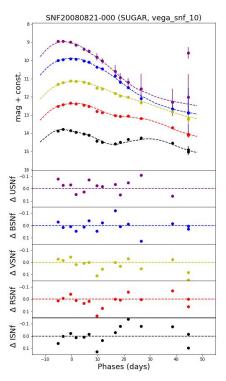


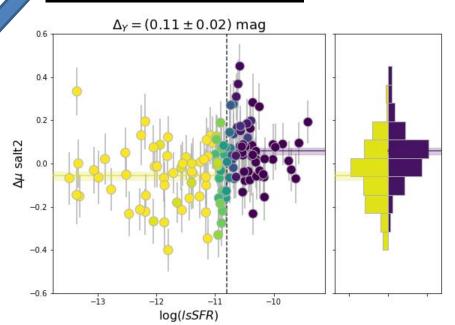
Estimate light curves parameters with SUGAR


Florian Mondon
Ph.D avisor: Emmanuel Gangler

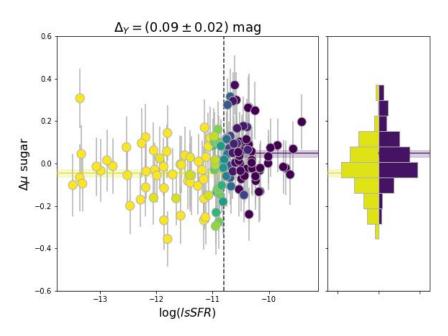
SUGAR parameters fitting using spectra or light curves

<u>Light curves fitting:</u>

SUGAR standardisation:


$$\mu_{sugar} = m_B^* - M_B - \sum_{i=1}^3 lpha_i q_i - eta A_v$$

	BVR	UBVRI	UBVR	BVRI	Spectro
σ_{int} SUGAR	0,125	0,123	0,127	0,125	0,117
wrms SUGAR	$0,135\pm0,010$	$0,132\pm0,010$	$0,135\pm0,010$	$0,\!134\pm0,\!010$	$0,\!125\pm0,010$
σ_{int} SALT2	0,130	0,125	0,118	0,138	
wrms SALT2	$0,142\pm0,010$	$0,136\pm0,010$	$0,131\pm0,010$	$0,\!148\pm0,\!010$	


Table 1: Compared performances of SUGAR and SALT2 on the values of Hubble diagram wrms and σ_{int}

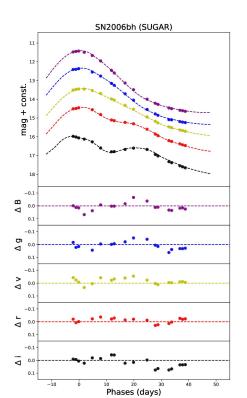
Comparaison du LsSFR step entre une standardisation SALT2 et SUGAR

Standardisation SALT2:

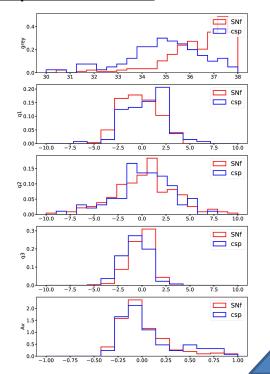
Standardisation SUGAR:

Summary of the SNe la Standardization

paramètres	wRMS	σ_{int}	ΔM	ΔY
salt2	0.140 ± 0.008	0.128	=	-
sugar	0.134 ± 0.008	0.124		
$\mathrm{salt2} + \Delta M$	0.133 ± 0.008	0.121	0.12 ± 0.03	-
$\mathrm{sugar} + \Delta M$	0.125 ± 0.008	0.116	0.09 ± 0.03	-
$\mathrm{salt2} + \Delta Y$	0.128 ± 0.008	0.116	=	0.15 ± 0.03
$\mathrm{sugar} + \Delta Y$	0.122 ± 0.008	0.112	-	0.13 ± 0.03
$\mathrm{salt2} + \Delta M + \Delta Y$	0.127 ± 0.008	0.115	0.05 ± 0.03	0.11 ± 0.03
$sugar + \Delta M + \Delta Y$	0.121 ± 0.008	0.111	0.05 ± 0.03	0.10 ± 0.03

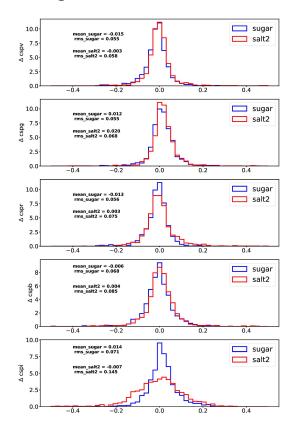

Table 1: Summary of the SNe Ia Standardization (UBVRI)

