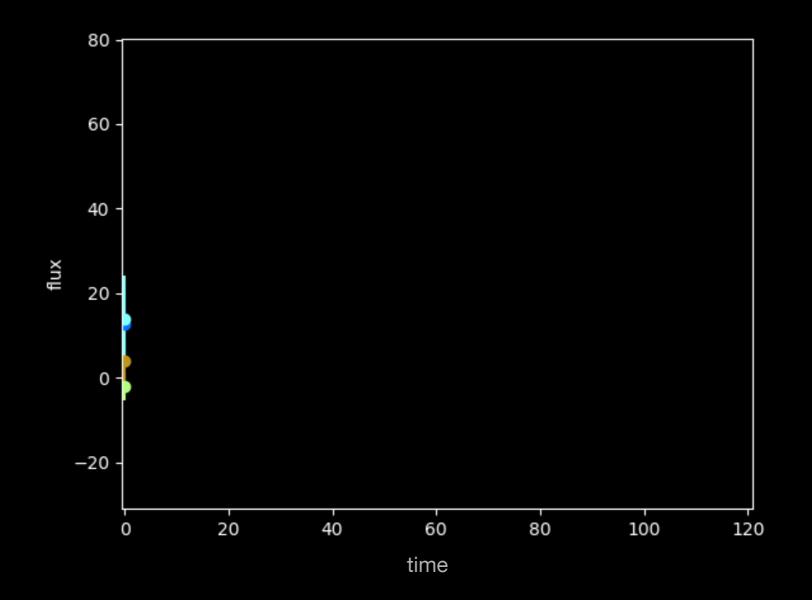
ML classifiers: brokers and towards SN samples for cosmology with Bayesian probabilities

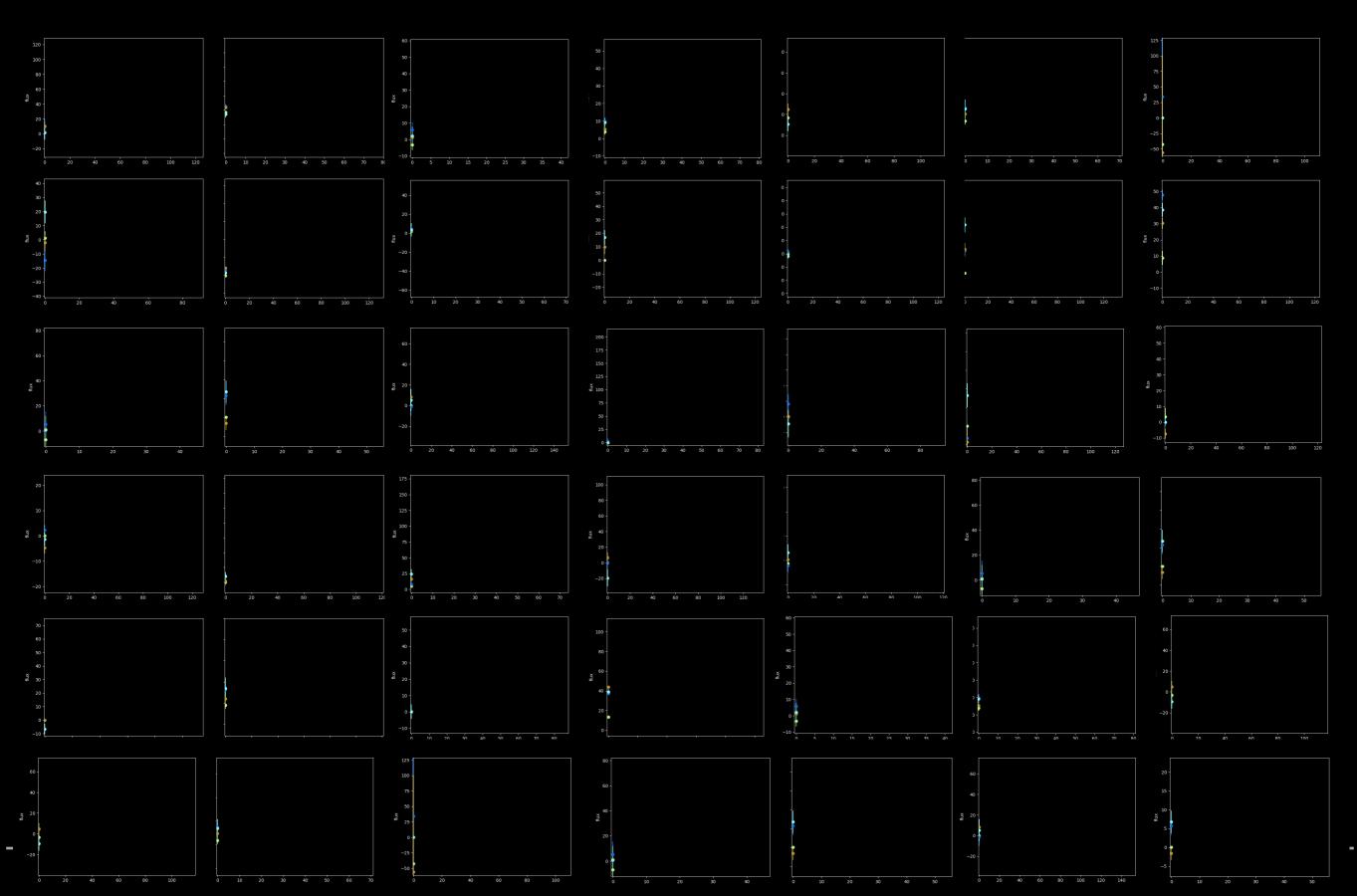
Anais Möller CNRS / LPC LSST-France, Clermont 2019

The challenge

(time-domain + SN cosmology)



The challenge



The challenge

(time-domain + SN cosmology)

How can we maximise our science output with LSST?

