A walk throught symmetries
 Revisit some notions with a new regard

Michel Rausch de Traubenberg
Institut Pluridisciplinaire Hubert Curien
Département de Recherches Subatomiques
Groupe Théorie

17th May 2019

(1) Some preliminaries

(2) General principles

- Basic definitions
- Lie algebras
- Representations of Lie algebras

3. Examples with $\mathfrak{s u}(3)$

(1) Some preliminaries

(2) General principles

- Basic definitions
- Lie algebras
- Representations of Lie algebras

3) Examples with $\mathfrak{s u}(3)$

(1) Some preliminaries

(2) General principles

- Basic definitions
- Lie algebras
- Representations of Lie algebras

(3) Examples with $\mathfrak{s u}(3)$

(1) Some preliminaries

General principles

- Basic definitions
- Lie algebras
- Representations of Lie algebras

3) Examples with $\mathfrak{s u}(3)$

Symmetries during physicist's study

Symmetries in physics

Symmetry is a leitmotiv

(1) Computation of electric/magnetic field using Gauss/Ampère theorem
\rightarrow needs symmetries
(2) In mechanics choosing a preferred frame (as the rest frame) \rightarrow needs symmetries
(3) Classification of Mendeleev periodical table \rightarrow needs symmetries
(4) etc.

> What is a symmetry?

Symmetries at IPHC

Symmetries at IPHC

(1) Symmetries in subatomic physics

Symmetries of spacetime
\rightarrow mass and spin of particles
(2) Symmetries in nuclear physics

Symmetry of space
\rightarrow shell model
Symmetry proton-neutron
\rightarrow isospin
(3) Symmetries in particles physics

The Standard Model
\rightarrow classifies particles
\rightarrow dictates their interactions
Concept of symmetry breaking
\rightarrow gives a mass to particles
Concept of anomalies
\rightarrow restrict the quantum numbers of particles

Some strange points

Complex or real

(1) In standard Quantum Mechanics lectures (L3)

Angular momentum: $\left(L_{1}, L_{2}, L_{3}\right)$ operators of rotations To introduce the spin, i.e., the states $|\ell, m\rangle$ we define

$$
L_{ \pm}=L_{1} \pm i L_{2}
$$

Since the angles of rotation are real: $L=i \alpha^{a} L_{a}, \alpha^{i} \in \mathbb{R}$. \rightarrow why can we make complex linear combination ?????
(2) When studying the spin of the electron: Pauli matrices
$\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$
\rightarrow Pauli spinor $\psi=\binom{\psi^{1}}{\psi^{2}}$
\rightarrow The Pauli matrices are complex $\Rightarrow \psi^{1}, \psi^{2} \in \mathbb{C}$
\rightarrow A Pauli spinor has $4=2 \times 2$ degrees of freedom
\rightarrow An electron has two degrees of freedom: spin $s= \pm \frac{1}{2}$?????

Confusion between complex/real numbers

Complex is more simple

(1) On the complex number life is more easy
(1) $X^{2}+1=0$ two solutions on \mathbb{C} no solution on \mathbb{R}
(2) The matrix

$$
R=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \xrightarrow[\text { Diagonalisable }]{\stackrel{\text { over }}{\mathbb{C}}} \Delta=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)
$$

(2) Sometimes a back and forth between \mathbb{R} and \mathbb{C} is possible \ldots

(3) Back and forth between \mathbb{R} and \mathbb{C} not always possible

Confusion between complex/real numbers

Complexification/real form

(3) One example of back and forth

$$
\begin{aligned}
& \underbrace{R=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)} \frac{\text { complexification }}{z=x+i y} \rightarrow R=\underbrace{\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)} \\
& \text { Acts on }\binom{x}{y} \in \mathbb{R}^{2} \underset{\substack{x=1 / 2(z+\bar{z}) \\
y=-i / 2(z-\bar{z})}}{\text { real form }} \text { Acts on }\binom{z}{\bar{z}} \in \mathbb{C} \oplus \overline{\mathbb{C}}
\end{aligned}
$$

E.g. electromagnetic waves

$$
A^{\mu}=\left(\begin{array}{c}
A^{0}=0 \\
A^{1} \\
A^{2} \\
A^{3}=0
\end{array}\right) \longleftrightarrow \begin{aligned}
& \text { E.g two polarisa- } \\
& \text { tion of the light } \\
& A_{ \pm}=\frac{ \pm A^{1}+i A^{2}}{\sqrt{2}}
\end{aligned}
$$

A. Garrett Lisi

SLRI, yeg Tyner Way, Incline Village, NV $89 \xi 51$
E-mail: alisiolawaii.edu
plantit

Abstract: All fields of the standard model and gravity are unified as an E8 principal bundle connection. A non-compact real form of the E8 Lie algetba has G2 and F4 subalgebras which break down to strong su(3), electromeak su(2) $\times \mathbf{n}(1)$, gravitational so(3,1), the frame-Higgs and three generations of fermions related by triality. The interactions and dynamics of thes 1 -form and Grassmarin valued parts of an E8 superconnection are described by the curvatur and action over a four dimensional base manifold.

