Phenomenological considerations for top-quark partial compositeness: anomalous dimensions, resonances and form factors

Diogo Buarque Franzosi

The LIO international workshop on Vector-like Fermions July 24, 2019

- UV considerations from Anomalous dimensions of potential top-partners
- Omposite states
 - Vacuum, pNGB, $\sigma,~\rho$
 - A light top-partners?
- I How do partially composite top quarks interact with gluons?
- Onclusions

1 - UV considerations on Partial Compositeness (PC)

A model example

Gripaios, Pomarol, Riva, Serra 0902.1483, Ferretti, Karateev 1312.5330

	$\operatorname{Sp}(2N_c)$	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	SU(4)	SU(6)	U(1)
Q_1		1	2	0			
Q_2		Ŷ	-	Ů	4	1	-3(N-1)a
Q_3		1	1	1/2	-	-	$O(1_c - 1)q\chi$
Q_4		1	1	-1/2			
χ_1							
χ_2	H	3	1	x			
χ_3					1	6	a
χ_4							$q\chi$
χ_5		3	1	-x			
χ_6							

- Technicolor (TC): 4D confining gauge theory G_{HC} with fermionic matter → dynamical EW symmetry breaking (hierarchy problem)
- Composite Higgs (CH): Vacuum misalignment (Higgs is a pNGB) (Little-hierarchy problem and doublet nature of Higgs)

$v = f \sin \theta$

 Top-quark PC: Top-quark mass generated via mixing with composite operators *O* ~ *Q*χ*Q*, χ*Q*χ...

$$\delta \mathcal{L} = \frac{g_F^2}{\Lambda_F^2} (Q_L \mathcal{O}_R + \bar{t}_R \mathcal{O}_L + \text{h.c.}), \quad Q_L = (t_L, b_L)^T$$

• The SM works pretty neatly.

$$\mathcal{L}_y = -yH\bar{q}_L u_R + \cdots$$

- Yukawas are the only relevant operators \rightarrow suppression of FCNC via the GIM mechanism. Extra source of FCNC suppressed automatically by v^2/Λ_{UV}^2
- In TC, flavour scale $\Lambda_F > 10^4 \text{ TeV} \gg \Lambda_{TC}$ generates low energy 4-fermion interactions, *schematically:*

$$\alpha \frac{\bar{Q}Q\bar{Q}Q}{\Lambda_{F}^{2}} + \beta \frac{\bar{Q}Q\bar{\psi}\psi}{\Lambda_{F}^{2}} + \kappa \frac{QQQ\psi}{\Lambda_{F}^{2}} + h.c. + \gamma \frac{\bar{\psi}\bar{\psi}\bar{\psi}\psi}{\Lambda_{F}^{2}}$$

ETC PC FCNC

- Extended Technicolor (ETC) (Dimopoulos, Susskind 79, Eichten, Lane 80)
- Partial Compositeness (PC) Kaplan 91
- Yukawa is NOT the only relevant operator. Is it enhanced w.r.t. 4-fermion FCNC operators? → Walking Technicolor

Walking Technicolor

- For ETC, $H = \overline{Q}Q$, $\Delta_S = [H^{\dagger}H]$ is bounded by d = [H] and a large enough Δ_S infers d close to 1 which revive the SM hierarchy problem Ratazzi, Rychkov, Tonni, Vichi 08, 10.
- In principle, PC does not have this problem, but still a large anomalous dimension is necessary.

DBF, Ferretti 1905.08273

- Even before understanding the dynamics, more fundamental symmetry-related requirements to construct PC models are important Ferretti, Karateev 13
- A list of most promising candidates with fermions in 2 representations of *G_{HC}* is

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes \mathbf{F}$	$6 \times Spin$	$\psi \chi \chi$
M2	<i>SO</i> (9)	5 imes F	6 × Spin	$\psi \chi \chi$
M3	SO(7)	5 imes Spin	6 imes F	$\psi\psi\chi$
M4	SO(9)	$5 \times Spin$	6 imes F	$\psi\psi\chi$
M5	Sp(4)	$5 \times A_2$	6 imes F	$\psi \chi \chi$
M6	<i>SU</i> (4)	$5 imes \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$\psi \chi \chi$
M7	SO(10)	5 imes F	$3 \times (Spin, \overline{Spin})$	$\psi \chi \chi$
M8	Sp(4)	4 imes F	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	4 imes Spin	6 imes F	$\psi\psi\chi$
M10	SO(10)	$4 \times (Spin, \overline{Spin})$	6 imes F	$\psi\psi\chi$
M11	<i>SU</i> (4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M12	SU(5)	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}_2})$	$\psi\psi\chi$, $\psi\chi\chi$

- We are interested in objects like $\langle X_{\alpha} Y_{\beta} Z_{\gamma} \rangle$ and $\langle X_{\alpha} Y_{\dot{\beta}}^{\dagger} Z_{\dot{\gamma}}^{\dagger} \rangle$, X a Weyl fermion and $\langle ... \rangle$ an G_{HC} invariant.
- The anomalous dimension has a wave renormalization piece and a piece from diagrams like below

$$\gamma^{IJ}(g) = \frac{g^2}{16\pi^2} \left(a^{IJ} - \frac{1}{2} \delta^{IJ}(a_X + a_Y + a_Z) \right).$$

