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NON-AXISYMMETRIES IN GALAXIES

They are important because: 

▸ They are there (see Gaia DR2) 

▸ Ignore them →  bias dynamical model (e.g. bending waves and 
ρDM, see Banik et al. 2017, Haines et al. 2019) 

▸ They are an opportunity: halo/disc degeneracy → X ∝ (mΣ)-1 

(Julian & Toomre 1966, stronger amplification for larger m at low 
Σ) 

▸ They drive secular evolution of galaxies, e.g. radial migration 
(Sellwood & Binney 2002)



THE MILKY WAY IS NOT AXISYMMETRIC (KINEMATICS)

Gaia collab., Katz et al. (2018)
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THE MILKY WAY IS NOT AXISYMMETRIC (KINEMATICS)
Quillen et al. (2018, GALAH) discovered North-South asymmetry of moving groups

Monari et al. (2018, RAVE and Gaia DR2)

Laporte et al. (2018, simulations)



DYNAMICAL MODELS OF THE MILKY WAY

▸ Orbits of stars and of the dark matter 

▸ Mass distribution of the Galaxy 

▸ Gravitational field of the Galaxy

Collisionless Boltzmann Eq. (CBE)
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AXISYMMETRIC MODELS OF THE MILKY WAY

▸ Angles-actions: (x,v) → (θ,J),  J = const, θ = θ0 + Ωt 

▸ Jeans theorem: J int. of motion → f(J) solution of the CBE 

▸ f(J) contains info about Φ through J and generates self 
consistently Φ

canonical transf.

Fouvry et al. (2016) Binney & Tremaine (2008)
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TREATING NON-AXISYMMETRIES

▸ Far from resonances: solution of linearized perturbed 
CBE in 3D3V (Monari et al. 2016, MNRAS, 457, 2569) 

▸ Assume Φ = Φ0 + Φ1 and look for f1, where for f = f0 + f1  

▸ (x,v) → (θ,J) in Φ0

Linearized CBE approach 

"  Start from: 

 
 
                                             

      , h(t)=exp(iωpt)=exp(-imΩpt) 
 
"  Then perturbed DF is: 

 
 

          Assumption: we are currently in plateau of max amplitude 
 

   (Monari, Famaey & Siebert 2016) 
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TREATING NON-AXISYMMETRIES

▸ Far from resonances: solution of linearized perturbed 
CBE in 3D3V (Monari et al. 2016, MNRAS, 457, 2569)

First order moments for log spirals 

Δ<vz> ~ 1 km/s 

Epicyclic approximation for AA variables 

Radial velocity gradient Breathing modes
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▸ Far from resonances: solution of linearized perturbed 
CBE in 3D3V (Monari et al. 2016, MNRAS, 457, 2569) 
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TREATING NON-AXISYMMETRIES

▸ Near resonaces: fast and slow AA (Monari, Famaey, 
Fouvry, Binney, MNRAS, 471, 4314)  

▸ θ = (θR,θφ), J = (JR,Jφ),   dθR/dt = ωR,   dθφ/dt = ωφ 

▸ (θR,θφ,JR,Jφ) → (θf,θs,Jf,Js)

A&A proofs: manuscript no. output

less Boltzmann equation yields a divergent solution (problem of
small divisors). This is indeed a fundamental di↵erence between
a model in which the Sun is located outside of the bar’s OLR
and one where it is outside of the bar’s corotation (CR) as in
P17. Indeed, while the Hercules moving group is located out-
side of the trapping region in the former case, and can be treated
through linearisation of the Boltzmann equation (Monari et al.
2016, 2017b,c), it is precisely located in the resonant trapping
region for a slow bar like that of P17. However, with the M17
method, the deformation of velocity space induced by Dehnen’s
bar potential with a slow pattern speed was found to be rather mi-
nor. Here, by using the actual bar potential of P17 instead, and by
computing the distribution function in the CR and OLR regions,
we confirm that the Hercules moving group can indeed be repro-
duced, and that the OLR also induces a prominent ridge in radial
actions at high angular momentum, corresponding to the arch
on top of the velocity ellipsoid observed in local velocity space
with Gaia. Additionally, the 4:1 resonance generates a third ridge
close to the center. At least three of the most prominent features
in local action space can thus in principle be naturally repro-
duced solely by a slow bar model with ⌦b = 39 km s�1 kpc�1.

In Sect. 2, we present the Galactic potential of P17 and our
extraction of its Fourier modes. We then summarize in Sect. 3 the
M17 method to treat the behaviour of the DF at resonances, and
we apply in Sect. 4 this method to the CR and OLR of the m = 2
mode, as well as to the 4:1 outer resonance of the m = 4 mode
of the P17 potential. We then validate our analytical treatment
with numerical orbit integrations in Sect. 5, and we conclude in
Sect. 6.