Keywords: TaE.

Some properties over \mathbb{C} do not pass to $\mathbb{R} \odot$

Communications in Mathematical Physics
September 2010, volume 298, Is sue 2, pp 419-436 | Cite as
There is No "Theory of Everything" Inside E_{8}
Authors Authors and affiliations
Jacques Distler, Skip Garibaldi
Article
First Online: 12 February 2010 (33) 226 (6)
Shares Downloads Citations

Abstract

We analyze certain subgroups of real and complex forms of the Lie group E_{8}, and deduce that any "Theory of Everything" obtained by embedding the gauge groups of gravity and the Standard Model into a real or complex form of E_{8} lacks certain representation-theoretic properties required by physical reality. The arguments themselves amount to representation theory of Lie algebras in the spirit of Dynkin's classic papers and are written for mathematicians.

- Some preliminaries

2) General principles

- Basic definitions
- Lie algebras
- Representations of Lie algebras

3) Examples with $\mathfrak{s u}(3)$

Mathematical structure associated to symmetries

- symmetry $=$ transformation which leaves a system invariant

1. the principle of symmetry is extremely powerful in physics
implies the fundamental laws
2. In Quantum mechanics the principle of symmetry takes a stronger dimension

Symmetries in Quantum Mechanics

Symmetries in Hilbert space

- States $|\psi\rangle$ lives in Hilbert space
- A transformation $G:|\Psi\rangle \longrightarrow\left|\Psi_{G}\right\rangle=G|\Psi\rangle$ is a symmetry if it preserves the transition amplitude $\left\langle\Psi_{G} \mid \Phi_{G}\right\rangle=\langle\Psi| G^{\dagger} G|P h i\rangle=\langle\Psi \mid \Phi\rangle$.
- If G is unitary

$$
G G^{\dagger}=\mathrm{Id} .
$$

G preserves the transition amplitude

The Wigner Theorem

Theorem (Wigner, 1959)

Let a quantum system be invariant under a symmetry group G. To any element $g \in G$ one can associate an operator $\mathcal{U}(g)$ acting on the state $|\Psi\rangle \in H$

$$
|\Psi\rangle \rightarrow\left|\Psi^{\prime}\right\rangle=|\mathcal{U}(g) \Psi\rangle=\mathcal{U}(g)|\Psi\rangle,
$$

which is either unitary and linear

$$
\begin{gathered}
\left\langle\mathcal{U}(g) \Psi_{1} \mid \mathcal{U}(g) \Psi_{2}\right\rangle=\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle, \\
\left.\mathcal{U}(g)\left[\lambda_{1}\left|\Psi_{1}\right\rangle+\lambda_{2}\left|\Psi_{2}\right\rangle\right)\right]=\lambda_{1} \mathcal{U}(g)\left|\Psi_{1}\right\rangle+\lambda_{2} \mathcal{U}(g)\left|\Psi_{2}\right\rangle,
\end{gathered}
$$

or anti-unitary and anti-linear

$$
\begin{gathered}
\left\langle\mathcal{U}(g) \Psi_{1} \mid \mathcal{U}(g) \Psi_{2}\right\rangle=\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle^{*} \\
\left.\mathcal{U}(g)\left[\lambda_{1}\left|\Psi_{1}\right\rangle+\lambda_{2}\left|\Psi_{2}\right\rangle\right)\right]=\lambda_{1}^{*} \mathcal{U}(g)\left|\Psi_{1}\right\rangle+\lambda_{2}^{*} \mathcal{U}(g)\left|\Psi_{2}\right\rangle .
\end{gathered}
$$

Continuous and discrete symmetries
There are two types of symmetries
\diamond Discrete symmetries

Example (The parity transformation in \mathbb{R}^{3})

$$
\begin{array}{rrr}
\text { Id }: \vec{x} & \rightarrow & \vec{x}, \\
P: \vec{x} & \rightarrow & -\vec{x}
\end{array}
$$

