solving the Poisson equation

$$\begin{split} \Delta \psi &= 4\pi G \rho \\ \rightarrow \text{Projection} \end{split} \begin{array}{l} \delta \psi(\boldsymbol{x}) &= \sum a_p \psi^{(p)}(\boldsymbol{x}) \\ \delta \rho(\boldsymbol{x}) &= \sum a_p \rho^{(p)}(\boldsymbol{x}) \\ \Delta \psi^{(p)} &= 4\pi G \rho^{(p)} \\ \text{Kalnajs 1976} \end{array} \begin{array}{l} \text{Basis} \int d\boldsymbol{x} \, \psi^{(p)*}(\boldsymbol{x}) \rho^{(q)}(\boldsymbol{x}) &= -\delta_p^q \end{split}$$
– n=1 **—** n=2 n=3 n=4 Self-induced perturbation External perturbation Total perturbation $\psi^{s1}(\mathbf{x},t) = \sum_{p} a_p(t)\psi^{(p)}(\mathbf{x}) \qquad \psi^e(\mathbf{x},t) = \sum_{p} b_p(t)\psi^{(p)}(\mathbf{x}) \qquad \psi^1(\mathbf{x},t) = \sum_{p} c_p(t)\psi^{(p)}(\mathbf{x}) \qquad c_p = a_p + b_p$ $a_p(t) = -\int \mathrm{d}\mathbf{x} \,\rho^{s1}(\mathbf{x},t) \,\psi^{(p)*}(\mathbf{x}) = -\sum \int \mathrm{d}\mathbf{x} \,\rho^{s1}_{\mathbf{m}}(\mathbf{J},t) e^{\mathrm{i}\mathbf{m}\cdot\boldsymbol{\theta}} \,\psi^{(p)*}(\mathbf{x}) = -\sum \int \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{v} f^1_{\mathbf{m}}(\mathbf{J},t) e^{\mathrm{i}\mathbf{m}\cdot\boldsymbol{\theta}} \,\psi^{(p)*}(\mathbf{x})$ $X(\boldsymbol{\theta}, \mathbf{J}, t) = \sum_{\mathbf{m}} X_{\mathbf{m}}(\mathbf{J}, t) e^{i\mathbf{m}\cdot\boldsymbol{\theta}} \qquad \rho = \int d\mathbf{v} f$ Bi-orthogonal basis $a_p(t) = -\sum_{\mathbf{m}} \int d\mathbf{J} d\boldsymbol{\theta} f_{\mathbf{m}}^1(\mathbf{J}, t) e^{i\mathbf{m}\cdot\boldsymbol{\theta}} \psi^{(p)*}(\mathbf{x}) = -(2\pi)^3 \sum_{\mathbf{m}} \int d\mathbf{J} f_{\mathbf{m}}^1(\mathbf{J}, t) \psi_{\mathbf{m}}^{(p)*}(\mathbf{J})$ **Change of canonical variables** $X(\theta, \mathbf{J}, t) = \sum X_{\mathbf{m}}(\mathbf{J}, t)e^{i\mathbf{m}\cdot\theta}$

The response matrix

Matrix equation
$$\tilde{\mathbf{a}}(\omega) = \widehat{\mathbf{M}}(\omega) \cdot \tilde{\mathbf{c}}(\omega)$$
 or $\tilde{\mathbf{a}}(\omega) = \widehat{\mathbf{M}}(\omega)(\widehat{\mathbf{I}} - \widehat{\mathbf{M}}(\omega))^{-1} \cdot \tilde{\mathbf{b}}(\omega)$

Response matrix

$$\widehat{M}_{pq}(\omega) = -(2\pi)^3 \sum_{\mathbf{m}} \int d\mathbf{J} \frac{\mathbf{m} \cdot \frac{\partial f_0}{\partial \mathbf{J}}}{\mathbf{m} \cdot \mathbf{\Omega} - \omega} \psi_{\mathbf{m}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{m}}^{(q)}(\mathbf{J})$$

Condition for an unstable mode:
$$\det[\widehat{\mathbf{I}} - \widehat{\mathbf{M}}(\omega_m)] = 0$$
, $\operatorname{Im}(\omega_m) > 0$ $\mathbf{a}(t) \propto e^{i\omega_m t}$

Linearizing the Vlasov equation

System:

Spherical cluster ($\psi_0(r)$, Plummer potential), steady state with tunable anisotropy ($f_q(E,L)$) and rotation ($f_{q,\alpha}(E,L,L_z)$): Lynden-Bell 1962 $f_{q,\alpha}(E,L,L_z) = f_q(E,L)(1 + \alpha \operatorname{Sign}(L_z/L))$

Angle-action variables:

The actions J are constants of the motion, so the angles do not appear in the Hamiltonian.

 $\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}}$

Spherically-symmetric system \longrightarrow 3 actions available Binney & Tremaine 2008 Then the corresponding angles are straightforward (linear in time).

Usual choice:
$$J_{1} = J_{r} = \frac{1}{\pi} \int_{r_{p}}^{r_{a}} v_{r} dr \qquad J_{2} = J_{\phi} = L = r v_{T} \qquad J_{3} = J_{z} = \mathbf{L} \cdot \mathbf{e}_{z}$$

Vlasov:
$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial \theta} \cdot \mathbf{\Omega}(\mathbf{J}) = 0 \qquad \mathbf{\Omega}(\mathbf{J}) = \frac{\partial H}{\partial \mathbf{J}} \qquad \text{Linearized Vlasov:} \qquad \frac{\partial f^{1}}{\partial t} + \frac{\partial f^{1}}{\partial \theta} \cdot \mathbf{\Omega}(\mathbf{J}) - \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{\partial \psi^{1}}{\partial \theta} = 0$$

Fourier transform in angles: 2π -periodicity implies all functions can be written $X(\theta, \mathbf{J}, t) = \sum_{\mathbf{m}} X_{\mathbf{m}}(\mathbf{J}, t)e^{i\mathbf{m}\cdot\theta}$ Laplace transform in time: $\tilde{X}(\omega) = \int_{-\infty}^{\infty} dt X(t) e^{i\omega t}$ Complex frequency $\omega = \omega_0 + in$

$$\begin{array}{ll} \mbox{Complex frequency} & \omega = \omega_0 + i\eta \\ & \omega_0 \ = \mbox{precession rate} \\ & \eta \ = \mbox{growth rate} \\ & \eta < 0 \rightarrow \mbox{stable;} \ \eta > 0 \rightarrow \mbox{unstable} \end{array}$$

T

 $\tilde{f}_{\mathbf{m}}^{1}(\mathbf{J},\omega) = \mathbf{m} \cdot \frac{\partial f_{0}}{\partial \mathbf{J}} \frac{\tilde{\psi}_{\mathbf{m}}^{1}(\mathbf{J},\omega)}{\mathbf{m} \cdot \mathbf{\Omega} - \omega}$