2. The bar potential

We make use of the 2D Galaxy and bar potential � correspond-
ing to the fit obtained by P17 in a range of radii between R = 0
and R = 12 kpc. In this potential model, the Sun is located at
R = 8.2 kpc and inclined of 28� with respect to the line con-
necting the Sun and the centre of the Galaxy. We measure the
azimuth � from the long axis of the bar, so that the Sun is at
� = �28� in the direction opposite to the rotation of the Galaxy
(and of the bar). The bar rotates at ⌦b = 39 km s�1 kpc�1, and
the CR is located at R = 5.9 kpc.

The potential �(R, �) is defined on a grid, and the potential
at any point in the Galaxy is obtained by spline interpolation. We
also extract the Fourier components of the potential and in par-
ticular we use the m = 0 mode as the ‘axisymmetric background’
potential, and the m = 2 and m = 4 modes in Section 3. We refer
hereafter to the amplitude of the m-th mode of the potential as
�m. In this way the background potential becomes �0(R).

Using the background potential �0, we can define the Galac-
tic circular frequency ⌦(R) and epicyclic frequency (R) in the
usual way (see e.g. Binney & Tremaine 2008), and the circular
velocity curve vc(R) = R⌦(R).

For R > 12 kpc, we assume a continuation of the form

�(R, �) = �0(R�) + vc(R�)2 ln(R/R�), R � R�, (1)

i.e. a continuation corresponding to a flat circular velocity curve,
and setting�m>0 = 0 in these regions. However, we do not set the
boundary R� precisely at 12 kpc, but slightly more inside, i.e.
R� = 9.41 kpc, because in this way we find that the transition
is smoother, and at this radius the main m > 0 components have
already negligible amplitude.

3. The distribution function in resonant regions:
action-angle formalism

Let (JR, J�) be the radial and azimuthal actions and (✓R, ✓�) the
canonically conjugated radial and azimuthal angles, defined in
the background axisymmetric potential �0. A star’s actions and
angles (from now on AA) are obtained as combinations of the
star’s positions and velocities, and they are particularly conve-
nient phase-space coordinates for several reasons, listed in Bin-
ney & Tremaine (2008). In particular, the equilbrium axisym-
metric background DF can be written purely as a function of the
actions from Jeans’ theorem, and they are the most convenient
coordinates for perturbation theory. In simple words, the actions
identify a star’s orbit in phase-space, whilst the angles denote
the phase of the star on that particular orbit. The larger the radial
action JR is, the more energetic its radial excursions are, and the
more eccentric the orbit is. The azimuthal action J� represents
the vertical component of the angular momentum Lz. Here, we
approximate the true values of the AA using the epicyclic ap-
proximation (Binney & Tremaine 2008, M17). In further work,
we will extend the present modelling to more realistic AA vari-
ables obtained through a combination of the Torus Machinery
(e.g. Binney & McMillan 2016) to go from AA variables to po-
sitions and velocities, and of the ‘Stäckel fudge’ (e.g. Binney
2012; Sanders & Binney 2016) for the reverse transformation.
For this reason, the results obtained in this letter are still not fully
quantitative, and we will confirm them in Sect. 5 with backward
orbit integrations not making use of the AA variables in comput-
ing the response of the DF to the bar perturbation.

Using the AA and the Galactic frequencies ⌦ and , we
can define an ‘unperturbed’ DF for the Galactic disc, i.e. a DF
that would not change in time, because of the Jeans theorem, if
there was no bar perturbation, which we denote f0(JR, J�). As
in M17, we choose the quasi-isothermal DF defined by (Binney
& McMillan 2011), with a scale length of 2 kpc, a velocity dis-
persion scale-length of 10 kpc, and a local velocity dispersion
�R(R0) = 45 km s�1 (slightly hotter than in M17).

The response of the unperturbed DF to the bar potential is
strongest at the resonances, that happen at the locations of phase
space where

l!R(JR, J�) + m
h
!�(JR, J�) �⌦b

i
= 0. (2)

where !R = ✓̇R and !� = ✓̇� are the orbital frequencies, and
simply become, in the epicyclic approximation, !R = (Rg) and
!� = ⌦(Rg) + [(Rg)/J�]JR, where Rg(J�) is the guiding ra-
dius (Dehnen 1999a). For simplicity we only consider the un-
perturbed part of the potential, �0(R), and its m = 2 and m = 4
modes, which are the dominant ones in the bar potential.

In Eq. (2), we will consider the (l,m) = (0, 2) resonance,
namely the CR, and the (l,m) = (1, 2), namely the OLR. We
shall also treat the (l,m) = (1, 4) resonance of the m = 4 Fourier
mode of the potential.

