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Symmetries during physicist’s study

Symmetries in physics

Symmetry is a leitmotiv

1 Computation of electric/magnetic field using Gauss/Ampère
theorem
→ needs symmetries

2 In mechanics choosing a preferred frame (as the rest frame)
→ needs symmetries

3 Classification of Mendeleev periodical table
→ needs symmetries

4 etc.

What is a symmetry?
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Symmetries at IPHC

Symmetries at IPHC

1 Symmetries in subatomic physics
Symmetries of spacetime
→ mass and spin of particles

2 Symmetries in nuclear physics
Symmetry of space
→ shell model

Symmetry proton-neutron
→ isospin

3 Symmetries in particles physics
The Standard Model
→ classifies particles
→ dictates their interactions

Concept of symmetry breaking
→ gives a mass to particles

Concept of anomalies
→ restrict the quantum numbers of particles
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Some strange points

Complex or real

1 In standard Quantum Mechanics lectures (L3)

Angular momentum: (L1, L2, L3) operators of rotations
To introduce the spin, i.e., the states |`,m〉 we define

L±=L1± i L2

Since the angles of rotation are real: L = iαaLa, αi ∈ R.
→ why can we make complex linear combination ?????

2 When studying the spin of the electron: Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

→ Pauli spinor ψ =

(
ψ1

ψ2

)
→ The Pauli matrices are complex ⇒ ψ1, ψ2 ∈ C
→ A Pauli spinor has 4 = 2× 2 degrees of freedom
→ An electron has two degrees of freedom: spin s = ± 1

2
?????

VE
RY

ST
RA
NG
E
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Confusion between complex/real numbers

Complex is more simple

1 On the complex number life is more easy

1 X 2 + 1 = 0 two solutions on C no solution on R
2 The matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
over C−→

Diagonalisable
∆ =

(
e iθ 0
0 e−iθ

)
2 Sometimes a back and forth between R and C is possible · · ·

Real object
complexification // Complex object

��
Properties over R Study over Creal formoo

3 Back and forth between R and C not always possible
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Confusion between complex/real numbers

Complexification/real form

3 One example of back and forth

R =

(
cos θ − sin θ
sin θ cos θ

)

��

complexification

z=x+iy
// R =

(
e iθ 0

0 e−iθ

)

��

Acts on

(
x
y

)
∈ R2 Acts on

(
z
z̄

)
∈ C⊕ Creal form

x = 1/2(z + z̄)
y = −i/2(z − z̄)

oo

E.g. electroma-
gnetic waves

Aµ =


A0 = 0
A1

A2

A3 = 0

 E.g two polarisa-
tion of the light

A± = ±A1+iA2
√

2

oo
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W
RO
NG

Some properties over C do not pass to R /
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Mathematical structure associated to symmetries

• symmetry = transformation which leaves a system invariant

Set of Symmetries = group

S1

T1 //

T2T1   

S2

T2

��
S3

S1

T //
S2

T−1

oo S

Id

DD

1. the principle of symmetry is extremely powerful in physics

implies the fundamental laws

2. In Quantum mechanics the principle of symmetry takes a stronger dimension
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Symmetries in Quantum Mechanics

Symmetries in Hilbert space

• States
∣∣ψ〉 lives in Hilbert space

• A transformation G :
∣∣Ψ〉 −→ ∣∣ΨG

〉
= G

∣∣Ψ〉 is a symmetry

if it preserves the transition amplitude〈
ΨG

∣∣ΦG

〉
=
〈
Ψ|G†G

∣∣Phi〉 =
〈
Ψ
∣∣Φ〉.

• If G is unitary

GG† = Id .