\longrightarrow finite group or countable group $G=\left\{g_{1}, \cdots, g_{n}\right\}, G=\left\{g_{i} i \in \mathbb{N}\right\}$
\diamond Continuous symmetries

Example (The rotations in \mathbb{R}^{3})

$$
R(\vec{\alpha}): \vec{x} \quad \rightarrow \quad R(\vec{\alpha}) \vec{x}
$$

$\vec{\alpha} \in \mathbb{R}^{3}$ is the angle of rotation

$$
\lim _{\vec{\alpha} \rightarrow \overrightarrow{0}} R(\vec{\alpha})=\text { Id }
$$

\longrightarrow unitary and linear operators
\longrightarrow continuously connected to the identity operator Id.

- A continuous symmetry depends on parameters

Example

(1) The rotation in \mathbb{R}^{3} has three parameters
(2) The Galilean group has ten parameters
(3) The Lorentz group has six parameters
(4) The Poincaré group has ten parameters
(5) The gauge group of electromagnetism has one parameter
(6) Many continuous groups in physics

Infinitesimal transformations

Symmetries = group

- Consider a group of symmetry with n parameters
\diamond To any $g \in G$ is associated n-parameters: $g\left(\theta^{1}, \cdots, \theta^{n}\right) \equiv g(\theta)$.
\diamond If the group is real the parameters are real
\diamond If the group is complex the parameters are complex
- Infinitesimally $\mathcal{U}(g(\theta))=1+i A(\theta)=1+i \theta^{a} T_{a}$,
- Assume G to be real
$\diamond T_{a}$ have very restricted properties.
\diamond Since $\mathcal{U}(g(\theta))^{\dagger}=\mathcal{U}(g(\theta))^{-1}$ we have $T_{a}^{\dagger}=T_{a}$
- The product of two symmetries is a symmetry

$$
\mathcal{U}(g(\theta)) \mathcal{U}\left(g\left(\theta^{\prime}\right)\right)=\mathcal{U}\left(g\left(\theta^{\prime \prime}\right)\right) \Rightarrow\left[T_{a}, T_{b}\right]=i f_{a b}^{c} T_{b} .
$$

- If G acts on a state $|\psi\rangle$. Infinitesimally:

$$
\begin{aligned}
\left|\psi^{\prime}\right\rangle & =\mathcal{U}(g(\theta))|\psi\rangle=(1+i A(\theta))|\psi\rangle \\
& \Rightarrow \\
\delta|\psi\rangle & =\left|\psi^{\prime}\right\rangle-|\psi\rangle=i A(\theta)|\psi\rangle=i \theta^{a} T_{a}|\psi\rangle .
\end{aligned}
$$

Lie groups and Lie algebras

A natural structure emerges: Lie algebras and Lie groups

Definition (Lie algebra \mathfrak{g} associated to a Lie group G)

If \mathfrak{g} is finite dimensional choosing a basis $\mathfrak{g}=\operatorname{Span}\left\{T_{1}, \cdots, T_{n}\right\}$ we have

$$
\begin{gathered}
x=i \theta^{a} T_{a}, \quad\left[T_{a}, T_{b}\right]=i f_{a b}{ }^{c} T_{c},\left[T_{a}, T_{b}\right]=-\left[T_{b}, T_{a}\right] . \\
\quad\left[T_{a},\left[T_{b}, T_{c}\right]\right]+\left[T_{b},\left[T_{c}, T_{a}\right]\right]+\left[T_{c},\left[T_{a}, T_{b}\right]\right]=0
\end{gathered}
$$

The (real) coefficients $f_{a b}{ }^{c}$ are called the structure constants of \mathfrak{g}.
The identity $\left[T_{a},\left[T_{b}, T_{c}\right]\right]+$ perm $=0$ is called the Jacobi identity.

Remark

Lie algebras were introduced and classified by mathematicians (Cartan, Dynkin, etc) and subsequently applied in physics.

Relationship between Lie algebras and Lie groups

- From Lie algebra to Lie group

$$
\mathfrak{g} \xrightarrow{\exp } G
$$

\diamond To any $1+i \theta^{a} T_{a}$ one can associate an element in the Lie group G

$$
1+i \theta^{a} \longrightarrow \lim _{n \rightarrow \infty}\left(1+i \frac{\theta^{a}}{n}\right)^{n}=e^{i \theta^{a}}
$$

\diamond Composition of an infinite number of infinitesimal transformations

- From Lie groups to Lie algebras $G \xrightarrow{\partial_{\theta^{a}}} \mathfrak{g}$
\diamond To any element $e^{i \theta^{a}}$ one can associate n independent elements in the Lie algebra \mathfrak{g}

$$
\mathcal{U}(g(\theta))=e^{i \theta^{a}} \quad \longrightarrow-\left.i \frac{\partial \mathcal{U}(g(\theta))}{\partial \theta^{a}}\right|_{\theta^{a}=0}=T_{a}
$$

\diamond We have a geometrical interpretation

* When θ^{a} varies \rightarrow curve Γ_{a}.
* is the vector tangent to Γ_{a} at the identity.

