Updates on photometric redshifts LSST France

Réza Ansari, Eric Nuss and Johanna Pasquet

<ロト <四ト <注入 <注下 <注下 <

PhotoZ codes

- Two broad categories of PhotoZ codes, using Machine Learning (ML) methods , or template (galaxy SED) fitting
- ML : needs a photometric catalog with spectroscopic redshifts (training data set) that matches the complete photometric catalog major challenge for LSST
- ML methods are often able to **optimise** the use of available information
- Template based : need to have **representative galaxy SED libraries**, and understand the astrophysical effects (& cosmology), and the evolution with redshift Learning data set would be used for validation
- Template based methods use the accumulated human knowledge (physics) to extend photo-z determination beyond parameters (magnitudes, redshift ...) covered by the training set

3

イロト 不得 トイヨト イヨト

Photometric redshifts

- Simulation of galaxy catalogs uses often (always) galaxy SED templates and luminosity functions
- Large Scale Structures (LSS) is **NOT** needed unless one uses the clustering information for photo-z
- The **photometric calibration** and **knowledge of filters** are among important issues that have impact on photo-z qualities
- Improving photo-z performance using additional / complementary information (additional photometric bands, i.e. infrared from Euclid ...) and galaxy angular size (or directly the image)
- Sensitivity of different **probes** (WL, LSS, BAO, CL, SN ...) to photo-z quality and performance
- Use a **photo-z PDF** (P(z)) instead of z-phot (and possibly its uncertainty

3

(日)

DESC activities

- DESC PhotoZ WG activities shifted toward DC1 , then DC2 and specific task forces
- Last PhotoZ telecon notes on SLAC : June 2016

Oreated by Jeffrey A Newman, last modified by William Hartley on Mar 19, 2019

Welcome to the Photometric Redshifts Working Group Page! Your current co-conveners are Will Hartley (UCL) and Chris Morrison (UW).

Important details:

- WG telecons are held on the third Thursday of each month at 9am Pacific time. Off-weeks are available for project-specific telecons.
- Zoom link for telecons: https://stanford.zoom.us/j/476292857
- Notes from previous telecons
- Novel photo-z methods
- To view and/or sign up to work on Photo-z Tasks go here
- The photo-z Task Force and its working pages
- Photo-z related Task Forces: CosmoSims, Atmospheric Calibration, Galactic reddening
- Reports and other supporting documents Link

Johanna Pasquet

LSST France

5

DC1 PhotoZ paper

Implicit assumptions and their impact on photometric redshift PDF performance in the context of LSST

S.J. Schmidt¹, A.I. Malz^{2,3}, J.Y.H. Soo⁴, M. Brescia⁵, S. Cavuoti^{5,6}, G. Longo⁶, I.A. Almosallam^{7,8}, M.L. Graham⁹, A.J. Connolly⁹, E. Nourbakhsh¹, J. Cohen-Tanugi¹⁰, H. Tranin¹⁰, P.E. Freeman¹¹, K. Iyer¹², J.B. Kalmbach¹³, E. Kovacs¹⁴, A.B. Lee¹¹, C. Morrison⁹, J. Newman¹⁵, E. Nuss¹⁰, T. Pospisil¹¹, M.J. Jarvis^{16,17}, R. Izbicki^{18,19}

(LSST Dark Energy Science Collaboration)

J. Cohen-Tanugi & Eric Nuss

	Code	Type	Paper	Website	
	BPz	template	Benítez (2000)	http://www.stsci.edu/~dcoe/BPZ/	
	EAZY	template	Brammer et al. (2008)	https://github.com/gbrammer/eazy-photoz	
	LePhare	template	Arnouts et al. (1999) http://w	uplate Arnouts et al. (1999) http://www.cfht.hawaii.edu/~arnouts	http://www.cfht.hawaii.edu/~arnouts/lephare.html
	ANNz2	ML	Sadeh et al. (2016)	https://github.com/IftachSadeh/ANNZ	
	Delight	ML/template	Leistedt & Hogg (2017)	https://github.com/ixkael/Delight	
	FlexZBoost	ML	Izbicki & Lee (2017)	<pre>https://github.com/tpospisi/flexcode; https://github.com/rizbicki/FlexCoDE</pre>	
	GPz	ML	Almosallam et al. (2016b)	https://github.com/OxfordML/GPz	
	METAPhoR	ML	Cavuoti et al. (2017)	http://dame.dsf.unina.it	
	CMNN	ML	Graham et al. (2018)	-	
	SkyNet	ML	Graff et al. (2014)	http://ccpforge.cse.rl.ac.uk/gf/project/skynet/	
	TPZ	ML	Carrasco Kind & Brunner (2013)	https://github.com/mgckind/MLZ	
	TRAINZ	N/A	See Section 3.3	< 니 ▷ < [17 ▷ < 문 ▷ < 문 ▷ 로 ♥//	
	Johanna Pasquet		LSST France	5 June 2019	

Table 1. List of photo-z codes featured in this study. ML here means machine learning.

New results of DL

Conclusion

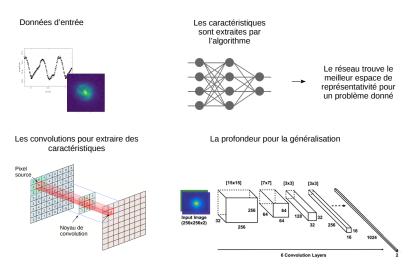
DC2 projects

U

LSST Dark Energy Science Collaboration / ...