To study the response of f0 near a resonance, we have to go
through a first canonical transformation of coordinates, from the
old AA (JR, J�, ✓R, ✓�) to new ‘fast’ and ‘slow’ AA (Jf , Js, ✓f , ✓s).
The canonical transformation is (Weinberg 1994, M17):

✓s = l✓R + m
⇣
✓� �⌦bt

⌘
, J� = mJs,

✓f = ✓R, JR = lJs + Jf ,
(3)

where (l,m) = [(0, 2), (1, 2), (1, 4)] for the CR, OLR, and 4:1
resonance respectively. The angle ✓s is called the ‘slow angle’
because it evolves slowly near a resonance, as is evident from
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TREATING NON-AXISYMMETRIES

▸ Near resonaces: fast and slow AA (Monari, Famaey, 
Fouvry, Binney, MNRAS, 471, 4314, see also Binney 2018)  

▸ θ = (θR,θφ), J = (JR,Jφ),   dθR/dt = ωR,   dθφ/dt = ωφ 

▸ (θR,θφ,JR,Jφ) → (θf,θs,Jf,Js)

Arnold’s averaging principle



TREATING NON-AXISYMMETRIES

▸ Near resonances: treatment with the perturbation theory / 
'pendulum' dynamics in action/angle (Monari, Famaey, 
Fouvry, Binney, MNRAS, 471, 4314)
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"  Take simple quadrupole bar potential:  

 θs



TREATING NON-AXISYMMETRIES

▸ Near resonaces: fast and slow AA (Monari, Famaey, 
Fouvry, Binney, MNRAS, 471, 4314)  

▸ θs(θp,Jp),  Js(θp,Jp) 

▸ f0(Jf,Js) 

▸ f =⟨f0(Jf,Js(θp,Jp))⟩ in the resonant trapping region 

▸ f =f0(Jf,⟨Js(θp,Jp)⟩) outside resonant region



THE MILKY WAY IS NOT AXISYMMETRIC (BAR)
Anders et al. 2019, StarHorse distances



THE MILKY WAY IS NOT AXISYMMETRIC (BAR)

Wegg et al. (2015) 

UKIDS RGC, 2MASS, VVV, GLIMPSE



WHERE IS THE MW BAR COROTATION

▸ Millions of RC stars from surveys VVV + 2MASS + UKIDDS + GLIMPSE 

▸ Long flat extension of the bar (hz < 50 pc) out to > 5 kpc from the 
centre (l > 30°) 

▸ Fit to BRAVA kinematics (cental 10° in l) + ARGOS (28000 stars, -30° < 
l < 30° and -10° < b < -5°) 

▸ Ωb = 39 kms-1kpc-1 

▸ Corotation at 6 kpc and OLR beyond 11 kpc. 

Pattern speed confirmed by inner Galaxy PMs based on VVV & Gaia DR2 
(Clarke et al. 2019, Sanders et al. 2019)



PORTAIL ET AL. (2017) GALACTIC MODEL

▸ Fit internal kinematics MW 

▸ 'Slow' bar rotating at 39 km/s/kpc 

▸ Corotation ~ 6 kpc 

▸ Force different than a quadrupole bar 

▸ Complex bar, formed by several Fourier modes: we use 
m=2 and m=4



PORTAIL ET AL. (2017) GALACTIC MODEL



A DARK MATTER CORE IN THE MW

▸ Bulge mass (2.2 kpc, 1.4 kpc, 1.2 kpc): 1.85 x 1010 M⊙ 

1. Stellar mass: 1.32 x 1010 M⊙ 

2. Additional nuclear disc: 2 x 109 M⊙ 

3. Dark matter mass: 3.2 x 109 M⊙falloff to keep the RC constant between 

 Portail et al. 2017

Sharp falloff (keep the 
RC constant between 6 
kpc and 8 kpc) → 
cored profile at centre 
(see also Cole & Binney 
2017).



THE MILKY WAY IS NOT AXISYMMETRIC (KINEMATICS)

Gaia collab., Katz et al. (2018) Trick et al. (2019)



GAIA DR2

▸ Velocity and action space ridges due to: 

1. Bar, 

2. Spiral arms, including past transient ones (Sellwood et al. 2019, Hunt et al. 2019), 

3. Ongoing phase-mixing (Antoja et al. 2018), 

4. … 

‣Q: what does the bar alone do to local stellar kinematics? 

‣A: a lot.



arXiv:1812.04151



PORTAIL ET AL. (2017) GALACTIC MODEL

Study the m=2, 3, 4, 6 modes 

in Monari et al. (2019)



PORTAIL ET AL. (2017) GALACTIC MODEL (FOURIER MODES)

0 2 4 6 8 10

0

1000

2000

3000

4000

R(kpc)

A(
km

2 s
-2
)



THE RESONANT ZONES IN LOCAL VELOCITY SPACE
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THE RESONANT ZONES IN ACTION SPACE

Binney (2018)



DF (ANALYTICAL)
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DF (ANALYTICAL)
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DF (BACKWARD INTEGRATIONS)
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CONCLUSION
▸ 2D analytical formalism available for bar and spirals. 

▸ Slow bar with CR at 6 kpc adjusted to fit the bulge kinematics qualitatively reproduces 
alone a surprisingly large amount of features in local action-space and velocity-space. 

Next steps: 

▸ Use better actions (AGAMA, Vasiliev 2019). 

▸ Add spiral arms and vertical perturbations.

Laporte et al. 2019


