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Symmetries during physicist's study

" w

Symmetries in physics

| Symmetry is a leitmotiv

@ Computation of electric/magnetic field using Gauss/Ampere
theorem
— needs symmetries

@ In mechanics choosing a preferred frame (as the rest frame)
— needs symmetries

© Classification of Mendeleev periodical table
— needs symmetries

Q etc

What is a symmetry?
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Symmetries at IPHC

Symmetries at IPHC
@ Symmetries in subatomic physics
Symmetries of spacetime

— mass and spin of particles
© Symmetries in nuclear physics
Symmetry of space
— shell model
Symmetry proton-neutron
— isospin
© Symmetries in particles physics
The Standard Model
— classifies particles
— dictates their interactions
Concept of symmetry breaking
— gives a mass to particles
Concept of anomalies

— restrict the quantum numbers of particles

O
-
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Some strange points

Complex or real

© In standard Quantum Mechanics lectures (L3)

Angular momentum: (Ly, Loy L3) operators of rotations
To introduce the spin, i.e., the states |¢, m) we define

Ly=Li+ il

Since the angles of rotation are real: L = iaaLa,ozi € R.

@ When studying the spin of the electron: Pauli matrices

) 0% 1 (0 —i (1 o0
01 = 1 o) 2= i o) 93= 0 -1

— Pauli spinor ¢ = (:ﬁ;)

— The Pauli matrices are complex = ¥!,4? € C
— A Pauli spinor has 4 = 2 x 2 degrees of freedom
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Confusion between complex/real numbers

Complex is more simple

© On the complex number life is more easy

@ X2+ 1 =0 two solutions on C no solution on R
@ The matrix

cosf —sinf C ei? 0
R = . ove*r> A= —io
sin 0 cos ) ) Diagonalisable 0 €

@ Sometimes a back and forth between R and C is possible - - -

. lexificati .
Real object ey Complex object

Properties over R) < fm  (Stdy over C

© Back and forth between R and C not always possible
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Confusion between complex/real numbers

Complexification/real form
© One example of back and forth

cos 6 sin0 complexification
- _—
(sin 0 cos 0> z=x+iy
real form z =
Actson (2] €eCapC
x=1/2(z + 2) z
y=—i/2(z—2)
E.g. electroma-
gnetic waves
A =0 :
Al E.g two polarisa-

AH = tion of the light

A2
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‘We analyze certain subgroups of real and complex forms of the Lie group Eg, and
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Mathematical structure associated to symmetries

R
® symmetry ig‘ut{gnsformation which leaves a system invariant

Set of Symmet

Ty T
S1 S S1 S S
0
Tl le -
S3
1. the principle of symmetry is extremely powerful in physics
implies the fundamental laws
2. In Quantum mechanics the principle of symmetry takes a dimension
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Symmetries in Quantum Mechanics

%,

e 2

=

Symmetries in Hilbert space

e States ‘1/1> lives in Hilbert space

e A transformation G : |[W) — |Wg) = G|W) is a symmetry
if it preserves the transition amplitude
(Wg|®g) = (V|GTG|Phi) = (V|d).
e If G is unitary
GGl =1d .

G preserves the transition amplitude

12/43 A walk throught symmetries, Re a new regard Michel Rausch de Traubenberg



Examples with su(3)

General principles

Some preliminaries
The Wigner Theorem

Theorem (Wigner, 1959)
Let a quantum system be invariant under a symmetry group G. To any element
g € G one can associate an operator U(g) acting on the state |\IJ> eH

W) — [V = U(g)V) = U(g)|V) ,

which is either unitary and linear
U()V1|U(g)W2) = (W1|V2)

U(g) [A1|\|’1> + )\2|‘|’2>)] = MU(g)|V1) + AalU(g)|V2) ,
" or anti-unitary and anti-linear
UV |U(g)W2) = (W1|w2)” ,
U(g) N[ W1) + ro|W2))| = AjU(g)|W1) + AsUU(g) | W2) -

7

L]

=
2

,
s
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Continuous and discrete symmetries

There a%,é.‘i‘:wo types of symmetries

o Discrete symmetries
 Example (The parity transformation in R?)
— X,

Id: x
P:X — —X.