G preserves the transition amplitude
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The Wigner Theorem

Theorem (Wigner, 1959)

Let a quantum system be invariant under a symmetry group G. To any element
g ∈ G one can associate an operator U(g) acting on the state

∣∣Ψ〉 ∈ H∣∣Ψ〉→ ∣∣Ψ′〉 =
∣∣U(g)Ψ

〉
= U(g)

∣∣Ψ〉 ,
which is either unitary and linear〈

U(g)Ψ1

∣∣U(g)Ψ2

〉
=
〈
Ψ1

∣∣Ψ2

〉
,

U(g)
[
λ1

∣∣Ψ1

〉
+ λ2

∣∣Ψ2

〉
)
]

= λ1U(g)
∣∣Ψ1

〉
+ λ2U(g)

∣∣Ψ2

〉
,

or anti-unitary and anti-linear〈
U(g)Ψ1

∣∣U(g)Ψ2

〉
=
〈
Ψ1

∣∣Ψ2

〉∗
,

U(g)
[
λ1

∣∣Ψ1

〉
+ λ2

∣∣Ψ2

〉
)
]

= λ∗1U(g)
∣∣Ψ1

〉
+ λ∗2U(g)

∣∣Ψ2

〉
.
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Continuous and discrete symmetries

There are two types of symmetries

� Discrete symmetries

Example (The parity transformation in R3)

Id : ~x → ~x ,

P : ~x → −~x .

−→ finite group or countable group G =
{
g1, · · · , gn

}
,G =

{
gi i ∈ N

}
� Continuous symmetries

Example (The rotations in R3)

R(~α) : ~x → R(~α)~x ,
~α ∈ R3 is the angle of rotation

lim
~α→~0

R(~α) = Id .

−→ unitary and linear operators
−→ continuously connected to the identity operator Id.
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Continuous symmetries

• A continuous symmetry depends on parameters

Example

1 The rotation in R3 has three parameters

2 The Galilean group has ten parameters

3 The Lorentz group has six parameters

4 The Poincaré group has ten parameters

5 The gauge group of electromagnetism has one parameter

6 Many continuous groups in physics
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Infinitesimal transformations

Symmetries = group

• Consider a group of symmetry with n parameters

� To any g ∈ G is associated n−parameters:
g(θ1, · · · , θn) ≡ g(θ).

� If the group is real the parameters are real
� If the group is complex the parameters are complex

• Infinitesimally U(g(θ)) = 1 + iA(θ) = 1 + iθaTa ,

• Assume G to be real

� Ta have very restricted properties.
� Since U(g(θ))† = U(g(θ))−1 we have Ta

† = Ta

• The product of two symmetries is a symmetry

U(g(θ))U(g(θ′)) = U(g(θ′′))⇒ [Ta,Tb] = ifab
cTb .

• If G acts on a state |ψ〉. Infinitesimally:∣∣ψ′〉 = U(g(θ)) |ψ〉 = (1 + iA(θ)) |ψ〉
⇒

δ |ψ〉 =
∣∣ψ′〉− |ψ〉 = iA(θ) |ψ〉 = iθaTa |ψ〉 .
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Lie groups and Lie algebras

A natural structure emerges: Lie algebras and Lie groups

Definition (Lie algebra g associated to a Lie group G )

If g is finite dimensional choosing a basis g = Span{T1, · · · ,Tn} we have

x = iθaTa , [Ta,Tb] = ifab
cTc , [Ta,Tb] = −[Tb,Ta] .

[Ta, [Tb,Tc ]] + [Tb, [Tc ,Ta]] + [Tc , [Ta,Tb]] = 0

The (real) coefficients fab
c are called the structure constants of g.

The identity [Ta, [Tb,Tc ]]+perm = 0 is called the Jacobi identity.

Lie algebras were introduced and classified by mathematicians
(Cartan, Dynkin, etc) and subsequently applied in physics.

Remark

17/43 A walk throught symmetries, Revisit some notions with a new regard Michel Rausch de Traubenberg



Some preliminaries General principles Examples with su(3)

Relationship between Lie algebras and Lie groups

From Lie algebra to Lie group g
exp // G

� To any 1 + iθaTa one can associate an element in the Lie group G

1 + iθaTa −→ lim
n→∞

(
1 + i

θa

n
Ta

)n
= e iθ

aTa .

� Composition of an infinite number of infinitesimal transformations

From Lie groups to Lie algebras G
∂θa // g

� To any element e iθ
aTa one can associate n independent elements in the

Lie algebra g

U(g(θ)) = e iθ
aTa −→ −i

∂U(g(θ))

∂θa

∣∣∣
θa=0

= Ta .

� We have a geometrical interpretation

∗ When θa varies → curve Γa.
∗ Ta is the vector tangent to Γa at the identity.