D Some preliminaries

(2) General principles

- Basic definitions
- Lie algebras
- Representations of Lie algebras

3) Examples with $\mathfrak{s u}(3)$

Three-dimensional simple Lie algebras and Lie groups - Matrix Lie groups

$$
\begin{aligned}
& S L(2, \mathbb{C})=\left\{U \in \mathcal{M}_{2}(\mathbb{C}), \operatorname{det}(U)=1\right\} \\
& U=1+u, u \in \mathfrak{s l}(2, \mathbb{C}) \\
& u=\alpha^{0} X_{0}+\alpha^{+} X_{+}+\alpha^{-} X_{-}, \alpha^{i} \in \mathbb{C}
\end{aligned}
$$

$$
<\text { Lie Algebra }<\begin{gathered}
X \in \mathfrak{s l}(2, \mathbb{C}) \Leftrightarrow \operatorname{Tr}(X)=0 \\
x_{0}=\frac{1}{2}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
X_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), X_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& S L(2, \mathbb{R})=\left\{U \in \mathcal{M}_{2}(\mathbb{R}), \operatorname{det}(U)=1\right\} \\
& U=1+i u, u \in \mathfrak{s l}(2, \mathbb{R}), u=\alpha^{i} K_{i}, \alpha^{i} \in \mathbb{R}
\end{aligned}
$$

$$
\longleftarrow \xrightarrow[\text { Lie group }]{\gtrless}
$$

$$
K_{1}=\frac{1}{2}\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) K_{2}=\frac{1}{2}\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

$$
\begin{aligned}
& S U(2)=\left\{U \in \mathcal{M}_{2}(\mathbb{C}), \operatorname{det}(U)=1, U U^{\dagger}=1\right\} \\
& U=1+i u, u \in \mathfrak{s u}(2), u=\alpha^{i} J_{i}, \alpha^{i} \in \mathbb{R} \\
& <\underset{\text { Lie group }}{\text { Lie Algebra }}> \\
& \begin{array}{c}
J \in \mathfrak{s u}(2) \Leftrightarrow \operatorname{Tr}(J)=0, J^{\dagger}=J \\
J_{3}=\frac{1}{2}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
J_{1}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) J_{2}=\frac{1}{2}\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right)
\end{array}
\end{aligned}
$$

A back and forth for $\mathfrak{s u}(2)$

Solve the first puzzle $)^{-}$

The Lie group $\operatorname{SU}(3)$ and its Lie algebra $\mathfrak{s u}(3)$

Lie group

group elements

The Gell-Mann matrices

The Gell-Mann matrices

$$
\begin{gathered}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
\lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{gathered}
$$

The Gell-Mann matrices \rightarrow generators $T_{a}=1 / 2 \lambda_{a}$

$$
\operatorname{Tr}\left(T_{a} T_{b}\right)=1 / 2 \delta_{a b},\left[T_{a}, T_{b}\right]=i f_{a b}{ }^{c} T_{c} .
$$

Classical Lie algebras

1. We have

$$
\begin{aligned}
& \text { complex algebras compact real form Definition: preserves a scalar product } \\
& A_{n} \cong \mathfrak{s u}(n+1, \mathbb{C}) \quad \rightarrow \quad \mathfrak{s u}(n+1) \quad z_{i} \in \mathbb{C}:\left|z_{1}\right|^{2}+\cdots+\left|z_{n+1}\right|^{2} \\
& B_{n} \cong \mathfrak{s o}(2 n+1, \mathbb{C}) \rightarrow \mathfrak{s o}(2 n+1) \\
& x_{i} \in \mathbb{R}: x_{1}^{2}+\cdots+x_{2 n+1}^{2} \\
& C_{n} \cong \mathfrak{s p}(2 n, \mathbb{C}) \quad \rightarrow \quad \operatorname{usp}(2 n) \\
& D_{n} \cong \mathfrak{s o}(2 n, \mathbb{C}) \quad \rightarrow \quad \mathfrak{s o}(2 n) \\
& q_{i} \in \mathbb{H}:\left|q_{1}\right|^{2}+\cdots+\left|q_{n}\right|^{2} \\
& x_{i} \in \mathbb{R}: x_{1}^{2}+\cdots+x_{2 n}^{2}
\end{aligned}
$$

2. Real forms are classified. For $\mathfrak{s o}(2 n, \mathbb{C}) \rightarrow \mathfrak{s o}(p, q)$ with $p+q=2 n$ and $\mathfrak{s o}^{*}(2 n)$.