- Nature
- Size
- Timeliness

Limited resources:

Spectroscopic

- Photometric

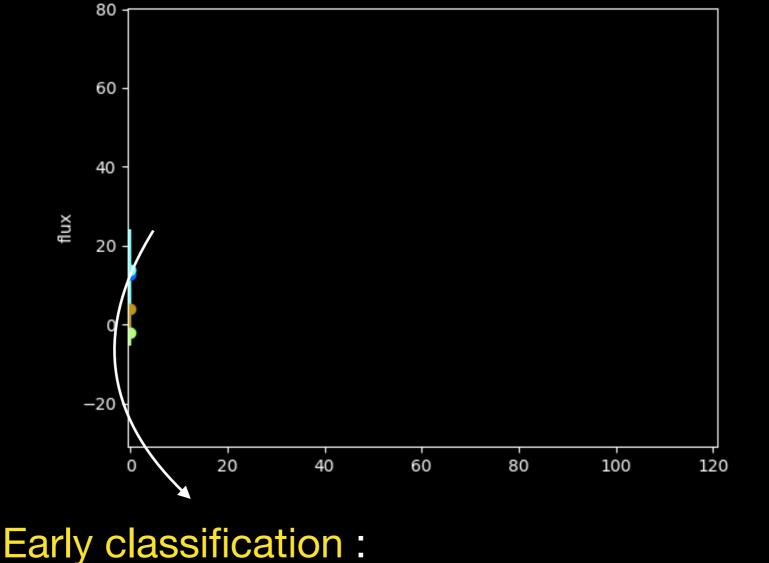
- Human

Science analyses:

- Robustness
- Selection effects

How can we maximise our science output with LSST? photometric classification

How can we maximise our science output with LSST? photometric classification

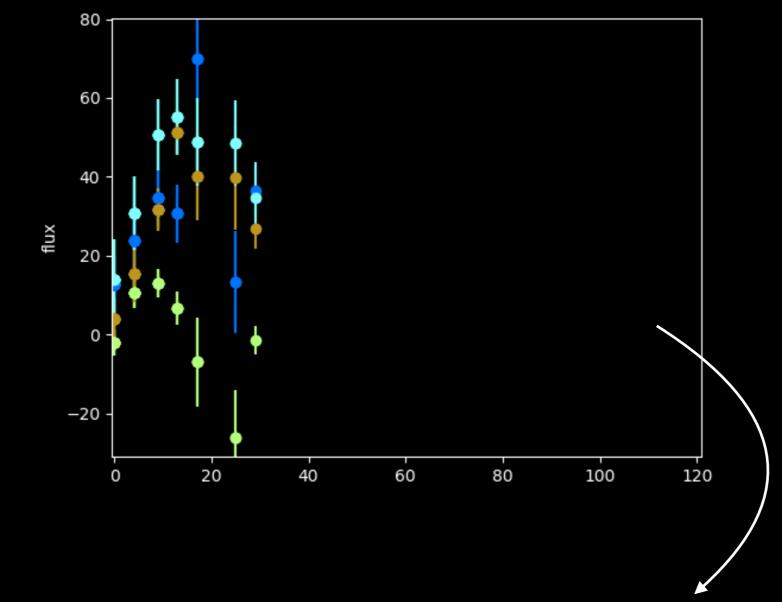


brokers see next talks

follow-up: spectroscopic, multi wavelength

(not a new idea, we already do some selection for spectroscopic fup)

How can we maximise our science output with LSST? photometric classification



Complete light-curve classification: science samples

for statistical analyses

Does not need spectroscopic classification, larger samples, probing new parameter space

Results from the Supernova Photometric Classification Challenge

RICHARD KESSLER,^{1,2} BRUCE BASSETT,^{3,4,5} PAVEL BELOV,⁶ VASUDHA BHATNAGAR,⁷ HEATHER CAMPBELL,⁸ ALEX CONLEY,⁹ JOSHUA A. FRIEMAN,^{1,2,10} ALEXANDRE GLAZOV,⁶ SANTIAGO GONZÁLEZ-GAITÁN,¹¹ RENÉE HLOZEK,¹² SAURABH JHA,¹³ STEPHEN KUHLMANN,¹⁴ MARTIN KUNZ,¹⁵ HUBERT LAMPEITL,⁸ ASHISH MAHABAL,¹⁶ JAMES NEWLING,³ ROBERT C. NICHOL,⁸ DAVID PARKINSON,¹⁷ NINAN SAJEETH PHILIP,¹⁸ DOVI POZNANSKI,^{19,20} JOSEPH W. RICHARDS,^{20,21} STEVEN A. RODNEY,²² MASAO SAKO,²³ DONALD P. SCHNEIDER,²⁴ MATHEW SMITH,²⁵ MAXIMILIAN STRITZINGER,^{26,27,28} AND MELVIN VARUGHESE²⁹

		Classified	SN		
Participants	Abbreviation ^a	$+\mathrm{Z^b/noZ^c}$	$z_{\rm ph}{}^{\rm d}$	$\mathrm{CPU}^{\mathrm{e}}$	Description (strategy class ^f)
P. Belov and S. Glazov	Belov & Glazov	yes/no	no	90	light curve χ^2 test against Nugent templates (2)
S. Gonzalez	Gonzalez	yes/yes	no	120	cuts on SiFTO fit χ^2 and fit parameters (1)
J. Richards, Homrighausen,	InCA ^g	no/yes	no	1	Spline fit & nonlinear dimensionality
C. Schafer, P. Freeman					reduction (4)
J. Newling, M. Varuguese,	JEDI-KDE	yes/yes	no	10	Kernel Density Evaluation with 21 params (4)
B. Bassett, R. Hlozek,	JEDI Boost	yes/yes	no	10	Boosted decision trees (4)
D. Parkinson, M. Smith,	JEDI-Hubble	yes/no	no	10	Hubble diagram KDE (3)
H. Campbell, M. Hilton,	JEDI Combo	yes/no	no	10	Boosted decision trees $+$ Hubble KDE (3+4)
H. Lampeitl, M. Kunz,					
P. Patel (JEDI group ^h)					
S. Philip, V. Bhatnagar,	MGU+DU-1 ⁱ	no/yes	no	< 1	light curve slopes & Neural Network (2)
A. Singhal, A. Rai,	MGU+DU-2	no/yes	no	< 1	light curve slopes & Random Forests (2)
A. Mahabal, K. Indulekha					
H. Campbell, B. Nichol,	Portsmouth χ^2	yes/no	no	1	SALT2– χ_r^2 & False Discovery Rate Statistic (1)
H. Lampietl, M .Smith	Portsmouth-Hubble	yes/no	no	1	Deviation from parametrized Hubble diagram (3)
D. Poznanski	Poz2007 RAW	yes/no	yes	2	SN Automated Bayesian Classifier (SN-ABC) (2)
	Poz2007 OPT	yes/no	yes	2	SN–ABC with cuts to optimize $C_{\text{FoM}-\text{Ia}}$ (2).
S. Rodney	Rodney	yes/yes	yes	230	SN Ontology with Fuzzy Templates (2)
M. Sako	Sako	yes/yes	yes	120	χ^2 test against grid of Ia/II/Ibc templates (2)
S. Kuhlmann, R. Kessler	SNANA cuts	yes/yes	yes	2	Cut on MLCS fit probability, S/N & sampling (1)