— finite group or countable group G = {gl, e ,g,,}, G = {g; i € N}

¢ Continuous symmetries
Example (The rotations in R3)
¥ — R(@R,

R(@) : X
& € R3 is the angle of rotation
lim R(a@) =Id .

a—0

— unitary and linear operators
— continuously connected to the identity operator Id.
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Continuous symmetries

e A continuous symmetry depends on parameters

E-EN

@ The rotation in R3 has three parameters
The Galilean group has ten parameters

The Lorentz group has six parameters

(2]

(3]

@ The Poincaré group has ten parameters

@ The gauge group of electromagnetism has one parameter
(6]

Many continuous groups in physics

it some notions with a new regard Michel Rausch de Traubenberg



Some preliminaries General principles Examples with su(3)

Infinitesimal transformations

Symmetries = group

e Consider a group of symmetry with n parameters

¢ To any g € G is associated n—parameters:
g(017 o 76") = g(e)
o If the group is real the parameters are real
¢ If the group is complex the parameters are complex

o |Infinitesimally U(g(0)) =1+ iA(0) =1+i0°T, ,

e Assume G to be real

o have very restricted properties.
o Since U(g(0))T = U(g(0))~* we have 7.7 =

e The product of two symmetries is a symmetry
U(g(0)U(e(0')) = UE(0")) = [T, T1] = ifas°

e If G acts on a state [¢). Infinitesimally:

[ = Ug®)¥) = 1 +iA0)) )
=
Slp) = | — ) =iA0) [y) = i0° T. )

symmetries, R some notions with a new regard Michel Rausch de Traubenberg
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Lie groups and Lie algebras

If g is finite dimensional choosing a basis g = Span{Ty,---, Tp} we have

x = i6? [ B ]:ifabc 7[ ’ ]:_[ ’ ] .

-

, ]]+perm = 0 is called the Jacobi |dent|ty
T s

Lie algebras were introduced and classified by mathematicians
(Cartan, Dynkin, etc) and subsequently applied in physics.
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Relationship between Lie algebras and Lie groups

9 From Lie algebra to Lie group g P

¢ To any 1+ i0? T, one can associate an element in the Lie group G
0° n A
14i6° —» lim (1+i— ) = e’
n— o0 n
o Composition of an infinite number of infinitesimal transformations

Oga
9 From Lie groups to Lie algebras G 0 g

¢ To any element €% one can associate n independent elements in the
Lie algebra g

ey - - SEED)

002 62=0
o We have a geometrical interpretation
* When 6° varies — curve I,.
* is the vector tangent to [, at the identity.
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Q General principles

o Lie algebras
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Three-dimensional simple Lie algebras and Lie groups — Matrix Lie groups

X € 5l(2,C) & Tr(X) =0
SL(2,C) = {U € M;(C), det(U) = 1}

U=1+u,ué€ sl(2,C)

u=0aX)+atXy +a”X_, o ec

SU(2) = {u € My(C), det(U) = 1, UUT = 1} y

U=1+iu,u€su?2),u=aJj,a €R

v

SL(2,R) = {U € M3(R), det(U) = 1}
U=1+iu,u € sl(2,R),u= a"K,-,cv" ER
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A back and forth for su(2)
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Solve the first puzzle ®
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The Lie group SU(3) and its Lie algebra su(3)

SU(3){UeMg(C),detUI,U”Ul}
< U a

lU—1+iu s
Lie algebra

su3) =< uwe M3(C),Tru=0,u—uf =0
R —
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The Gell-Mann matrices .

The Gell-Mann matrices — generators T, = 1/2),

Tr(TaTb) = 1/25219 ,[Ta7 Tb] = I’fabCTc B

ome notions a new regard M Rausch de Traubenb:
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Classical Lie algebras

All these algebras have

e 9—0 a matrix definition

1. We have
complex algebras compact real form " Definition: preserves a scalar product
Ap=su(n+1,C) — su(n+1) Z €C: |z1]2 + -+ |zop1)?
B, =s0(2n+1,C) — so(2n+1) X ER: x4+ x2
Cn = 5p(2n,C) —  usp(2n) gi €H: |q1|2 + \q,,|2
D, = s0(2n,C) —  s0(2n) X €ER: x4+ x22n