• We can construct now ψ^3 hyper-color singlets with opposite quantum number of third family q_L and t^c_R

٩	and	compute	the	coefficient	А,	$\gamma =$	$\frac{g^2}{16\pi^2}A$	
---	-----	---------	-----	-------------	----	------------	------------------------	--

	potential top-partners $(1/2, 0)$	other $(1/2, 0)$	(1/2, 1)	(3/2,0)	$\psi \psi^{(\sim)} \psi$	$\chi^{(\sim)}_{\chi}$
M1	-27/8, -9/2	-39/8	9/8, 3/2	33/8	-9	-63/8
M2	-11/2, -6	-15/2	5/2, 2	13/2	-12	-27/2
M3	-39/8, -9/2, -27/8		9/8, 3/2	33/8	-63/8	-9
M4	-11/2, -6, -15/2		5/2, 2	13/2	-27/2	-12
M5	-3/2, -6	-15/2	1/2, 2	9/2	-12	-15/2
M6	-15/4, -15/2	-35/4	5/4, 5/2	25/4	-15	-45/4
M7	-45/8, -27/4	-81/8	27/8, 9/4	63/8	-27/2	-135/8
M8	-15/2, -6, -3/2		1/2, 2	9/2	-15/2	-12
M9	-45/8, -15/2	-105/8	35/8, 5/2	75/8	-165/8	-15
M10	-45/8, -27/4, -81/8		27/8, 9/4	63/8	-135/8	-27/2
M11	-35/4, -15/2, -15/4		5/4, 5/2	25/4	-45/4	-15
M12	-66/5, -54/5, -18/5		6/5, 18/5	42/5	-72/5	-108/5
	-24/5, -36/5	-72/5	24/5 12/5	48/5	-108/5	-72/5

Position of IR fixed point

- Perturbative expansion not very reliable.
- Disagreement in the Lattice community.
- 2-loop seems to reproduce better lattice results.
- 4 loop over-estimate the conformal window and give small g^* result in Pica, Sannino 16 based on 4-loop.
- We use a more conservative approach g^* between 2-loop and 4-loop Zoller 16
- More sophisticated methods to use perturbative expansion exist e.g. Antipin, Maiezza, Vasquez 18

Results

- Free dimension [XXX] = 9/2. A $\gamma^* \approx -2$ would make a good enhancement.
- Showing the largest absolute (negative) anomalaous dimension

- Can identify promising model candidates (most studied models M6, M8 are not promising!)
- and the specific most promising top-partner candidate.

2 - Composite states

• Below chiral symmetry breaking scale $\Lambda = 4\pi f$, hyper-quarks condensate into composite states that can be described by Chiral Lagrangians

M8 as example Symmetry breaking pattern SU(4)/Sp(4)

	$_{\rm spin}$	$SU(4) \times SU(6)$	$Sp(4) \times SO(6)$	names
QQ	0	(6,1)	(1,1)	σ
			(5, 1)	π
XX	0	(1, 21)	(1,1)	σ_c
			(1, 20)	π_c
χQQ	1/2	(6,6)	(1,6)	ψ_{1}^{1}
			(5, 6)	ψ_1^5
$\chi \bar{Q} \bar{Q}$	1/2	(6,6)	(1,6)	ψ_2^1
			(5,6)	ψ_2^5
$Q\bar{\chi}\bar{Q}$	1/2	$(1, \bar{6})$	(1,6)	ψ_3
$Q\bar{\chi}\bar{Q}$	1/2	$(15, \bar{6})$	(5,6)	ψ_4^5
			(10, 6)	ψ_{4}^{10}
$Q\sigma^{\mu}Q$	1	(15, 1)	(5, 1)	a
			(10, 1)	ρ
$\bar{\chi}\sigma^{\mu}\chi$	1	(1,35)	(1, 20)	a_c
			(1,15)	ρ_c

Ferretti et al. 1312.5330, Ferretti et al. 1604.06467, Cacciapaglia et al.

1507.02283, Bizot et al. 1803.00021

• What are the phenomenological implications of IR physics from this PC framework?

Effective Chiral Lagrangian

- Let's start assuming heavy (integrated out) fermions.
- Including (pseudo-)NGB and a scalar techni-sigma excitation

$$\Sigma = \exp\left[2\sqrt{2}\,i\left(\frac{\Pi_Q}{f}\right)\right]E_Q\,,\quad \Pi_Q = \sum_{i=1}^5\Pi^i_Q X^i_Q\,,\quad h \equiv \Pi^4_Q\,,\quad \eta \equiv \Pi^5_Q$$

$$\mathcal{L} = k_G(\sigma) \frac{f^2}{8} D_\mu \Sigma^{\dagger} D^\mu \Sigma - \frac{1}{2} (\partial_\mu \sigma)^2 - V_M(\sigma) + k_t(\sigma) \frac{y_L y_R f C_y}{4\pi} (Q_\alpha t^c)^{\dagger} \operatorname{Tr} [(P_Q^\alpha \Sigma^{\dagger} P_t \Sigma^{\dagger})] + \text{h.c.} - k_t^2(\sigma) V_t - k_G^2(\sigma) V_g - k_m(\sigma) V_m,$$

Loop induced and techniquark induced potential

top-quark PC:
$$V_t = \frac{C_t}{(4\pi)^2} k_t (\sigma/f)^2 (y_L^2 y_R^2 \operatorname{Tr} [P_Q^{\alpha} \Sigma^{\dagger} P_t \Sigma^{\dagger}] \operatorname{Tr} [\Sigma P_{Q\alpha}^{\dagger} \Sigma P_t^{\dagger}]$$

Gauge: $V_g = C_g k_G (\sigma/f)^2 f^4 (g^2 \operatorname{Tr} [S^i \Sigma (S^i \Sigma)^*] + g'^2 \operatorname{Tr} [S^6 \Sigma (S^6 \Sigma)^*])$
techniquark mass: $V_m = C_m k_m (\sigma/f) f^3 m_Q \operatorname{Tr} [E_B \Sigma]$.