18/43 A walk throught symmetries, Revisit some notions with a new regard Michel Rausch de Traubenberg



Some preliminaries General principles Examples with su(3)

1 Some preliminaries

2 General principles
Basic definitions
Lie algebras
Representations of Lie algebras

3 Examples with su(3)

19/43 A walk throught symmetries, Revisit some notions with a new regard Michel Rausch de Traubenberg



Some preliminaries General principles Examples with su(3)

Three-dimensional simple Lie algebras and Lie groups − Matrix Lie groups

SL(2,C) =

{
U ∈ M2(C), det(U) = 1

}
U = 1 + u, u ∈ sl(2,C)

u = α0X0 + α+X+ + α−X−, α
i ∈ C

Lie Algebra //

X ∈ sl(2,C)⇔ Tr(X ) = 0

X0 = 1
2

(
1 0
0 −1

)
X+ =

(
0 1
0 0

)
, X− =

(
0 0
1 0

)
Lie group

oo

SU(2) =

{
U ∈ M2(C), det(U) = 1 ,UU† = 1

}
U = 1 + iu, u ∈ su(2), u = αi Ji , α

i ∈ R

Lie Algebra //

J ∈ su(2)⇔ Tr(J) = 0, J† = J

J3 = 1
2

(
1 0
0 −1

)
J1 = 1

2

(
0 1
1 0

)
J2 = 1

2

(
0 −i
i 0

)
Lie group

oo

SL(2,R) =

{
U ∈ M2(R), det(U) = 1

}
U = 1 + iu, u ∈ sl(2,R), u = αiKi , α

i ∈ R

Lie Algebra //

K ∈ sl(2,R)⇔ Tr(K) = 0

K0 = − 1
2

(
0 −i
i 0

)
K1 = 1

2

(
i 0
0 −i

)
K2 = 1

2

(
0 i
i 0

)
Lie group

oo
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A back and forth for su(2)

[
X0, X±

]
= ±X± ,[

X+, X−] = 2X0 .

sl(2,C)


J3 = X0

J1 = 1
2

(X+ + X−)

J2 = − i
2

(X+ − X−)

J
†
a = Ja

��


K0 = −iX0

K1 = i
2

(X+ + X−)

K2 = 1
2

(X+ − X1)

K
†
a = −Ka

��

[
Ji , Jj

]
= iJk , i, j, k, perm.

su(2)

//
X+ = J1 + iJ2

X− = J1 − iJ2

su(2)⊗ C

OO

[
K0,K1

]
= iK2[

K1,K2

]
= −iK0[

K2,K0

]
= iK1

sl(2,R)
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Solve the first puzzle ,
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The Lie group SU(3) and its Lie algebra su(3)

SU(3) =

{
U ∈M3(C) , detU = 1 ,U†U = 1

}
Lie group

U=1+iu
��

U = e iθ
a 1

2
λa

group elements

oo

su(3) =

{
u ∈M3(C) ,Tru = 0 , u − u† = 0

}
Lie algebra

// u = iθa 1
2
λa

generators

exp

OO
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The Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .

The Gell-Mann matrices

The Gell-Mann matrices → generators Ta = 1/2λa

Tr(TaTb) = 1/2δab , [Ta,Tb] = ifab
cTc .
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Classical Lie algebras

An

Bn

Cn

Dn

All these algebras have
a matrix definition

1. We have

complex algebras compact real form Definition: preserves a scalar product
An
∼= su(n + 1,C) → su(n + 1) zi ∈ C : |z1|2 + · · ·+ |zn+1|2

Bn
∼= so(2n + 1,C) → so(2n + 1) xi ∈ R : x2

1 + · · ·+ x2
2n+1

Cn
∼= sp(2n,C) → usp(2n) qi ∈ H : |q1|2 + · · ·+ |qn|2

Dn
∼= so(2n,C) → so(2n) xi ∈ R : x2

1 + · · ·+ x2
2n

2. Real forms are classified. For so(2n,C)→ so(p, q) with p + q = 2n and so∗(2n).
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Exceptional Lie algebras

G2

F4

E6

E7

E8

All these algebras have
not a matrix definition.
Related to octonions
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Practical realisation of Lie algebras