Exceptional Lie algebras

D Some preliminaries

(2) General principles

- Basic definitions
- Lie algebras
- Representations of Lie algebras

3) Examples with $\mathfrak{s u}(3)$

Practical realisation of Lie algebras

Representations of Lie algebras

(1) A Lie algebra
\rightarrow formal definition $\mathfrak{g}=\left\{T_{1}, \cdots, T_{n}\right\}$
\rightarrow commutation relations [T_{a}, T_{b}] $=i f_{a b}{ }^{\wedge} T_{c}$
\rightarrow Jacobi identity $\left[T_{a},\left[T_{b}, T_{c}\right]\right]+$ perm $=0$
(2) In physics a Lie algebra is a symmetry of a certain system \rightarrow acts on physical states

- if the state is a vector with d-components $\diamond T_{a} \rightarrow M_{a} d \times d$ matrices
- if the state is a function $\diamond T_{a} \rightarrow M_{a}$ differential operator
$\rightarrow\left\{M_{1}, \cdots, M_{n}\right\}$ is called a representation of \mathfrak{g}
(3) Problem find all unitary representations.

Again Real or complex

Real, complex pseudo-real

Assume \mathfrak{g} to be a real Lie algebra with representation $T_{a} \rightarrow M_{a}$
(1) To a rep. specified by M_{a} : three other reps.

$$
\left[M_{a}, M_{b}\right]=i f_{a b}{ }^{c} M_{c} \Rightarrow\left\{\begin{aligned}
{\left[-\bar{M}_{a},-\bar{M}_{b}\right] } & =i f_{a b}{ }^{c}\left(-\bar{M}_{c}\right) \\
{\left[M_{a}^{\dagger}, M_{b}^{\dagger}\right] } & =i f_{a b}{ }^{c} M_{c}^{\dagger} \\
{\left[-M_{a}^{t},-M_{b}^{t}\right] } & =i f_{a b}{ }^{c}\left(-M_{c}^{t}\right)
\end{aligned}\right.
$$

(2) Unitarity: we always have $M_{a}^{\dagger}=M_{a}$ and $\bar{M}_{a}=M_{a}^{t}$
(3) Different types of representations
a Real representation: the matrices are purely imaginary $-\bar{M}_{a}=M_{a}$ and the four rep. are the same For example rotations in \mathbb{R}^{3}
b Pseudo real representation: the matrices are complex but $-\bar{M}_{a}=P M_{a} P^{-1}$
For example Spinor rep. of $\operatorname{SU}(2)$
c Complex matrices -the two rep. not equivalent
E.g su(3) Gell-Mann matrices: quarks and antiquarks

Representation of $\mathfrak{s u}(2)$

1. Unitary representation of $\mathfrak{s u}(2)$ are finite dimensional.
2. $=\quad=J_{1}^{2}+\quad+\quad$ is a Casimir operator.
3. To any $\ell \in \frac{1}{2} \mathbb{N}$ corresponds a $(2 \ell+1)$-dimensional representation.

$$
\mathcal{D}_{\ell}=\{|\ell, m\rangle,-\ell \leq m \leq \ell\}
$$

4. Introducing $L_{ \pm=L_{1} \pm i L_{2}}$ using the back and forth $\mathbb{R} \leftrightarrow \mathbb{C}$

$$
\begin{aligned}
|\ell, m\rangle & =\ell(\ell+1)|\ell, m\rangle \\
|\ell, m\rangle & =m|\ell, m\rangle \\
|\ell, m\rangle & =\sqrt{(\ell-m)(\ell+m+1)}|\ell, m+1\rangle \\
|\ell, m\rangle & =\sqrt{(\ell+m)(\ell-m+1)}|\ell, m-1\rangle
\end{aligned}
$$

The representation \mathcal{D}_{ℓ} is uniquely defined by the vector $|\ell, \ell\rangle$

$$
J_{-}^{2 \ell+1}|\ell, \ell\rangle=0
$$

The vector $|\ell, \ell\rangle$ is uniquely defined by

$$
\begin{aligned}
J_{0}|\ell, \ell\rangle & =\ell|\ell, \ell\rangle \\
J_{+}|\ell, \ell\rangle & =0 .
\end{aligned}
$$

Real, Complex or pseudo-real?