MODELS AND SIMULATIONS FOR THE PHOTOMETRIC LSST ASTRONOMICAL TIME SERIES CLASSIFICATION CHALLENGE (Plasticc)

R. KESSLER^{1,2}, G. NARAYAN³, A. AVELINO⁴, E. BACHELET⁵, R. BISWAS⁶, P. J. BROWN⁷, D. F. CHERNOFF⁸, A. J. CONNOLLY⁹, M. DAI¹⁰, S. DANIEL⁹, R. DI STEFANO⁴, M. R. DROUT¹¹, L. GALBANY¹², S. GONZÁLEZ-GAITÁN¹³ M. L. GRAHAM⁹, R. HLOŽEK^{11,14}, E. E. O. ISHIDA¹⁵, J. GUILLOCHON⁴, S. W. JHA¹⁰, D. O. JONES¹⁶, K. S. MANDEL^{17,18}, D. MUTHUKRISHNA¹⁷, A. O'GRADY^{11,14}, C. M. PETERS¹⁴, J. R. PIEREL¹⁹, K. A. PONDER²⁰, A. PRŠA²¹, S. RODNEY¹⁹, V. A. VILLAR⁴

(The LSST Dark Energy Science Collaboration and the Transient and Variable Stars Science Collaboration)

Semi-supervised learning for photometric supernova classification*

Joseph W. Richards,^{1,2}† Darren Homrighausen,³ Peter E. Freeman,³ Chad M. Schafer³ and Dovi Poznanski^{1,4}

Photometric classification and redshift estimation of LSST Supernovae

Mi Dai,^{1*} Steve Kuhlmann,² Yun Wang³ and Eve Kovacs²

Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream

Gautham Narayan^{1,13}, Tayeb Zaidi², Monika D. Soraisam³, Zhe Wang⁴, Michelle Lochner^{5,6,7}, Thomas Matheson³, Abhijit Saha³, Shuo Yang⁴, Zhenge Zhao⁴, John Kececioglu⁴, Carlos Scheidegger⁴, Richard T. Snodgrass⁴, Tim Axelrod⁸, Tim Jenness^{9,10}, Robert S. Maier¹¹, Stephen T. Ridgway³, Robert L. Seaman¹², Eric Michael Evans⁴, Navdeep Singh⁴, Clark Taylor⁴, Jackson Toeniskoetter⁴, Eric Welch⁴, and Songzhe Zhu⁴ (The ANTARES Collaboration)

PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

MICHELLE LOCHNER¹, JASON D. MCEWEN², HIRANYA V. PEIRIS¹, OFER LAHAV¹, AND MAX K. WINTER¹ Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; dr.michelle.lochner@gmail.com ² Mullard Space Science Laboratory, University College London, Surrey RH5 6NT, UK Received 2016 March 15; revised 2016 July 6; accepted 2016 July 6; published 2016 August 23

A PROBABILISTIC APPROACH TO C ournal of Cosmology and Astroparticle Physics TION

PELICAN: deeP architecturE for the Light Curve ANalysis

Johanna Pasquet¹, Jérôme Pasquet², Marc Chaumont³ and Dominique Fouchez¹

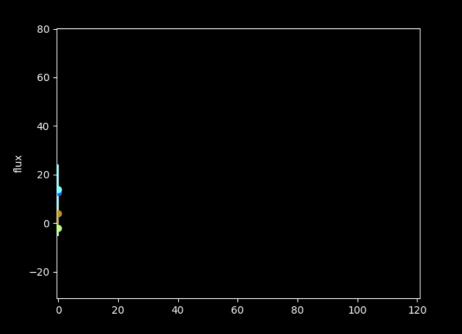
Kernel PCA for type Ia supernovae photometric classification

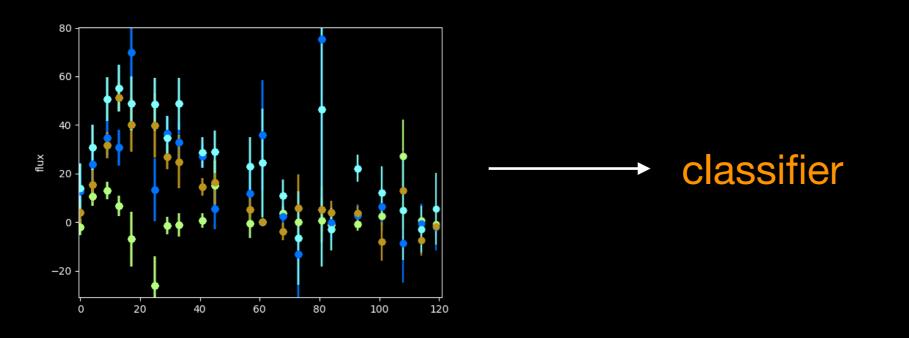
E. E. O. Ishida^{1,2*} and R. S. de Souza 3,1,2

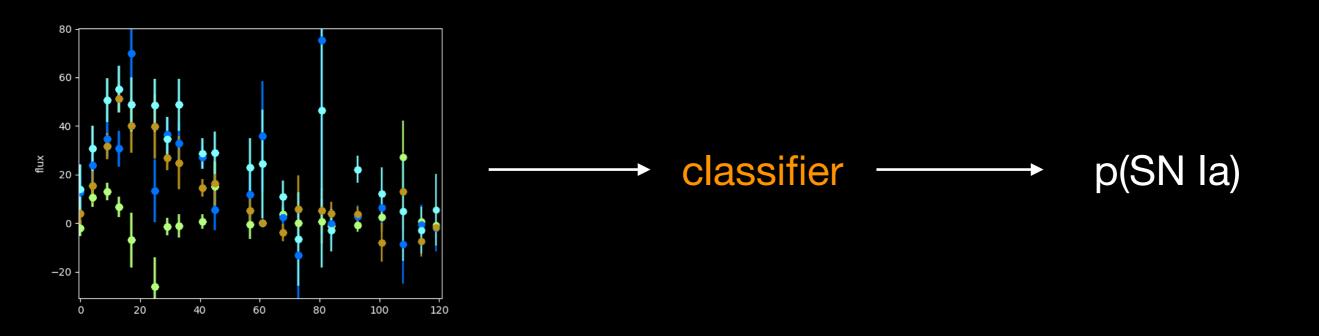
NATALIA V. KUZNETSOVA AND DRIAN IVI. CONNOLLY Received 2006 October 9; accepted 2006 December 8