Representations of Lie algebras

1 A Lie algebra
→ formal definition g = {T1, · · · ,Tn}
→ commutation relations [Ta,Tb] = ifab

cTc

→ Jacobi identity [Ta, [Tb,Tc ]]+ perm = 0

2 In physics a Lie algebra is a symmetry of a certain system
→ acts on physical states
• if the state is a vector with d−components
�Ta → Ma d × d matrices
• if the state is a function
�Ta → Ma differential operator

→ {M1, · · · ,Mn} is called a representation of g

3 Problem find all unitary representations.
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Again Real or complex

Real, complex pseudo-real

Assume g to be a real Lie algebra with representation Ta → Ma

1 To a rep. specified by Ma: three other reps.

[
Ma,Mb

]
= ifab

cMc ⇒


[
− M̄a,−M̄b

]
= ifab

c (−M̄c )[
M†a ,M

†
b

]
= ifab

cM†c[
−Mt

a ,−Mt
b

]
= ifab

c (−Mt
c )

2 Unitarity: we always have M†a = Ma and M̄a = Mt
a

3 Different types of representations

a Real representation: the matrices are purely imaginary
−M̄a = Ma and the four rep. are the same
For example rotations in R3

b Pseudo real representation: the matrices are complex but
−M̄a = PMaP−1

For example Spinor rep. of SU(2)
c Complex matrices −the two rep. not equivalent

E.g su(3) Gell-Mann matrices: quarks and antiquarks
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Representation of su(2)

1. Unitary representation of su(2) are finite dimensional.

2. Q = ~J · ~J = J2
1 + J2

2 + J2
3 is a Casimir operator.

3. To any ` ∈ 1
2
N corresponds a (2`+ 1)−dimensional representation.

D` =
{∣∣`,m〉 ,−` ≤ m ≤ `

}
.

4. Introducing L±=L1± i L2 using the back and forth R↔ C

Q
∣∣`,m〉 = `(`+ 1)

∣∣`,m〉
J0

∣∣`,m〉 = m
∣∣`,m〉

J+

∣∣`,m〉 =
√

(`−m)(`+ m + 1)
∣∣`,m + 1

〉
J−
∣∣`,m〉 =

√
(`+ m)(`−m + 1)

∣∣`,m − 1
〉

The representation D` is uniquely de-
fined by the vector

∣∣`, `〉
J2`+1
−

∣∣`, `〉 = 0 .

The vector
∣∣`, `〉 is uniquely defined by

J0

∣∣`, `〉 = `
∣∣`, `〉

J+

∣∣`, `〉 = 0 .
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Real, Complex or pseudo-real?

su(2) Vectors

1 Vector representation: D1 = {|1,−1〉 , |1, 0〉 , |1, 1〉}
• |1, 0〉 = |1, 0〉, i.e., real

• |1,−1〉 = − |1, 1〉
2 The matrices are after change of basis

J1 =

(
0

√
2 0√

2 0
√

2

0
√

2 0

)
→

(
0 0 0
0 0 −i
0 i 0

)

J2 =

(
0 i

√
2 0

−i
√

2 0 i
√

2

0 −i
√

2 0

)
→

(
0 0 i
0 0 0
−i 0 0

)

J3 =

(
−1 0 0
0 0 0
0 0 1

)
→

(
0 −i 0
i 0 0
0 0 0

)

3 Purely imaginary matrices
Real representation: a vector has three degrees of freedom
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Real, Complex or pseudo-real?

su(2) Spinors

1 Spinor representation: D 1
2

= {
∣∣ 1

2
,− 1

2

〉
,
∣∣ 1

2
, 1

2

〉
}

•
∣∣ 1

2
,− 1

2

〉
,
∣∣ 1

2
, 1

2

〉
complex

•
∣∣ 1

2
,− 1

2

〉
6=
∣∣ 1

2
, 1

2

〉
2 Matrices acting on spinor Pauli matrices

3 For ε = iσ2 =

(
0 1
−1 0

)
we have for the Pauli matrices

−σ̄i = ε−1σi ε .