$\mathfrak{s u}(2)$ Vectors

(1) Vector representation: $\mathcal{D}_{1}=\{|1,-1\rangle,|1,0\rangle,|1,1\rangle\}$

- $\overline{1,0\rangle}=|1,0\rangle$, i.e., real
- $\overline{|1,-1\rangle}=-|1,1\rangle$
(2) The matrices are after change of basis

$$
\left.\begin{array}{l}
J_{1}=\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
\sqrt{2} & 0 & \sqrt{2} \\
0 & \sqrt{2} & 0
\end{array}\right)
\end{array} \rightarrow \rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) ~ 子 \begin{array}{ccc}
0 & i \sqrt{2} & 0 \\
-i \sqrt{2} & 0 & i \sqrt{2} \\
0 & -i \sqrt{2} & 0
\end{array}\right) ~ \rightarrow\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right)
$$

(3) Purely imaginary matrices

Real representation: a vector has three degrees of freedom

Real, Complex or pseudo-real?

$\mathfrak{s u}(2)$ Spinors

(1) Spinor representation: $\mathcal{D}_{\frac{1}{2}}=\left\{\left|\frac{1}{2},-\frac{1}{2}\right\rangle,\left|\frac{1}{2}, \frac{1}{2}\right\rangle\right\}$

- $\left|\frac{1}{2},-\frac{1}{2}\right\rangle,\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ complex
- $\overline{\left.\frac{1}{2},-\frac{1}{2}\right\rangle} \neq\left|\frac{1}{2}, \frac{1}{2}\right\rangle$
(2) Matrices acting on spinor Pauli matrices
(3) For $\epsilon=i \sigma_{2}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ we have for the Pauli matrices

$$
-\bar{\sigma}_{i}=\epsilon^{-1} \sigma_{i} \epsilon .
$$

(4) The representation is pseudo-real

$$
\psi=\binom{\psi^{1}}{\psi^{2}} \Rightarrow \bar{\psi}=\binom{\bar{\psi}_{1}}{\bar{\psi}_{2}} \sim \epsilon \psi=\binom{\psi^{2}}{-\psi^{1}}
$$

(5) We thus have two degrees of freedom.

Solve the second puzzle ©

D Some preliminaries

2) General principles

- Basic definitions
- Lie algebras
- Representations of Lie algebras
(3) Examples with $\mathfrak{s u}(3)$

Representations of Lie algebras

Any Lie algebra

Extends to any Lie algebras

(1) Any Lie algebra has
a simultaneously commuting generators i.e., of type J_{0} their eigenvalues characterise the representation
b creation operators, i.e., of type J_{+}
all states obtained from a vacuum
c annihilation operators, i.e., of type J_{-} annihilated the vacuum
d Enough to consider an equal number of generator each type : $\left(h_{i}, E_{i}^{+}, E_{i}^{-}\right)$

$$
\left[h_{i}, E_{i}^{ \pm}\right]= \pm 2 E_{i}^{ \pm}, \quad\left[E_{i}^{+}, E_{i}^{-}\right]=h_{i}
$$

Satisfying an $\mathfrak{s l}(2, \mathbb{C})$ algebra: so all is known!
(2) For a compact Lie algebra all representations
(1) unitary are finite dimensional
(2) can be obtained in a way similar to $\mathfrak{s u}(2)$
\longrightarrow H. Weyl

Differential realisation of $\mathfrak{s u}(3)$

Fundamental and anti-fundamental representations

\diamond Fundamental representation: $1 / 2 \lambda_{a} \rightarrow z^{1}, z^{2}, z^{3} \in \mathbb{C}^{3}$.
\diamond Anti-fundamental representation: $-1 / 2 \bar{\lambda}_{a} \rightarrow \bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}$.
\diamond From Gell-Mann matrices we deduce