LsSFR step :
$$\mu_{sugar} = m_B^* - M_B - \sum_{i=1}^3 q_i lpha_{t,\lambda,i} - A_V eta + p \ \Delta Y$$

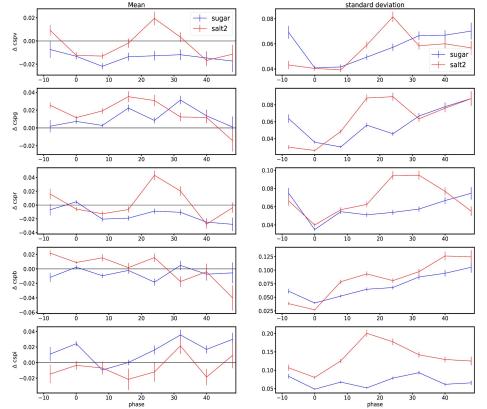

Mass step :
$$\mu_{sugar} = m_B^* - M_B - \sum_{i=1}^3 q_i lpha_{t,\lambda,i} - A_V eta + p \ \Delta M$$

Light curve fitting with external data set

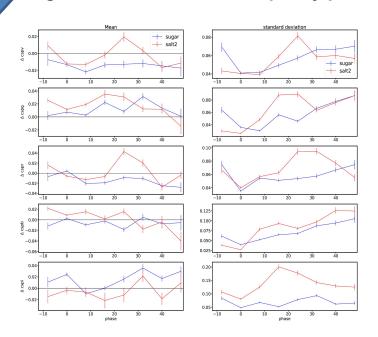
Light curve fitting example:



SUGAR parameters distribution CSP compare to SNf:



CSP Light curves residuals


Light curves residuals:

Light curves residuals sample by phase:

<u>Light curves residuals sample by phase:</u>

Error model:

$$\sigma^2_{residuals} = \sigma^2_{mesure} + \sigma^2_{model}$$

How to determine σ^2_{model} ?

What we want:

 Complete error model in phase and wavelength

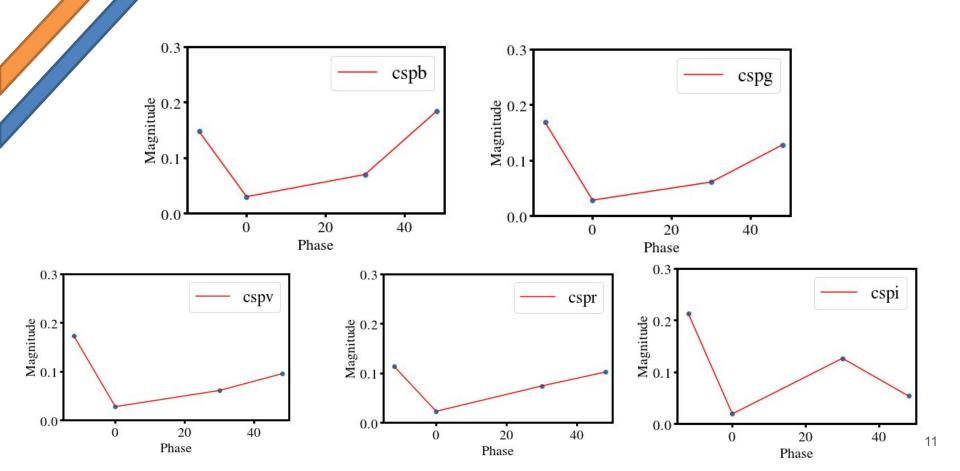
What we have:

 residuals for different phase and bands in CSP light curves

Likelihood:

$$egin{aligned} -2\ln(L) = cst - \ln(\det(w)) + \sum rac{residuals^2}{\sigma_{residuals}^2} \ & \ \sigma_{residuals}^2 = \sigma_{mesure}^2 + \sigma_{model}^2 \end{aligned}$$

Description of σ^2_{model} by 2D linear Spline


Fit the nodes that describe this spline

First fit all light curves

Residuals

First fit the Spline that maximise the Light curves:

$$-2\ln(L) = cst - \ln(\det(w)) + \sum rac{residuals^2}{\sigma_{residuals}^2} \ \sigma_{residuals}^2 = \sigma_{mesure}^2 + \sigma_{model}^2$$

Conclusion

- SUGAR can be use with external data set
- We built a SUGAR model error
- We still have an LsSFR/Mass step with SUGAR standardisation