4 The representation is pseudo-real

ψ =

(
ψ1

ψ2

)
⇒ ψ̄ =

(
ψ̄1

ψ̄2

)
∼ εψ =

(
ψ2

−ψ1

)
5 We thus have two degrees of freedom.
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Solve the second puzzle ,
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Representations of Lie algebras

Any Lie algebra

Extends to any Lie algebras

1 Any Lie algebra has

a simultaneously commuting generators i.e., of type J0

their eigenvalues characterise the representation
b creation operators, i.e., of type J+

all states obtained from a vacuum
c annihilation operators, i.e., of type J−

annihilated the vacuum
d Enough to consider an equal number of generator each

type : (hi ,E
+
i ,E

−
i )

[hi ,E
±
i ] = ±2E±i , [E+

i ,E
−
i ] = hi

Satisfying an sl(2,C) algebra : so all is known !

2 For a compact Lie algebra all representations

1 unitary are finite dimensional
2 can be obtained in a way similar to su(2)

−→ H. Weyl
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Differential realisation of su(3) Gell-Mann

Fundamental and anti-fundamental representations

� Fundamental representation : 1/2λa → z1, z2, z3 ∈ C3.

� Anti-fundamental representation : −1/2λ̄a → z̄1, z̄2, z̄3.

� From Gell-Mann matrices we deduce

λ3 → h1 = (z1∂1 − z2∂2)− (z̄1∂̄
1 − z̄2∂̄

2)

− 1
4
λ3 +

√
3

4
λ8 → h2 = (z2∂2 − z3∂3)− (z̄2∂̄

2 − z̄3∂̄
3)

1
2

(λ1 + iλ2)→ E+
1

= z1∂2 − z̄2∂̄
1 1

2
(λ1 − iλ2)→ E−

1
= z2∂1 − z̄1∂̄

2

1
2

(λ6 + iλ7)→ E+
2

= z2∂3 − z̄3∂̄
2 1

2
(λ6 − iλ7)→ E−

2
= z3∂2 − z̄2∂̄

3

1
2

(λ4 + iλ5)→ E+
3

= z1∂3 − z̄3∂̄
1 1

2
(λ4 − iλ5)→ E−

3
= z3∂1 − z̄1∂̄

3

Satisfying

i = 1, 2,
[
hi , E

±
i

]
= ±2E±

i
,
[
E+
i
, E−

i

]
= hi ,[

E+
1
, E+

2
] = E+

3
,
[
E−

1
, E−

2

]
= −E−

3
.

� All representations are constructed from (hi ,E
+
i ,E

−
i ), i = 1, 2.
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Polynomial realisation of su(3) representations

Polynomial representations

� The vacuum of the representation Dm1,m2 is

• annihilated by annihilation operators

E+
1

Φm1,m2
= 0

E+
2

Φm1,m2
= 0

}
=⇒ Φm1,m2

(z, z̄) = Φm1,m2
(z1
, z̄3)

• Specified by the eigenvalues of h1, h2

h1Φm1,m2
= m1Φm1,m2

h2Φm1,m2
= m2Φm1,m2

}
=⇒ Φm1,m2

(z, z̄) = (z1)m1 (z̄3)m2

� Action of the annihilation operators: representation.

� Scalar product

(f , g) =
i

8π3

∫
d3zd3 z̄ f̄ (z, z̄)g(z, z̄)e−|z

1|2−|z2|2−|z3|2
.

The representation is unitary if m1,m2 ∈ N.
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The ten-dimensional representation

Polynomial representations

• The representations Dm,0 vacuum: Φm,0 = (z1)m

Dm,0 =
{
ψa1,a2,a3 (z) =

1
√
a1!a2!a3!

(z1)a1 (z2)a2 (z3)a3 ,

0 ≤ a1, a2, a3 ≤ m, a1 + a2 + a3 = m
}
.

• Othonormal basis: (ψa′
1
,a′

2
,a′

3
, ψa1,a2,a3 ) = δa′

1
a1
δa′

2
a2
δa′

3
a3

.