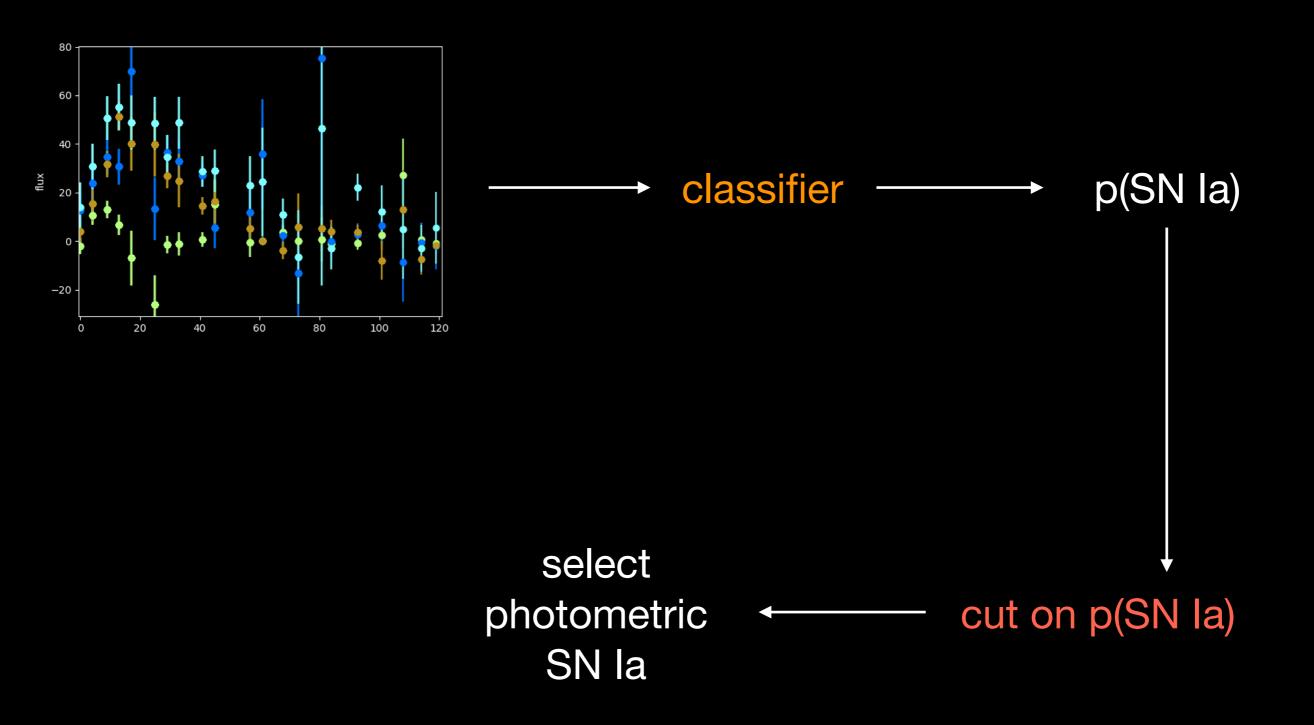
Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

A. Möller, a,b,c V. Ruhlmann-Kleider, c C. Leloup, c J. Neveu, c,d N. Palanque-Delabrouille, c J. Rich, c R. Carlberg, e C. Lidman f,b and C. Pritchet g









Möller & de Boissière arXiv: 1901.06384

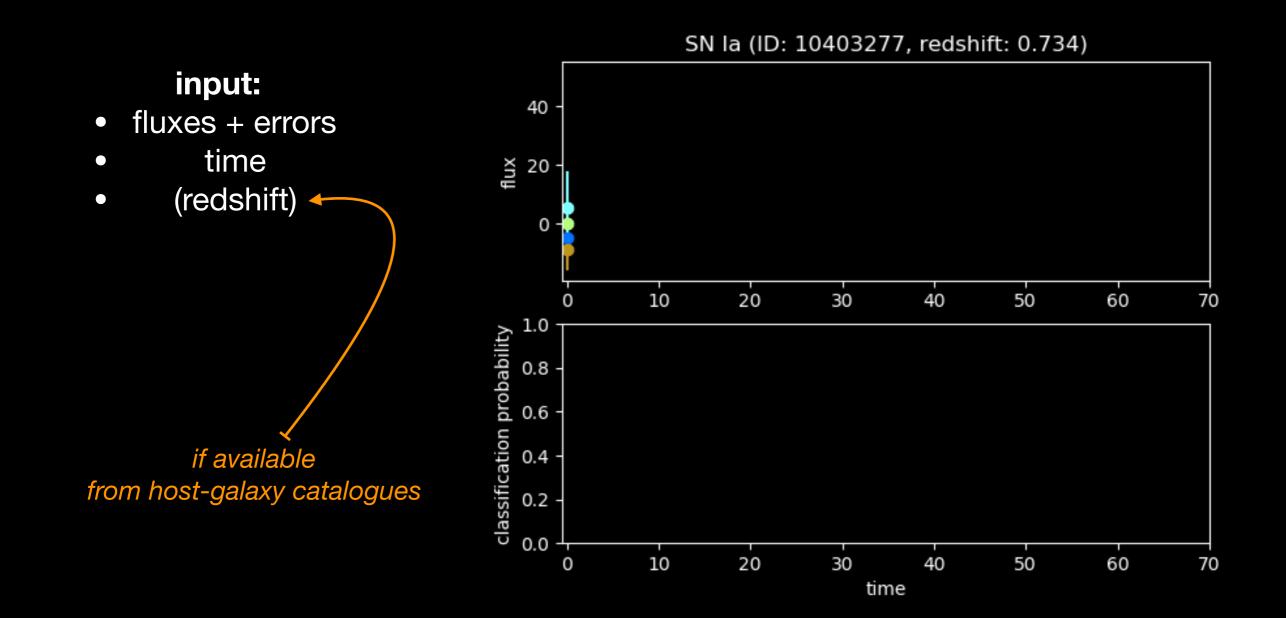
github: supernnova/SuperNNova

• Core algorithm: Recurrent Neural Networks (RNN)

- Recurrent Neural Network:
 - LSTM
 - GRU
- Bayesian RNNs
 - Variational (Gal+2016)
 - Bayes by Backprop (Fortunato+2017)
- Convolutional NN (soon!)