$$
\begin{gathered}
\lambda_{3} \rightarrow h_{1}=\left(z^{1} \partial_{1}-z^{2} \partial_{2}\right)-\left(\bar{z}_{1} \bar{\partial}^{1}-\bar{z}_{2} \bar{\partial}^{2}\right) \\
-\frac{1}{4} \lambda_{3}+\frac{\sqrt{3}}{4} \lambda_{8} \rightarrow h_{2}=\left(z^{2} \partial_{2}-z^{3} \partial_{3}\right)-\left(\bar{z}_{2} \bar{\partial}^{2}-\bar{z}_{3} \bar{\partial}^{3}\right) \\
\frac{1}{2}\left(\lambda_{1}+i \lambda_{2}\right) \rightarrow E_{1}^{+}=z^{1} \partial_{2}-\bar{z}_{2} \bar{\partial}^{1} \quad \frac{1}{2}\left(\lambda_{1}-i \lambda_{2}\right) \rightarrow E_{1}^{-}=z^{2} \partial_{1}-\bar{z}_{1} \bar{\partial}^{2} \\
\frac{1}{2}\left(\lambda_{6}+i \lambda_{7}\right) \rightarrow E_{2}^{+}=z^{2} \partial_{3}-\bar{z}_{3} \bar{\partial}^{2} \quad \frac{1}{2}\left(\lambda_{6}-i \lambda_{7}\right) \rightarrow E_{2}^{-}=z^{3} \partial_{2}-\bar{z}_{2} \bar{\partial}^{3} \\
\frac{1}{2}\left(\lambda_{4}+i \lambda_{5}\right) \rightarrow E_{3}^{+}=z^{1} \partial_{3}-\bar{z}_{3} \bar{\partial}^{1} \quad \frac{1}{2}\left(\lambda_{4}-i \lambda_{5}\right) \rightarrow E_{3}^{-}=z^{3} \partial_{1}-\bar{z}_{1} \bar{\partial}^{3}
\end{gathered}
$$

Satisfying

$$
\begin{array}{ll}
i=1,2, & {\left[h_{i}, E_{i}^{ \pm}\right]= \pm 2 E_{i}^{ \pm}, \quad\left[E_{i}^{+}, E_{i}^{-}\right]=h_{i},} \\
& {\left[E_{1}^{+}, E_{2}^{+}\right]=E_{3}^{+}, \quad\left[E_{1}^{-}, E_{2}^{-}\right]=-E_{3}^{-} .}
\end{array}
$$

\diamond All representations are constructed from $\left(h_{i}, E_{i}^{+}, E_{i}^{-}\right), i=1,2$.

Polynomial realisation of $\mathfrak{s u}(3)$ representations

Polynomial representations

\diamond The vacuum of the representation $\mathcal{D}_{m_{1}, m_{2}}$ is

- annihilated by annihilation operators

$$
\left.\begin{array}{l}
E_{1}^{+} \boldsymbol{\phi}_{m_{1}, m_{2}}=0 \\
E_{2}^{+} \boldsymbol{\Phi}_{m_{1}, m_{2}}=0
\end{array}\right\} \Longrightarrow \boldsymbol{\Phi}_{m_{1}, m_{2}}(z, \bar{z})=\boldsymbol{\Phi}_{m_{1}, m_{2}}\left(z^{1}, \bar{z}_{3}\right)
$$

- Specified by the eigenvalues of h_{1}, h_{2}
\diamond Action of the annihilation operators: representation.
\diamond Scalar product

$$
(f, g)=\frac{i}{8 \pi^{3}} \int \mathrm{~d}^{3} z \mathrm{~d}^{3} \bar{z} \bar{f}(z, \bar{z}) g(z, \bar{z}) e^{-\left|z^{1}\right|^{2}-\left|z^{2}\right|^{2}-\left|z^{3}\right|^{2}} .
$$

The representation is unitary if $m_{1}, m_{2} \in \mathbb{N}$.

The ten-dimensional representation

Polynomial representations

- The representations $\mathcal{D}_{m, 0}$ vacuum: $\Phi_{m, 0}=\left(z^{1}\right)^{m}$

$$
\begin{array}{r}
\mathcal{D}_{m, 0}=\left\{\psi_{a_{1}, a_{2}, a_{3}}(z)=\frac{1}{\sqrt{a_{1}!a_{2}!a_{3}!}}\left(z^{1}\right)^{a_{1}}\left(z^{2}\right)^{a_{2}}\left(z^{3}\right)^{a_{3}}\right. \\
\left.0 \leq a_{1}, a_{2}, a_{3} \leq m, a_{1}+a_{2}+a_{3}=m\right\}
\end{array}
$$

- Othonormal basis: $\left(\psi_{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}}, \psi_{a_{1}, a_{2}, a_{3}}\right)=\delta_{a_{1}^{\prime} a_{1}} \delta_{a_{2}^{\prime} a_{2}} \delta_{a_{3}^{\prime} a_{3}}$.
- $\psi_{a_{1}, a_{2}, a_{3}}=\Phi_{a_{1}-a_{2}, a_{2}-a_{3}}, h_{i} \Phi_{m_{1}, m_{2}}=m_{i} \Phi_{m_{1}, m_{2}}$
- The ten-dimensional representation $\mathcal{D}_{3,0}$.