Sigma-assisted natural composite Higgs

DBF, Cacciapaglia, Deandrea (1809.09146)

Typically, the top interactions dominates the misalignment dynamics $(\partial V / \partial \theta = 0)$

$$V(\theta) = V_{top}(\theta) + V_{gauge}(\theta) + V_{mass}(\theta)$$

ETC: $s_{\theta}^2 \rightarrow 1$ $s_{\theta}^2 \rightarrow 0$
PC: $s_{\theta}^2 \rightarrow 1/2$

- In Partial Compositeness (PC), $m_t \propto fs_{2\theta}$, so top loops give $V \sim f^2 m_t^2$ which minimizes for $\theta = \pi/4$
- PC provides a natural EWSB+CH mechanism,
- However, a large θ leads to large modifications in the Higgs couplings, EWPO and coupling measurement problems

$$\kappa_V = \frac{\partial_\theta v}{v} = c_\theta \rightarrow \sqrt{2}/2, \qquad \kappa_t = \frac{v}{fm_t} \partial_\theta m_t = \frac{c_{2\theta}}{c_\theta} \rightarrow 0.$$

with the top coupling specially severe, since $c_{2\theta} \rightarrow 0$ in the PC dominated case.

The problem

The common lore is that CH needs high scale $f \gtrsim 1.2 \text{ TeV}$ to avoid EWPO and Higgs coupling constraints, which requires fine-tuning.

Our claim

- The ubiquitous presence of scalar and vector excitations help alleviating these constraints.
- The expected masses and couplings of these states, from unitarity arguments and from lattice calculations, provide the correct parameters to evade the bounds.
- We predict novel signatures not yet fully explored that can be searched for at the LHC.

- Perturbativity, $|k'_i| < 4\pi$, pert. unitarity $\gamma = \frac{m_{b_2}}{4\sqrt{\pi f}} \lesssim 1$ ($\gamma = 0.2$ in the plot), $\Gamma/m_{b_2} \lesssim 1$ (black curves, 0.3, 0.5, 1)
- EWPO, σ creates the valleys and vectors shift and broaden them.

- Higgs measurements, κ_{t,V}. Γ(h → ηη) (dashed line) for m_η = 0 - larger masses (m_ψ or A rep.) opens parameters space and interesting experimental signatures.
- Dynamically inspired composite resonance profile works nicely. σ : $|k'_G| \sim 1.2$. v_{μ} : $r = 1.1 \rightarrow |a_V| = 1$, with $M_V = 4\pi f$, $\tilde{g} = 3$.

Direct searches

• $pp \rightarrow h_2 \rightarrow ZZ$ (CMS 18') and $pp \rightarrow h_2 \rightarrow t\bar{t}$ (from DBF, Fabbri, Schumman 17')

• $\sigma = \sigma_0^{gg} \frac{|\kappa_t^{h_2} A_F(\tau_t) + \kappa_g^{h_2}|^2}{|A_F(\tau_t)|^2} + \sigma_0^{VBF} (\kappa_V^{h_2})^2$ gg: Anastasiou et al. 16', VBF: Bolzoni, Maltoni, Moch, Zaro 11'

	Sp(4)	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	SU(4)	SU(6)
$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$		1	2	0	Л	1
$\psi_{3,4}$		1	1	$\pm 1/2$	4	1
$\chi_{1,2,3}$		3	1	2/3	1	6
χ 4,5,6		3	1	-2/3	1	U

- ψ sector condensates SU(4)→ Sp(4): EWSB, 5 (p)NGB (Higgs doublet (H) + singlet η)
- χ sector condensates SU(6) \rightarrow SO(6): 20 (p)NGB ($\pi_c \sim 8+6+\overline{6}$)
- $U(1)^2 \rightarrow 2$ abelian pNGB: *a*, η' (anomalous)
- Bunch of fermionic states, $\chi\psi^2$, **1**, **5**, **10** of Sp(4) \rightarrow top partners and top mass via PC
- + vector states, σ , and higher spin stuff...