2. Real forms are classified. For s0(2n,C) — so(p, g) with p+ g = 2n and so*(2n).
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Exceptional Lie algebras

Es
All these algebras have
not a matrix definition.
Related to octonions

E7

Es
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Q General principles

o Representations of Lie algebras
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Practical realisation of Lie algebras

presentations of Lie algebras

© A Lie algebra

— formal definition g = {74, ,
B ATRET | — commutation relations [ 7., 7] = ifap
— Jacobi identity [ 7., [ 75, Tc]]+ perm =0

© |n physics a Lie algebra is a symmetry of a certain system
*>
e if the state is a vector with d—components
o1, — M, d X d matrices
o if the state is a function
o1, — M, differential operator
— {Mjy,---, Mg} is called a representation of g

© Problem find all unitary representations.
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Again Real or complex

Real, complex pseudo-real

Assume g to be a real Lie algebra with representation
© To a rep. specified by M,: three other reps.

[— Mo, M) = ifpS(—Me)
[Ma, Mp] = ifyp"Mc = (M1, m]] = ifpM]
[—ME-Mf] = ifp(—ME)

@ Unitarity: we always have Ml = M, and M, = ME

© Different types of representations

a Real representation: the matrices are purely imaginary
—M, = M, and the four rep. are the same
rotations in R3
b Pseudo real representation: the matrices are complex but
—M, = PM,P~1
Spinor rep. of SU(2)
¢ Complex matrices —the two rep. not equivalent
su(3) Gell-Mann matrices: quarks and antiquarks
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Representation of su(2)

1. Unitary representation of su(2) are finite dimensional.
= - /= 'K+ 5+ isa Casimir operator.
To any £ € %N corresponds a (2 + 1)—dimensional representation.

ORI

Dg:{|€,m> ,—egmge}.

4. Introducing R+ C

[e,m)y = £(£+1)]¢, m)
|é, m> = m|é, m>
[e,m) = VE—m)(+m+1)|¢,m+1)

l[e,m)y = VE+m)(—m+1)|¢,m—1)
The representation Dy is uniquely de- The vector |£’ £> is uniquely defined by
fined by the vector |¢, £)
Jo|€, €> = €|E,£>
[ S ey =0, ] Jile,e) = 0.
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Real, Complex or pseudo-real?

su(2) Vectors
© Vector representation: D; = {|1,—1),[1,0),|1,1)}
e |1,0) =|1,0), ie., real

oL, —1)=—|1,1)
@ The matrices are after change of basis
0 V2 o0 0 0 0
so= V2 0 V2 — 0 0 —i
0 V2 o0 0o i 0

0 V2 0 0 0 i

H = (7,' 2 0 iﬁ) — (0 0 0>
0 —iV?2 0 —-i 0 0
-1 0 0 0 —i o0
B o= 0 0 O — i 0 0
0o 0 1 0o 0 o0

© Purely imaginary matrices
Real representation: a vector has three degrees of freedom

31/43 A walk throught symmetries, Revisi
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Real, Complex or pseudo-real?

213,30}

1
2

@ Spinor representation: Dy = {}% —
2

1 _ 1\ |11
3 =3) 13, 3) complex
I _1 11

°|3-2) #1532

@ Matrices acting on spinor Pauli matrices

© Forec—iop = <7? é) we have for the Pauli matrices

= 1
—0j = € gj¢€

@ The representation is pseudo-real

_ (¥ T (V) L (VP
v=()=o=(5)~v= (%)

© We thus have two degrees of freedom.

o

Lrs

£
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Solve the second puzzle ©
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© Examples with su(3)
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Representations of Lie algebras

Any Lie algebra

Extends to any Lie algebras

© Any Lie algebra has

a simultaneously commuting generators i.e., of type Jy
their eigenvalues characterise the representation
b creation operators, i.e., of type Ji
all states obtained from a vacuum
annihilation operators, i.e., of type J_
annihilated the vacuum
d Enough to consider an equal number of generator each
type : (hj, Efr, E™)

(g}

[hi, EX] = +2EE | [EF,E7] = h

Satisfying an s[(2, C) algebra : so all is known !

@ For a compact Lie algebra all representations

@ unitary are finite dimensional
@ can be obtained in a way similar to su(2)
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Differential realisation of su(3) > Gell-Mann -

Fundamental and anti-fundamental representations
1/2), — 2%, 22,23 € C3.