Trained & tested with supernovae simulations (DES based)

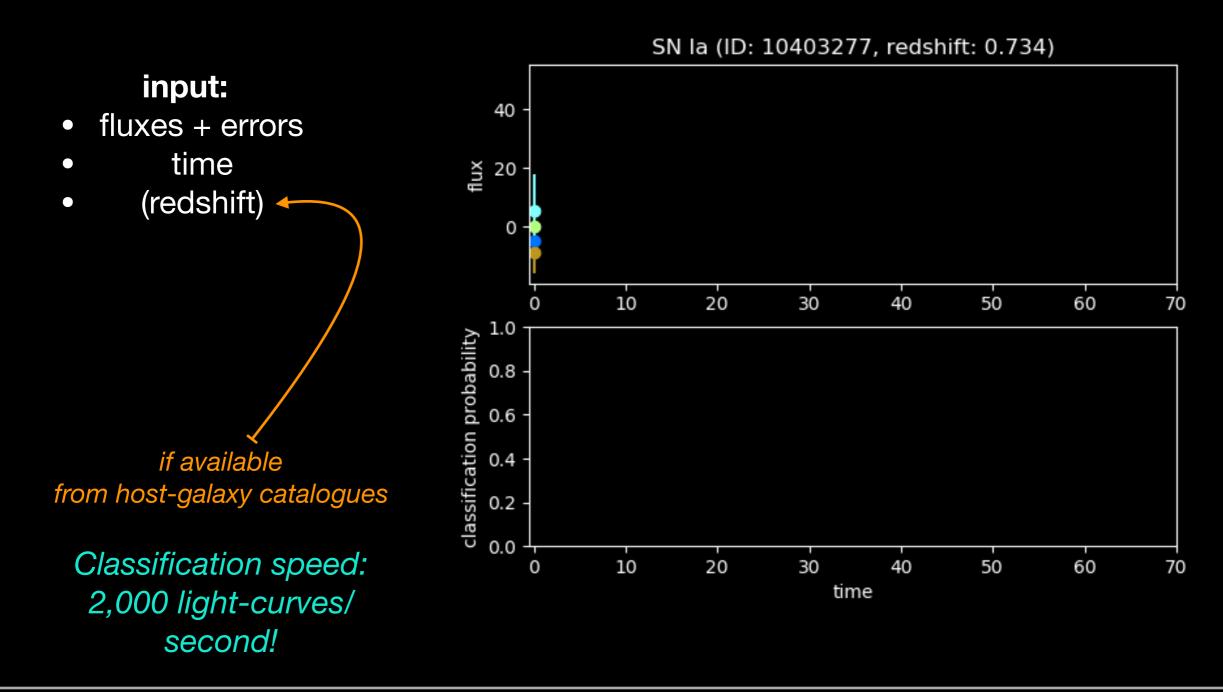
SuperNNova open source photometric classification