Assumptions:

- Only one Ψ (much lighter than others)
- Ψ lighter than π_c and vectors (might be motivated) Lagrangian:

$$\mathcal{L} = -y_L f \bar{Q}_L \tilde{\Psi}_R - y_R f \bar{\tilde{\Psi}}_L t_R - M \bar{\Psi}_L \Psi_R + \text{h.c.} + s \frac{g_V^2 K_V^s}{16\pi^2 f_s} V_{\mu\nu} \tilde{V}^{\mu\nu} - is \frac{C_f^s m_f}{f_s} \bar{f} \gamma_5 f$$

- Top partner (Ψ) sector, 3 free parameters: f, y_R , M (Use y_L to fix m_t)
- Scalar ($s = a, \eta$) couplings quite fixed

Scalars

- a, η decays

Bizot, Cacciapaglia, Flacke 18

• Small mass expected $m_\eta \propto m_\psi$ completely generated by technifermion masses \rightarrow small to avoid fine-tuning.

$$egin{aligned} m_\eta^2 &=& ilde{m}_\eta^2 + rac{\epsilon_{\mathbf{A}}}{4} (m_h^2/c_ heta^2 - ilde{m}_\eta^2 t_ heta^2), & ilde{m}_\eta^2 = m_h^2 rac{(\delta-c_{2 heta})}{s_ heta^2 (\delta-3c_{2 heta}-2)} \ & rac{\partial V}{\partial heta} = 2 f^3 s_ heta \left(f C_t' (c_{2 heta} - \delta) c_ heta - 2 C_m m_\psi
ight) = 0 \,. \end{aligned}$$

• Decay $\eta \to Z\gamma$ dominates in the range 65 GeV $\lesssim m_\eta \lesssim$ 170 GeV using Bauer, Neubert, Thamm 17

D. Buarque Franzosi (Chalmers Univ.)

Pheno Ψ_5

- T, $X_{2/3}$, t' mix to mass eigenstates t, $T_{1,2}$. b', $B \rightarrow b$, B_1 \tilde{T} , $X_{5/3}$ remain unmixed.
- 3 light top partners, $M_{ ilde{T}} = M_{X_{5/3}} = M$
- Competition BSM vs SM decay $BR(\tilde{T} \rightarrow t\eta) = 100\%$ $BR(X_{5/3} \rightarrow tW) = 100\%$

- T_1 a bit heavier $M_{T_1} = M + O(v^2/f)$ and decays more democratically and model dependent
- T_2 , B much heavier $M^2 \sim M^2 + y_L f^2$

• $pp \rightarrow \tilde{T} \bar{\tilde{T}} \rightarrow t\bar{t}\eta\eta \rightarrow t\bar{t}2\gamma 2Z$ is a quite striking signature, can it compete with the SM decay $pp \rightarrow \bar{X}_{5/3}X_{5/3} \rightarrow t\bar{t}W^+W^-$ ($M > 1.3 \text{ TeV pair-prod.} \sim 1.6 \text{ for } k=1 \text{ incl. single prod.}$)? Try to answer in 1907.05929.

• For large masses *M*, single production might become competitive. In this case the couplings are relevant and might enhance the singlet production.

- Analysis not optimized. Limited by MC statistics. Could look at 2 branchings.
- Neutrino channel could be interesting $pp \rightarrow \eta \eta t \bar{t} \rightarrow ZZ \gamma \gamma t t \rightarrow \ell^+ \ell^- \nu \nu + \text{ jets}$
- Relax assumption, *e.g.* lighter vectors and π_c

DBF, Tonero 1907.XXXXX

- A composite state interact very differently than a point-like particle.
- Our goal is to estimate the typical scales and effects of these modified interactions for
 - top partner production;
 - 2 partially composite top quark production.

The proton inspiration

$$\begin{split} e^+e^- &\to p\,\bar{p} \text{ Bijker, lachello 04} \\ \sigma &\simeq \frac{4\pi\alpha^2}{3s}C_N(s)\sqrt{1-\frac{4M^2}{s}}\left(1+\frac{2M^2}{s}\right)|\mathcal{G}_{\rm eff}(s)|^2 \\ |\mathcal{G}_{\rm eff}(s)|^2 &= \frac{\left(|\mathcal{G}_M(s)|^2+\frac{2M^2}{s}|\mathcal{G}_E(s)|^2\right)}{\left(1+\frac{2M^2}{s}\right)} \\ \text{Point-like: } |\mathcal{G}_{\rm eff}(s)|^2 &= 1 \end{split}$$

 $\gamma\gamma \rightarrow p\bar{p}$ (Kłusek-Gawenda, Lebiedowicz, Nachtmann, Szczurek 17) Exponentially suppressed w.r.t. pointlike case.

One-gluon form factors

 Elementary t' and composite T' states mix to form the mass eigenstates (t, T) (simplified model with a SU(2)_L singlet T)

$$t_{L,R} = c_{L,R} t'_{L,R} + s_{L,R} T'_{L,R}$$

 In fully analogy with the nucleons EM interactions, the interaction of *T'* with a single gluon can be parametrized at tree level by the form factors

$$(J_{T'})^{\mu,a} = g_s \,\overline{T}' \,T^a \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_2(q^2) \right] \,T'$$
$$F_1(q^2) = 1 + \frac{q^2}{M^2} f_1(q^2) \,, \quad F_1(0) = 1 \,, \quad F_2(0) = \kappa_g$$

• The top quark acquires non-standard interactions from the mixing

$$(J_t)^{\mu,a} = g_s \overline{t} T^a \left[\gamma^{\mu} F_1^{tg}(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2^{tg}(q^2) \right] t$$

$$F_1^{tg}(q^2) = 1 + (s_L^2 P_L + s_R^2 P_R) \frac{q^2}{M^2} f_1(q^2), \quad F_2^{tg}(q^2) = s_L s_R F_2(q^2).$$