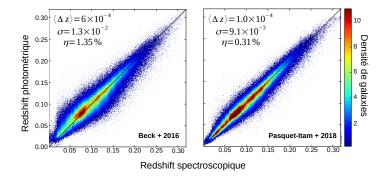
/ February 2019 Collaboration Meeting - Berkeley

G: Photometric Redshift (PZ)


Created by Christopher Morrison, last modified by Rykoff, Eli S. on Feb 28, 2019

-Calibrating photo-z through galaxy clustering

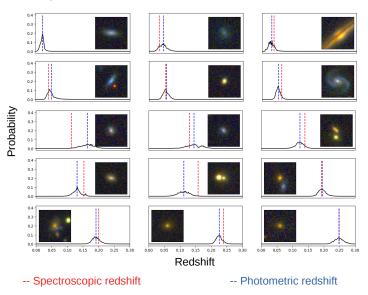
- Overview of DC2 projects (with contact):
 - PZCalibrate (Chris Morrison)
 Effect of incomplete training sample
 - PZIncomplete (Will Hartley)
 - Requirements on PZ errors for 3x2pt (Husni Almoubayyed)
 - Running redMaPPer on DC2 cosmo and sim catalogs (slides) (Eli Rykoff
 - 3x2pt analysis with DC2 catalogs (Joe Zuntz)
 - Joint DC2 LSST-WFIRST pixel-level simulations and analysisDC2/DC3 in (Michael Troxel)
- · Unlisted and new project pitches:
 - Sam: SOM/Blending
 - Markus: Joint redshift inference with clustering and SED fitting
 - Emission line sprinkler


Interesting subjects

Deep Learning, powerful tool to generalize data

Photometric redshifts from SDSS galaxies

- biais Δz reduced by **6** dispersion σ divided by **1.4**
- $\bullet\,$ fraction of catastrophic redshifts η divided by ${\bf 4}$



Photometric redshifts from SDSS images using a Convolutional Neural Network, <u>Pasquet-Itam</u> et al., A&A, 621 (2019) A26

	Jo	hanna	Pasquet	
--	----	-------	---------	--

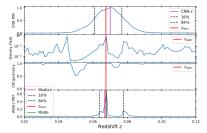
8

PDFs examples

э

Highlighting key questions

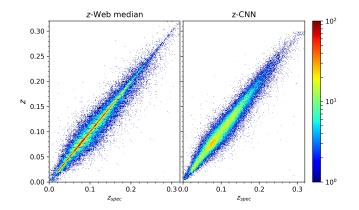
• How can we do even better?


• Can we extend the method to high redshifts and so make this method suitable for LSST data?

The WEBz technique

• exploit the galaxy distribution of a spectroscopic survey to improve the photometric redshift of other galaxies that are expected to be embedded in this distribution

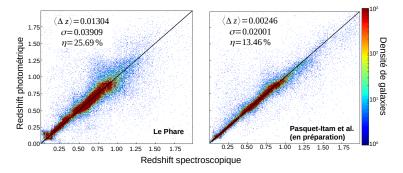
$$PDF_{z_{web}}(z) = PDF_{CNN}(z).P_{dens}(z).P_{CW}(z)$$


- $PDF_{CNN}(z)$
- $P_{dens}(z)$ PDF of the density field
- *P_{CW}*(*z*) a probability that takes into account the geometry of the CW

WEBz : boosting photometric redshift accuracy with large spectroscopic surveys, Shuntov, Pasquet, Arnouts, Ilbert, Treyer et al., in preparation

Results of the WEBz technique

•
$$\sigma_{MAD} = 4.5 \times 10^{-3}$$
, $\eta = 0.44\%$



WEBz : boosting photometric redshift accuracy with large spectroscopic surveys, Shuntov, Pasquet, Arnouts, Ilbert, Treyer et al., in preparation

Johanna Pasquet	LSST France	5 June 2019
-----------------	-------------	-------------

Photometric redshifts from CFHT galaxies

- Significant improvements :
 - 2 factor for the biais Δz
 - 2 factor for the dispersion σ
 - 2 factor for the fraction of outliers η

Method is extended to **redshift of 2** (unexpected !) Pushing the deep learning method to high redshifts in CFHTLS, Pasquet-Itam et al., in preparation

Conclusion

- Some issues might be easier to tackle with template fitting, unless we know how to create realistic training samples suitable for LSST out of simulations
- **bridges** (synergies) with the Machine Learning, also with LSS , Cluster . . .
- **Deep Learning** methods can be very efficient to estimate photometric redshifts at high redshifts
- Powerful tool to deliver calibrated PDFs which are an important input of cosmological studies
- Important to understand and control the bias of the Deep Learning method (Adversal Examples, work with Jean-Eric Campagne)
- Need to focus on few issues, for example additional photometric bands (Euclid, ...) and relative calibration issues.
- Finish and publish the work on FORS2 SED's (LUPM)
- We should try to reactivate the PhotoZ WG in France

Thank you for your attention !

3

イロト 不得 トイヨト イヨト

Conclusion

- Some issues might be easier to tackle with template fitting, unless we know how to create realistic training samples suitable for LSST out of simulations
- **bridges** (synergies) with the Machine Learning, also with LSS , Cluster . . .
- **Deep Learning** methods can be very efficient to estimate photometric redshifts at high redshifts
- Powerful tool to deliver calibrated PDFs which are an important input of cosmological studies
- Important to understand and control the bias of the Deep Learning method (Adversal Examples, work with Jean-Eric Campagne)
- Need to focus on few issues, for example additional photometric bands (Euclid, ...) and relative calibration issues.
- Finish and publish the work on FORS2 SED's (LUPM)
- We should try to reactivate the PhotoZ WG in France

Thank you for your attention !

э

(日)