LSST-France Clermont 2019

A. Möller

SuperNNova open source photometric classification

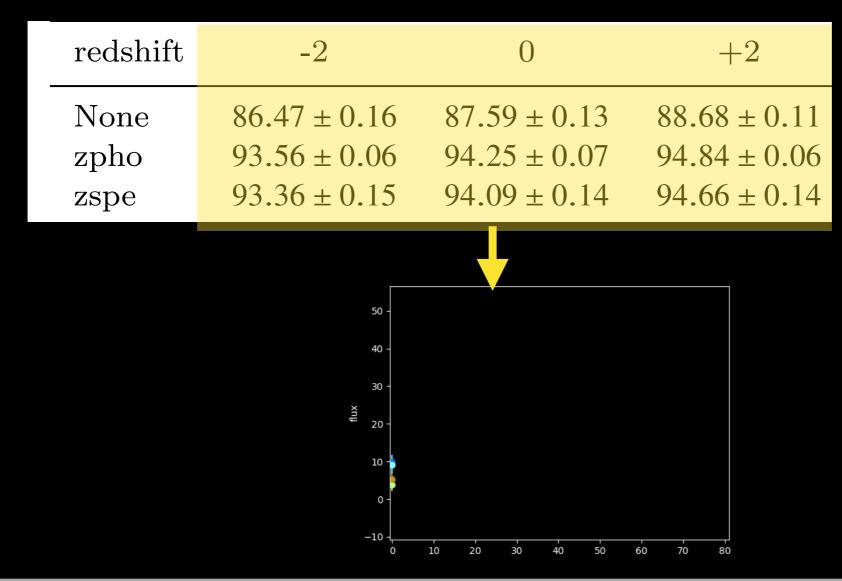


A. Möller

SNe la vs. Non la accuracy

SNe la vs. Non la accuracy

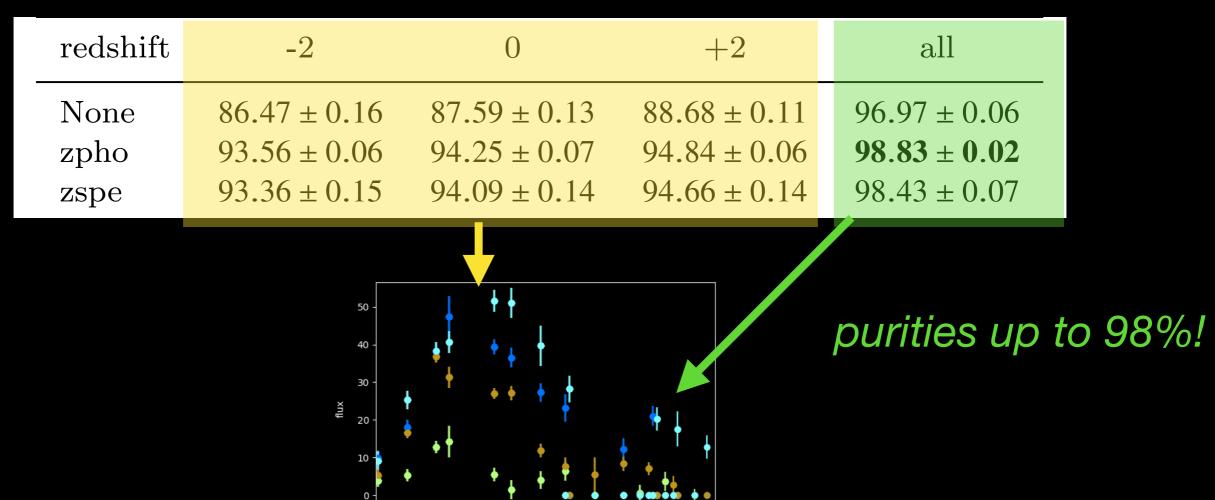
Early classification



SNe la vs. Non la accuracy

20

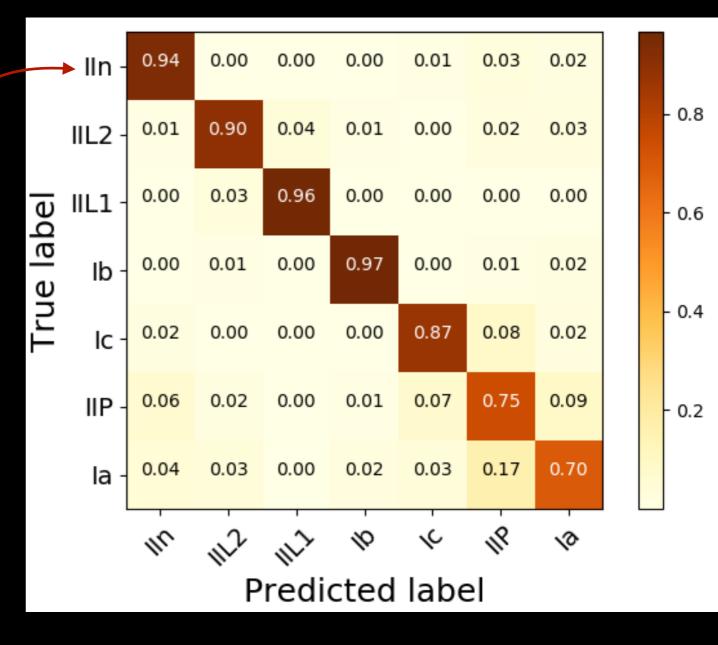
Complete



SuperNNova open source photometric classification

Many SN types accuracy

redshift	-2	0	+2	all
None	57.2 ± 0.31	60.08 ± 0.34	62.99 ± 0.32	86.89 ± 0.2
zpho zspe	64.69 ± 0.21 63.99 ± 0.58	67.32 ± 0.26 66.74 ± 0.62	$69.96 \pm 0.25 \\ 69.43 \pm 0.65$	90.02 ± 0.14 90.14 ± 0.47



Bayesian RNNs

implementations: variational (Gal+2016), Bayes by Backdrop (Fortunato+2017)

Bayesian RNNs

implementations: variational (Gal+2016), Bayes by Backdrop (Fortunato+2017)

Bayesian RNNs Representativeness

Model 1: representative model

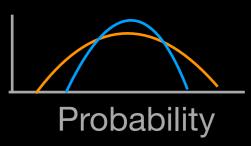
Model 2: train non-representative model

Bayesian RNNs Representativeness

Model 1: representative model

Model 2: train non-representative model

accuracy changes slightly (<prob> are not the most indicative) non-representative models give larger uncertainties!