Phenomenological parametrization of the form factors

 Data from several proton scattering experiments are well fitted by the so-called dipole approximation

$$G_{E}^{p}(q^{2}) = \mu^{-1}G_{M}^{p}(q^{2}) = G_{D}^{p}(q^{2}) = \left(1 - \frac{q^{2}}{m_{D}^{2}}e^{i\theta\Theta(q^{2})}\right)^{-2}$$

$$G_E^N(q^2) = F_1^N(q^2) + rac{q^2}{4M_p^2}F_2^N(q^2), \ G_M^N(q^2) = F_1^N(q^2) + F_2^N(q^2)$$

• In the time-like region an extra absortive factor and resonances eventually appear (with more sophisticated models)

A similar behavior is expected for the top partner. We use the dipole approximation to parametrize the gluonic form factors of T' for $\mu < m_{\rho}$

$$F_1(q^2) = G_D(q^2) \left(1 + rac{\kappa_g}{1 - 4M^2/q^2}
ight), \quad F_2(q^2) = G_D(q^2) \left(rac{\kappa_g}{1 - q^2/(4M^2)}
ight) \,.$$

Probing form factors in $q\bar{q} \rightarrow T\bar{T}$

• Scales (arrows): $\Lambda_{c,1}$, $\Lambda_{c,2}$, $m_{\rho} = 6f$ and $2m_T$.

• Parameters: M = 9f, $M_D = 5f$, f = 0.6 TeV and $\kappa_g = 2$. Inspired by SU(4) lattice calculations Ayyar, Degrand, Hackett, Jay, Neil, Shamir, Svetitsky 18

Effective low energy expansion

• The Pauli and Dirac interactions can be derived from the EFT

$$\begin{split} \mathcal{L}_{EFT} &= \frac{g_s}{M^2} \bar{t} \gamma^{\mu} T_a (s_L^2 P_L + s_R^2 P_R) t f_1 (-D^2) D^{\nu} G^a_{\mu\nu} + \frac{g_s}{4M} s_L s_R \bar{t} \sigma^{\mu\nu} T_a t F_2 (-D^2) G^a_{\mu\nu} \\ &= \frac{g_s}{\Lambda_{c,1}^2} \bar{t} \gamma^{\mu} T_a (s_L^2 P_L + s_R^2 P_R) t D^{\nu} G^a_{\mu\nu} + \frac{g_s \kappa_g}{4M} s_L s_R \bar{t} \sigma^{\mu\nu} T_a t G^a_{\mu\nu} + \cdots \\ &\to \frac{g_s R}{6} \bar{t} \gamma^{\mu} T_a t D^{\nu} G^a_{\mu\nu} + \frac{g_s \tilde{\kappa}_g}{4M} \bar{t} \sigma^{\mu\nu} T_a t G^a_{\mu\nu} \end{split}$$

- Leading dimension (last line) is the typical framework for the study of top-quark structure, Englert, Freitas, Spira, Zerwas 12, Englert, Gonçalves, Spannowsky 14, Fabbrichesi, Pinamonti, Tonero 13, ... - based on the assumption that new physics sits at high scales.
- This is generally not justified. E.g. proton $\Lambda_c \sim 600$ MeV. Nonrelativisitc quark model (NRQM) (Manohar, Georgi 83) \rightarrow intermediate scales where pions and quarks coexist $\Lambda_c < \mu < \Lambda_{\chi}$.
- PC might present a low compositeness scale with small coefficients, not well described by the leading dimension Lagrangian

$$\Lambda_{c,1}^{-2} = rac{2}{M_D^2} - rac{\kappa_g}{4M^2} \qquad \Lambda_{c,2}^{-2} = rac{2}{M_D^2} + rac{1}{4M^2}.$$

Probing form factors in $q \bar{q} ightarrow t ar{t}$

- Parameters: M = 9f, $M_D = 5f$, f = 0.6 TeV, $\kappa_g = 2 \text{ and } \lambda = 3$ ($s_L = 0.091 \text{ and } s_R = 0.313$).
- Scales (arrows): $\Lambda_{c,1}$, $\Lambda_{c,2}$ and $m_{\rho} = 6f$.
- $\bullet\,$ Mixing angles enter only linearly $\to\,$ higher dimension operators are relatively more relevant than naively expected
- Chromomagnetic moment more suppressed than Dirac-like interaction: *s*_L*s*_R and helicity suppression.

- Large suppression in $q\bar{q} \rightarrow T\bar{T}$.
- Enhancement in the total cross section of $q\bar{q} \rightarrow t\bar{t} \sim 1\%$, with $m(t\bar{t}) > 1 \,\text{TeV} \sim 4\%$.
- A new single production mechanism. Energy dependent $g^* \rightarrow t \overline{T}$ (parametrization more complicated due to different spinor masses)

Two-gluon form factors

- To describe $gg \to T\bar{T}$ we can get hints from $\gamma\gamma \to p\bar{p}$ process in ultra-peripheral ion collision.
- The main contribution near threshold can be modeled by the proton exchange mechanism and the f₂(1950) resonance (the handbag mechanism contributes at high energies) Kłusek-Gawenda, Lebiedowicz, Nachtmann, Szczurek 17