The adjoint representation

Polynomial representations

- Adjoint representation: $\mathcal{D}_{1,1}$ vacuum $\Phi_{1,1}=z^{1} \bar{z}_{3}$

$$
\begin{aligned}
\mathcal{D}_{1,1}=\{ & \Phi_{1,1}(z)=z^{1} \bar{z}_{3}, \Phi_{0,-1}(z)=z^{1} \bar{z}_{2}, \Phi_{-1,0}(z)=z^{2} \bar{z}_{3} \\
& \Phi_{-1,-1}(z)=z^{3} \bar{z}_{1}, \Phi_{0,1}(z)=z^{2} \bar{z}_{1}, \Phi_{1,0}(z)=z^{2} \bar{z}_{2} \\
& \left.\Phi_{0,0}(z)=\frac{1}{2}\left(\left|z^{1}\right|^{2}-\left|z^{2}\right|^{2}\right), \Phi_{0,0}^{\prime}(z)=\frac{1}{2}\left(\left|z^{2}\right|^{2}-\left|z^{3}\right|^{2}\right)\right\}
\end{aligned}
$$

- Orthonormal basis

More complicated case

Polynomial representations

- Representation : $\mathcal{D}_{2,2}=\underline{\mathbf{2 7}}:$ vacuum $\Phi_{2,2}=\left(z^{1}\right)^{2}\left(\bar{z}_{3}\right)^{2}$

- We have $\left.h_{i}\left|m_{1}, m_{2}\right\rangle=\left.m_{i}\right|^{-2\rangle}, m_{2}\right\rangle$
- The algorithm gives precisely the dimension of each space. E.g:

$$
|2,-1\rangle=\left\{\begin{array}{l}
\Phi_{2,-1}=\frac{1}{2}\left(z^{1} z^{2}\left(\bar{z}_{2}\right)^{2}-\left(z^{1}\right)^{2} \bar{z}_{1} \bar{z}_{2}\right) \\
\Phi_{2,-1}^{\prime}=\frac{1}{\sqrt{14}}\left(-\left(z^{1}\right)^{2} \bar{z}_{1} \bar{z}_{2}+2 z^{1} z^{2}\left(\bar{z}_{2}\right)^{2}-2 z^{1} z^{3} \bar{z}_{2} \bar{z}_{3}\right)
\end{array}\right.
$$

Some extensions

Some generalisations

(1) There exists analogous differential realisation
for the Lie algebras $A_{n}, B_{n}, C_{n}, D_{n}$
enables to have "polynomial" reps, (except spinors of $S O(n)$)
(2) The eigenvalues of h_{1}, h_{2} do not completely characterise states needs new operator commuting with h_{1}, h_{2} :
Casimir of the first $\mathfrak{s u}(2) J=h_{1}^{2}+2 E_{1}^{-} E_{1}^{+}+2 E_{1}^{+} E_{1}^{-}$

$$
\left.\begin{array}{l}
\Phi_{2,-1} \\
\Phi_{2,-1}^{\prime}
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\rho_{24,2,-1}=\frac{1}{2} z^{1} z^{2}\left(\bar{z}_{2}\right)^{2}-\frac{1}{2}\left(z^{1}\right)^{2} \bar{z}_{1} \bar{z}_{2} \\
\rho_{8,2,-1}=\frac{1}{6}\left(z^{1}\right)^{2} \bar{z}_{1} \bar{z}_{2}-\frac{1}{6} z^{1} z^{2}\left(\bar{z}_{2}\right)^{2}+\frac{2}{3} z^{1} z^{3} \overline{\bar{z}}_{2} \bar{z}_{3}
\end{array}\right.
$$

Missing label problem: extends to any Lie algebra
(3) Clebsch-Gordan coefficients: tensor product of reps.

$$
\begin{array}{cc}
\mathcal{D} \otimes \mathcal{D}^{\prime}= & \oplus_{k} \mathcal{D}_{k} \\
\uparrow & \uparrow \\
\uparrow \\
\binom{z}{\bar{z}}\binom{w}{\bar{w}} & \binom{z, w}{\bar{z}, \bar{w}}
\end{array}
$$

doubling the variables leads to Clebsch-Gordan coefficients
Extends to the Lie algebras $A_{n}, B_{n}, C_{n}, D_{n}$

Thank you for your attention!