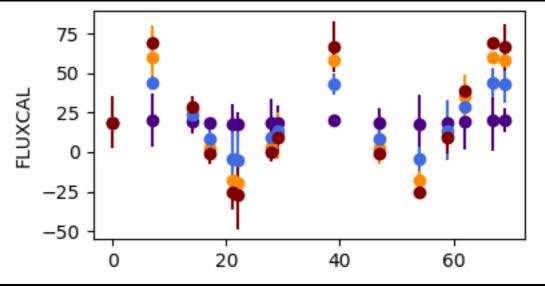


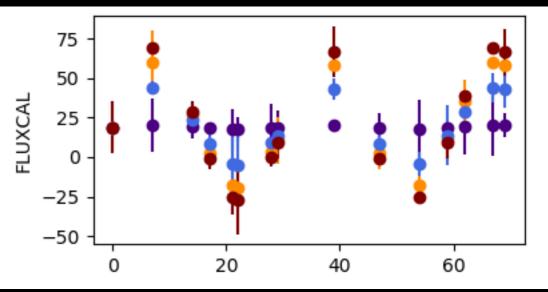
classify representative sample

SuperNNova open source photometric

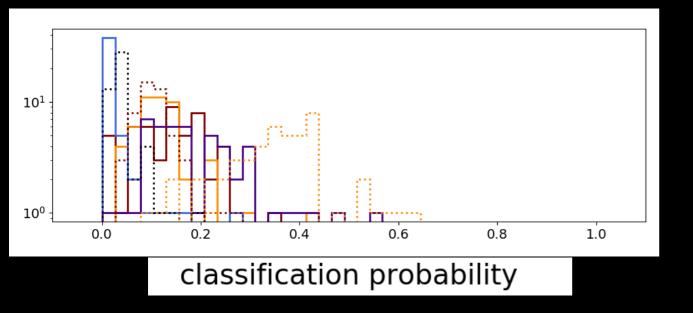
en source photometric classification

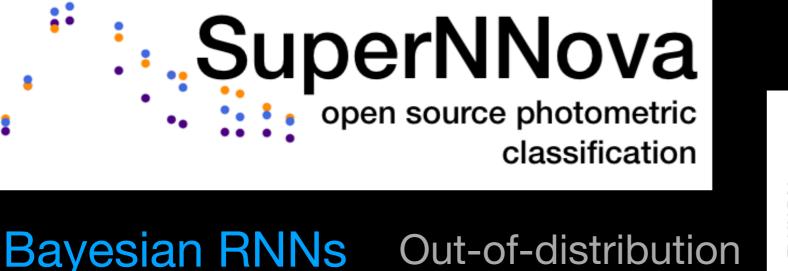
Bayesian RNNs Out-of-distribution

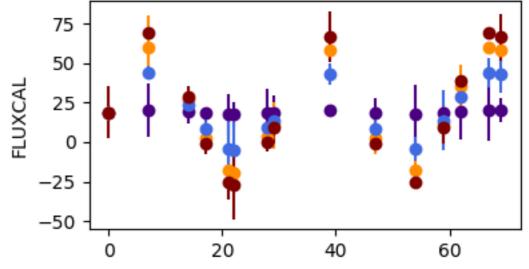




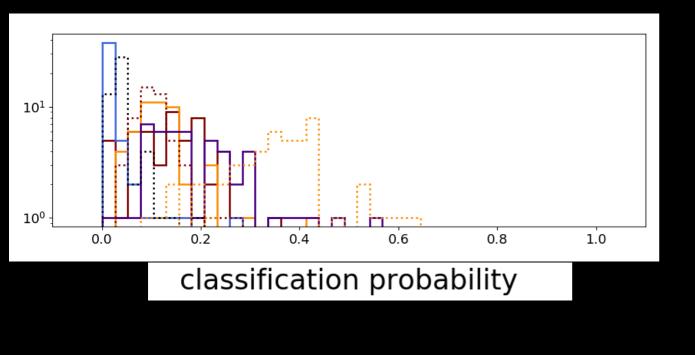
low probability for any class



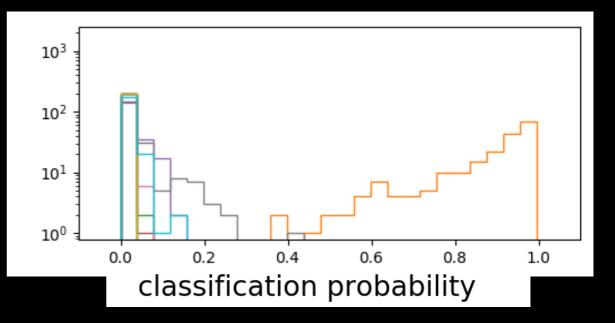




low probability for any class



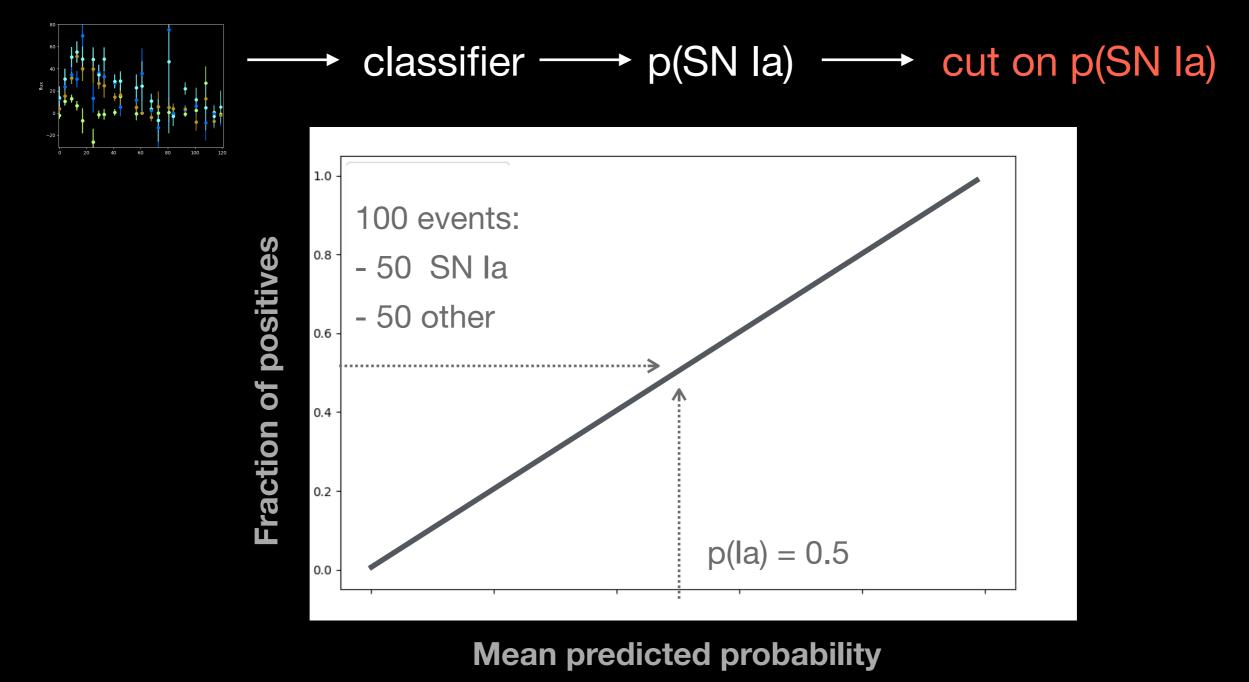
high probability for "less-known" class but... BNNs can give us high-probability but large uncertainty