 $\gamma \gamma \rightarrow p \bar{p}$ proton exchange contribution $|\cos \theta| < 0.6.$

- A similar suppression is expected for the top partner production.
- Only F₂(q²) contributes. Dirac operator (f₁(q²)) equivalent to 4f operators at tree-level
- We assume no resonance near threshold.
- The soften of the cross section can be parametrized by an overall exponential form factor F(t, u, s).

$$\mathcal{M}_T = \mathcal{M}_{T,bare}F(t, u, s)$$

 $gg
ightarrow t ar{t}$

- Pauli-type interaction is doubly suppressed (Helicity and $s_L s_R$).
- Details of the form factors form not *extremelly* relevant. We use the *ansatz*

$$F_t(t, u, s) = (1/2)[(c_L^2 + c_R^2) + (s_L^2 + s_R^2)F(t, u, s)].$$

Conclusion

- PC is a promising alternative to give mass to the top quark in models of DEWSB.
- We can estimate best model candidates and top partners from largest anomalous dimensions.
- Composite resonances may play a role in experimental constraints, even in EWPO,
- and have phenomenological implications.
- Top partners from composite completion may have interesting experimental signatures.
- The existence of compositeness effects before the appearence of resonances is well motivated.
- We expect a large suppression in the production of the top partner pair, that might be relevant for current and future searches.
- The deviations in $t\bar{t}$ production are expected mostly in $q\bar{q}$ initiated production.
- New energy dependent single production channel is a possibility.

Backup

Simplified model:

$$\mathcal{L} \supset -Mar{T}'_L T'_R - yar{Q}'_L \widetilde{H} T'_R - \lambda f ar{T}'_L t'_R + ext{h.c.}$$

Bounds on operators:

With QCD corrections at NLO DBF, Zhang 15 $\,$

$$-0.0099 < s_L s_R \frac{m_t}{4M} \kappa_g < 0.0123$$

Barducci, Fabbrichesi, Tonero 17

$$-0.018 < (s_L^2 + s_R^2) m_t^2 \left(rac{2}{M_D^2} - rac{\kappa_{g}}{4M^2}
ight) < 0.017$$
 .

Composite Higgs

	$\operatorname{Sp}(2N_c)$	$SU(3)_c$	$\mathrm{SU}(2)_L$	$U(1)_Y$	SU(4)	SU(6)	U(1)
$egin{array}{c} Q_1 \ Q_2 \end{array}$		1	2	0	4	1	$2(N-1)\alpha$
Q_3		1	1	1/2	4	T	$-3(1v_c-1)q_{\chi}$
Q_4		1	1	-1/2			

A model example: Gripaios, Pomarol, Riva, Serra 0902.1483

$$\mathcal{L}_{\rm UV} = \bar{Q} \mathrm{i} \not \! D Q + \delta \mathcal{L}_m + \delta \mathcal{L} \,,$$

 \bullet Global symmetry SU(4) spontaneously breaks to Sp(4) via the condensate ${\rm SU}(4)/{\rm Sp}(4)$

$$\langle Q^{I}_{\alpha,c} Q^{J}_{\beta,c'} \epsilon^{\alpha\beta} \epsilon^{cc'} \rangle \sim f^{3} E^{IJ}_{Q}$$

• The direction of the vacuum can be parametrized by the vacuum misalignment angle

$$E_Q = \cos\theta E_Q^- + \sin\theta E_Q^{\rm B}$$

- E_Q^{\pm} : vacua that leave the EW symmetry intact. E_Q^{\oplus} : vacuum breaking EW symmetry to U(1)_{EM}
- Generates hierarchy between compositeness scale f and EW vev v

 $v = f \sin \theta$

• Higgs = pNGB EW doublet of spontaneous SB G/H.

Partial Compositeness, Kaplan 91

	$\operatorname{Sp}(2N_c)$	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	SU(4)	SU(6)	U(1)
Q_1 Q_2		1	2	0			
Q_2 Q_3		1	1	1/2	- 4	1	$-3(N_c-1)q_{\chi}$
Q_4		1	1	-1/2	1		
χ_1							
χ_2	H	3	1	x			
χ_3					1	6	a
χ_4		_			-	Ū	$q\chi$
χ_5		3	1	-x			
χ_6							

A model example: Ferretti, Karateev 1312.5330

• Top-quark mass generated via mixing with composite operators $\mathcal{O}\sim Q\chi Q,\,\chi Q\chi\,...$

$$\delta \mathcal{L} = \frac{g_F^2}{\Lambda_F^2} (Q_L \mathcal{O}_R + \bar{t}_R \mathcal{O}_L + \text{h.c.}), \quad Q_L = (t_L, b_L)^T$$

- Typically top interactions dominates the misalignment dynamics.
- In Partial Compositeness (PC), $m_t \propto f s_{2\theta}$, so top loops give $V \sim f^2 m_t^2$ which minimizes for $s_{\theta}^2 = 1/2$ (different in ETC, $s_{\theta} \to 1$)
- PC provides a natural EWSB+CH mechanism.
- Large s_{θ} leads to modifications in Higgs physics and EWPO, which can be alleviated by the effects of composite resonances, $f \gtrsim 600 \text{ GeV}$.