• ψa1,a2,a3 = Φa1−a2,a2−a3 , hiΦm1,m2 = miΦm1,m2

• The ten-dimensional representation D3,0.

b
1√
3! (z

1)3
b

1√
2! (z

1)2z3
b

1√
2! z

1(z3)2
b

1√
3! (z

3)3

b

1√
2! (z

1)2z2
b
z1z2z3

b

1√
2! z

2(z3)2

b

1√
2! z

1(z2)2
b

1√
2! (z

2)2z3

b

1√
3! (z

2)3

− 1
2 H1 +

√
3

2 H2

2H1
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The adjoint representation

Polynomial representations

• Adjoint representation: D1,1 vacuum Φ1,1 = z1z̄3

D1,1 =
{

Φ1,1(z) = z1 z̄3 , Φ0,−1(z) = z1 z̄2 , Φ−1,0(z) = z2 z̄3 ,

Φ−1,−1(z) = z3 z̄1 ,Φ0,1(z) = z2 z̄1 , Φ1,0(z) = z2 z̄2 ,

Φ0,0(z) =
1

2
(|z1|2 − |z2|2) , Φ′0,0(z) =

1

2
(|z2|2 − |z3|2)

}
• Orthonormal basis

1

b
z1z̄2

b
z2z̄3

b
z1z̄3

b
z2z̄1

b
z3z̄2

b
z3z̄1

b

1√
2 (z1z̄1 − z2z̄2)

1√
2 (z2z̄2 − z3z̄3)

b
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More complicated case
Polynomial representations

• Representation : D2,2 = 27˜: vacuum Φ2,2 = (z1)2(z̄3)2

∣∣2, 2
〉

e−
1

yy

e−
2

%%∣∣0, 3
〉

e−
1

yy

e−
2

%%

∣∣3, 0
〉

e−
2

$$

e−
1

yy∣∣ − 2, 4
〉

e−
2

%%

∣∣1, 1
〉

e−
1

yy

e−
2

%%

∣∣4, −2
〉

e−
1

zz∣∣ − 1, 2
〉

e−
1

yy

e−
2

%%

∣∣2, −1
〉

e−
2

$$

e−
1

yy∣∣ − 3, 3
〉

e−
2

%%

∣∣0, 0
〉

e−
2

%%

e−
1

yy

∣∣3, −3
〉

e−
1

zz∣∣ − 2, 1
〉

e−
1

yy

e−
2

%%

∣∣1, −2
〉

e−
2

$$

e−
1

yy∣∣ − 4, 2
〉

e−
2

%%

∣∣ − 1, −1
〉

e−
1

yy

e−
2

%%

∣∣2, −4
〉

e−
1

zz∣∣ − 3, 0
〉

e−
2

%%

∣∣0, −3
〉

e−
1

yy∣∣ − 2, −2
〉

• We have hi
∣∣m1,m2

〉
= mi

∣∣m1,m2

〉
• The algorithm gives precisely the dimension of each space. E.g:

∣∣2,−1
〉

=

 Φ2,−1 = 1
2

(
z1z2(z̄2)2 − (z1)2 z̄1 z̄2)

Φ′2,−1 = 1√
14

(
− (z1)2 z̄1 z̄2 + 2z1z2(z̄2)2 − 2z1z3 z̄2 z̄3

)
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Some extensions
Some generalisations

1 There exists analogous differential realisation
for the Lie algebras An,Bn,Cn,Dn

enables to have “polynomial” reps, (except spinors of SO(n))

2 The eigenvalues of h1, h2 do not completely characterise states
needs new operator commuting with h1, h2:
Casimir of the first su(2) J = h2

1 + 2E−1 E+
1 + 2E+

1 E−1

Φ2,−1

Φ′2,−1

}
→
{

ρ24,2,−1 = 1
2
z1z2(z̄2)2 − 1

2
(z1)2z̄1z̄2

ρ 8,2,−1 = 1
6

(z1)2z̄1z̄2 − 1
6
z1z2(z̄2)2 + 2

3
z1z3z̄2z̄3

Missing label problem: extends to any Lie algebra

3 Clebsch-Gordan coefficients: tensor product of reps.

D ⊗D′ = ⊕kDk

↑ ↑ ↑(
z
z̄

)(
w
w̄

) (
z,w
z̄, w̄

)
doubling the variables leads to Clebsch-Gordan coefficients
Extends to the Lie algebras An,Bn,Cn,Dn
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Thank you for your attention !
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[
Ji , Jj

]
= iJk , i, j, k, perm.

su(2) [
K0,K1

]
= iK2[

K1,K2

]
= −iK0[

K2,K0

]
= iK1

sl(2,R)

J± = J1 ± iJ2 K± = K1 ± iK1


[
J0, J±

]
= ±J±[

J+, J−
]

= 2J0


[
K0,K±

]
= ±K±[

K+,K−
]

= −2K0
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