¢ Anti-fundamental representation : —1/2/_\3 — 71, 20, Z3.

o Fundamental representation :

o From Gell-Mann matrices we deduce

A3 = hy = (210; — 2%28,) — (210" — 2,0?)
— I3+ LEg o by = (20, — £303) — (252 — 2,5Y)
(AL +iX2) = EF =210, — 28" I\ — ixp) = E; = 2%8; — 7,67

(N6 + iA7) = Ef (X6 — iX7) = E; =20, — 2,07

Il
N
\

|
Ni

1
2
1
2
1
2

[SEENTENT

(As+ixs) = Ef = 2105 — 730" (Mg —idXs) > E5 =2°01 — 7,07

Satisfying

i=1,2, [hET] =l

i

+2F | [E}

JE;
[ en=g, [&.5]=-& .

o All representations are constructed from (h;, E,.Jr, E7),i=1,2.
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Some preliminaries General principles

Polynomial realisation of su(3) representations
» T B e

Polynomial representations

¢ The vacuum of the representation Dy m, is
e annihilated by annihilation operators

Efo =0 1
1 Lief| gliis) ) = Z,
EF =0 } = Oy ,my(2,2) = Py my (2, 23)

e Specified by the eigenvalues of hy, ho

h1® =mo
18mymy = 1Py, my }:m,mzu,z):(z‘)”’l(z»,)””?

Py my = M2 Prny iy

o Action of the annihilation operators: representation.

o Scalar product
2122132

i 3. 3.7 - o1zt
(f,g) = P d°zd>z f(z, 2)g(z, z)e
T

The representation is unitary if my, my € N.

B Y
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The ten-dimensional representation

Polynomial representations

e The representations D, o vacuum: ®,, o = (z})™

1 Zl a ZZ as Z3 az
T I

0§81,82,33§m731+82+a3:m}.

Dmpo = {"/’21732,33(2) =

e Othonormal basis: (wai,aé,angal,az»%) = 63131 6aé326a§33.
® Yay,ar,a3 = Paj—ay,a—a3, hi®Pmy,my = Mi®Pmy,my
e The ten-dimensional representation D3 g.

1H, + £H,

)2
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The adjoint representation

Polynomial representations

1

e Adjoint representation: D71 vacuum ;1 =z 73

D11 = {¢1,1(Z) =z'z, O, _1(2) =25, d_1,0(z) = 53,

3- 2 2
O3, 1(2) =22 ,90,1(2) =277, P10(2) =22,
1

P0.0(2) = (1217 = 127) s @) = (1 = 1)}

o Orthonormal basis
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More complicated case

Polynomial representations

e Representation : D, = 27: vacuum &5, = (z1)%(23)?

2.2)

0,3) 3.0)

x
AN/NAN
ANANAN A

|-2,4) J1.1)

VAVAW

[0.0)

NANANA

\

N

e We have h,-}ml7 m2> = m,-]hiq,m2>
e The algorithm gives precisely the dimension of each space. E.g:

2,-1) by 1= %(Z]ZZ(Z,))Z — (£')%23)
’ o) = L — (! 22123 + 27122 Z> 2= 24143’22;
2-1% 7
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Some extensions

Some generalisations

@ There exists analogous differential realisation
for the Lie algebras A,, By, Cp,, D,
enables to have “polynomial” reps, (except spinors of SO(n))

@ The eigenvalues of hy, h, do not completely characterise states
needs new operator commuting with hy, ho:
Casimir of the first su(2) J = h? + 2E; E;" + 2E;"E;”
$r g } { P24,2,—1 = 12122(22)2 _ 1(21)22122
; — 2,

1,2 3
2,—1

p82,-1= 6(21)22122 — 522 (22)2 —+ %le’ 2223
Missing label problem: extends to any Lie algebra

© Clebsch-Gordan coefficients: tensor product of reps.

DQ D' = @D

06 €2)

doubling the variables leads to Clebsch-Gordan coefficients
Extends to the Lie algebras A,, B,, C,, D,y



Some preliminaries General principles Examples with su(3)

Thank you for your attention !
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General principles

Examples with su(3)

,i,J, k, perm [
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