DBF, Cacciapaglia, Deandrea 18

- This framework relies on the presence of an approximate IR fixed point and a large anomalous dimensions γ^* of \mathcal{O} .
- Defied by low values of γ^* , Pica, Sannino 16. Their results however rely on the 4-loop β -function.
- No agreement in the lattice community either about the presence and magnitude of IRFP in some theories.
- A more modest and conservative estimate still allows for a large anomalous dimension and regards PC as a promising alternative to the SM.

Example SO(7), more comprehensive study in DBF, Ferretti 1905.XXXX

Techni- σ unitarity implications (DBF, Ferrarese, 1705.02787)

• A striking evidence of strong dynamics is the growing (with E^2) behavior of **Goldstone Boson Scattering (GBS)** amplitudes

$$\mathcal{A}(\pi\pi o \pi\pi) \sim rac{s}{f^2} = rac{s}{v^2} \sin^2 heta \,,$$

- controlled by strong effects at high energies, broad continuum or composite resonances, saturating unitarity - similar to hadron physic the scalar excitation is therefore its unavoidal consequence.
- IAM unitarization, based on dispersion relations, predict very well hadronic spectrum and give us a guidance.

• Unitarity implies that a eventual resonance lighter than $\gamma \equiv \frac{m_{\varphi}}{4\sqrt{\pi}f} \lesssim 1$, and the closer it is to this limit, broad/continuum excess take place.

- The above analysis assume $f \gg v$ and neglect low energy interactions.
- Unitarity indicates also reasonable values for the coupling $g_{\sigma} \equiv k'_G/2 \approx 0.63$, which approaches the unitarized amplitudes.
- Increasing evidence of the presence of a light scalar state in theories with an infra-red conformal phase from lattice and gravity duals Athenodorou et al 16, Aoki et al 17, Elander et al, 17

$\sigma - h \min$

$$\begin{split} m_{h\sigma}^2 &= Am_h^2 + B\tilde{m}_{\eta}^2 \\ A &= \frac{c_{2\theta}}{2s_{2\theta}} (k_G' - 2k_t') \,, \\ B &= \frac{s_{2\theta}}{4} [2(k_m' + k_t') - 3k_G'] + \frac{t_{\theta}}{4} (k_G' - 2k_t') \end{split}$$

...and modify Higgs couplings

Vector composite states

.

• Unitarity and dispersion relation arguments can also be applied to the vector resonances leading to $|a_{
ho} \equiv rac{\sqrt{2}M_{
ho}(1-r^2)}{f\widetilde{g}}| \approx 1$ (DBF, Ferrarese, 17')

• Similar result from width bounds DBF, Cacciapaglia, Cai, Deandrea, Frandsen 16'

Constraints

- i Consistency of the theory, which includes perturbativity of the couplings and perturbative unitarity of pNGB scattering;
- ii Higgs property measurements, namely its couplings and total width;

iii - EWPOs;

$$\Delta S = \frac{1 - (\kappa_V^{h_1})^2}{6\pi} \log \frac{\Lambda}{m_{h_1}} - \frac{(\kappa_V^{h_2})^2}{6\pi} \log \frac{\Lambda}{m_{h_2}} + \Delta S_{\rho}$$

$$\Delta S_{\rho} = \frac{16\pi (1 - r^2) s_{\theta}^2}{2(g^2 + \tilde{g}^2) - g^2 (1 - r^2) s_{\theta}^2} \quad \text{DBF, Cacciapaglia, et al. 16'}$$

iv - Direct search of the heavy scalar.

$$\begin{aligned} |G_{\rm eff,T}(s)|^2 &= 1 + \left(1 + \frac{2m_T^2}{s}\right)^{-1} \left\{ \frac{2m_T^2 + s}{M^2} (c_R^2 + c_L^2) {\rm Re} f_1(s) + \frac{3m_T}{M} c_R c_L {\rm Re} F_2(s) \right. \\ &+ \frac{s^2}{2M^4} \left[(c_R^4 + c_L^4) \left(1 - \frac{m_T^2}{s}\right) + 6c_R^2 c_L^2 \frac{m_T^2}{s} \right] |f_1(s)|^2 + \frac{8m_T^2 + s}{8M^2} c_R^2 c_L^2 |F_2(s)|^2 \\ &+ \frac{3m_T s}{2M^3} c_R c_L(c_R^2 + c_L^2) {\rm Re} f_1(s) F_2^*(s) \right\}. \end{aligned}$$

$$\mathcal{L}_{T'} = \bar{T}' i \gamma^{\mu} D_{\mu} T' + \frac{g_s}{M^2} \bar{T}' \gamma^{\mu} T_a T' f_1 (-D^2) D^{\nu} G^a_{\mu\nu} + \frac{g_s}{4M} \bar{T}' \sigma^{\mu\nu} T_a T' F_2 (-D^2) G^a_{\mu\nu}$$
(2)

$$\mathcal{L}_{t'} = \vec{t}' i \gamma^{\mu} D_{\mu} t'$$

$$\mathcal{L} = \mathcal{L}_{T'} + \mathcal{L}_{t'} + \mathcal{L}_{mass}$$
(3)