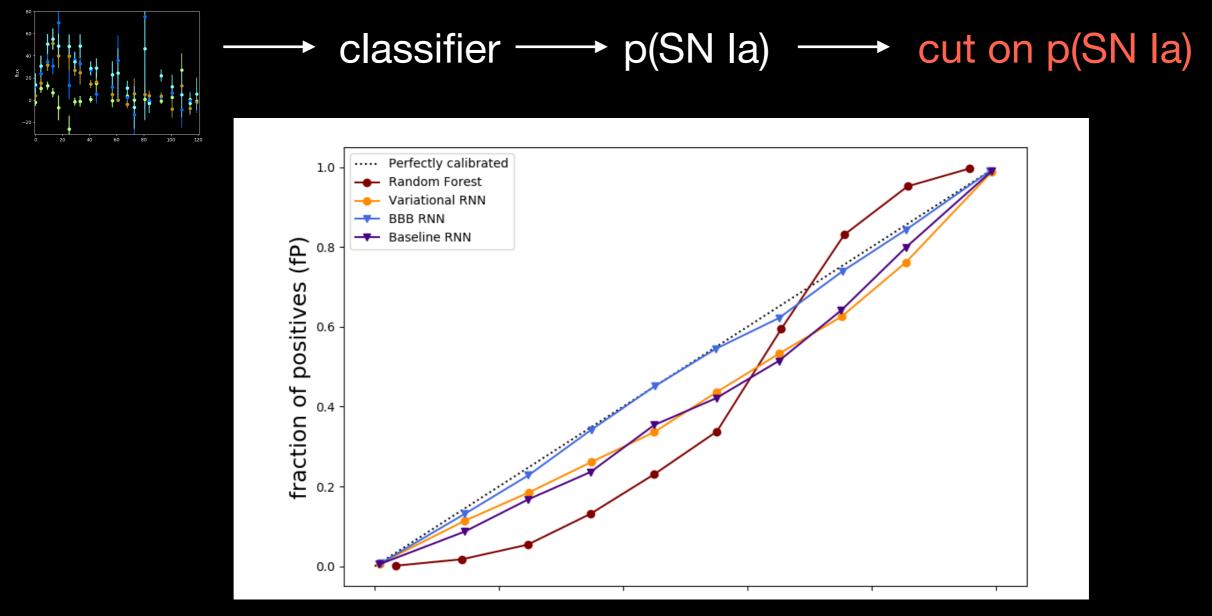
LSST-France Clermont 2019

A. Möller

Selecting photometric samples for statistical studies



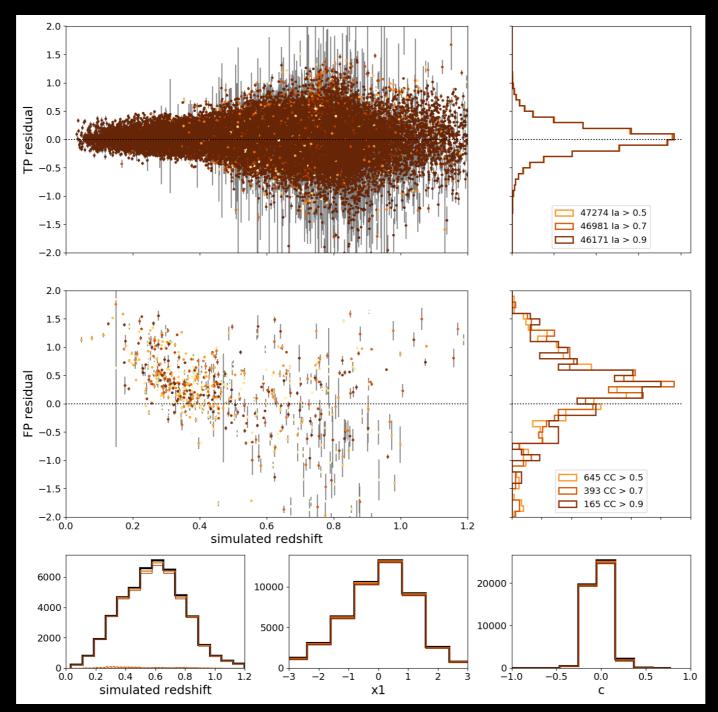
Selecting photometric samples for statistical studies



Mean predicted probability



Selecting photometric samples for cosmology



A. Möller

LSST-France Clermont 2019

Dark Energy Survey

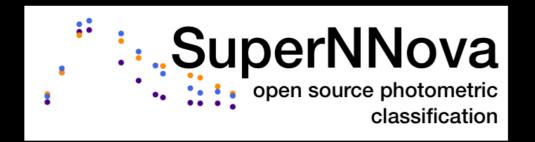
SURVEY	SNe la	wErr (stat + sys)
JLA (2014)	740	0,054
Pantheon (2018)	1049	0,040
DES 3YR (2018) spec	334	0,057
DES 5YR spec	~500	?
DES 5YR photo	~2000 perNNova	?
	open source photometric classification	

Classification: early (brokers), complete (cosmology)

Fast, reliable, statistically sound.

Classification: early (brokers), complete (cosmology)

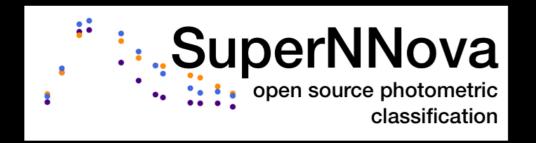
Fast, reliable, statistically sound.



Accurate: Early >86%, complete > 97% SN Ia cosmology (<2% contamination)

Classification: early (brokers), complete (cosmology)

Fast, reliable, statistically sound.



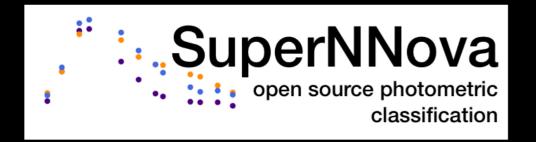
Accurate: Early >86%, complete > 97% SN Ia cosmology (<2% contamination)

Bayesian RNNs = classification model uncertainty

great to detect anomalies, asses representativity, select events poorly characterised with current model

Classification: early (brokers), complete (cosmology)

Fast, reliable, can be statistically sound.



Accurate: Early >86%, complete > 97% SN Ia cosmology (<2% contamination)

Bayesian RNNs = classification model uncertainty

great to detect anomalies, asses representativity, select events poorly characterised with current model

Real data: Dark Energy Survey 5-year supernova sample

A. Möller

github: supernnova/SuperNNova

SuperNNova

Search docs

- System configuration
- **Environment configuration**
- Quickstart guide (GitHub)
- Quickstart guide (pip)
- FAQ
- **BUILDING THE DATABASE**
- Data walkthrough
- Data documentation

EXPERIMENT CONFIGURATIONS

- Hyperparameters
- **Experiment Settings**

- Training walkthrough
- Training documentation

Validation walkthrough Validation documentation

VISUALIZING DATA AND PREDICTIONS

vu lataat -

Visualization walkthrough

Read the Docs.

Docs » Welcome to SuperNNova's documentation!

Welcome to SuperNNova's documentation!

SuperNNova • • • open source photometric

classification

Getting started

- System configuration
- Environment configuration
- Quickstart guide (GitHub)
- Quickstart guide (pip)
- FAQ

Building the database

- Data walkthrough
- Data documentation

Experiment Configurations

- Hyperparameters
- Experiment Settings

Training models

Available algorithms:

- Recurrent Neural Network
- Bayesian RNNs
 - Variational (Gal+2016)
 - Bayes by Backprop (Fortunato+2017)
- Convolutional NN (soon!)