$$\mathcal{L} = \bar{T}i\gamma^{\mu}D_{\mu}T + \bar{t}i\gamma^{\mu}D_{\mu}t - m_{T}\bar{T}T - m_{t}\bar{t}t + \frac{g_{s}}{M^{2}}\bar{t}\gamma^{\mu}T_{a}(s_{L}^{2}P_{L} + s_{R}^{2}P_{R})tf_{1}(-D^{2})D^{\nu}G_{\mu\nu}^{a} - \frac{g_{s}}{4M}s_{L}s_{R}\bar{t}\sigma^{\mu\nu}T_{a}tF_{2}(-D^{2})G_{\mu\nu}^{a} + \frac{g_{s}}{M^{2}}\bar{\tau}\gamma^{\mu}T_{a}(c_{L}^{2}P_{L} + c_{R}^{2}P_{R})Tf_{1}(-D^{2})D^{\nu}G_{\mu\nu}^{a} + \frac{g_{s}}{4M}c_{L}c_{R}\bar{T}\sigma^{\mu\nu}T_{a}TF_{2}(-D^{2})G_{\mu\nu}^{a} + \frac{g_{s}}{M^{2}}\bar{\tau}\gamma^{\mu}T_{a}(s_{R}c_{R}P_{R} - s_{L}c_{L}P_{L})Tf_{1}(-D^{2})D^{\nu}G_{\mu\nu}^{a} + (t \leftrightarrow T) + \frac{g_{s}}{4M}\bar{\tau}\sigma^{\mu\nu}T_{a}(-s_{L}c_{R}P_{R} + s_{R}c_{L}P_{L})TF_{2}(-D^{2})G_{\mu\nu}^{a} + \frac{g_{s}}{4M}\bar{T}\sigma^{\mu\nu}T_{a}(c_{L}s_{R}P_{R} - c_{R}s_{L}P_{L})tF_{2}(-D^{2})G_{\mu\nu}^{a} + \dots$$

$$(4)$$

24/07/19 37 / 37

$$\mathcal{H} \oplus S \equiv \begin{pmatrix} H^{0*} & H^+ \\ -H^{+*} & H^0 \end{pmatrix} \oplus S \in (2,2) \oplus (1,1) = 5.$$
(5)

$$\Psi \equiv \begin{pmatrix} T & X \\ B & T' \end{pmatrix} \oplus \widetilde{T} \in (2, 2) \oplus (1, 1) = 5.$$
(6)

$$\Sigma = \exp\left(\frac{i\sqrt{2}}{f}\Pi\right), \text{ transforming as: } \Sigma \to g\Sigma h^{-1}, \text{ for } g \in SU(4), h \in Sp(4),$$
(7)

$$\mathcal{L} = y_L f \operatorname{Tr} \left(\bar{Q}_L \Sigma \Psi_R \Sigma^T \right) + y_R f \operatorname{Tr} \left(\Sigma^* \bar{\Psi}_L \Sigma^\dagger \tilde{t}_R \right) - M \operatorname{Tr} \left(\bar{\Psi}_L \Psi_R \right) + \text{ h.c.}$$
(8)

$$\mathcal{L}_{\text{tops}} = - \begin{pmatrix} \tilde{\tilde{t}}_L & \bar{T}_L & \bar{\tilde{T}'}_L & \bar{\tilde{T}}_L \end{pmatrix} \begin{pmatrix} \mathcal{M} + h\mathcal{I}_h + S\mathcal{I}_S \end{pmatrix} \begin{pmatrix} \tilde{\tilde{t}}_R \\ T_R \\ T_R' \\ \tilde{\tilde{t}}_R \end{pmatrix} + \text{ h.c.}$$
(9)

$$\mathcal{M} = \begin{pmatrix} 0 & y_L f \cos^2\left(\frac{\theta}{2}\right) & -y_L f \sin^2\left(\frac{\theta}{2}\right) & 0\\ \frac{y_R f}{\sqrt{2}} \sin \theta & M & 0 & 0\\ \frac{y_R f}{\sqrt{2}} \sin \theta & 0 & M & 0\\ 0 & 0 & 0 & M \end{pmatrix}$$

$$\mathcal{I}_{h} = \begin{pmatrix} 0 & -\frac{1}{2}y_{L}\sin\theta & -\frac{1}{2}y_{L}\sin\theta & 0\\ \frac{y_{R}}{\sqrt{2}}\cos\theta & 0 & 0 & 0\\ \frac{y_{R}}{\sqrt{2}}\cos\theta & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(10)

$$\mathcal{I}_{S} = \begin{pmatrix} 0 & 0 & 0 & \frac{iy_{L}}{\sqrt{2}} \sin \theta \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ iy_{\mathcal{R}} \cos \theta & 0 & 0 & 0 \end{pmatrix}.$$

$$m_t = \frac{y_L y_R f v}{\sqrt{2} \widehat{M}} + \mathcal{O}\left(\frac{v^2}{f^2}\right), \quad m_{t'} = M, \quad m_{t''} = M + \mathcal{O}\left(\frac{v^2}{f^2}\right), \quad m_{t'''} = \widehat{M} + \mathcal{O}\left(\frac{v^2}{f^2}\right). \tag{11}$$

$$\widetilde{t}_{L} = -\frac{M}{\widehat{M}}t_{L} + \frac{y_{L}f}{\widehat{M}}t_{L}^{\prime\prime\prime}, \quad T_{L} = \frac{y_{L}f}{\widehat{M}}t_{L} + \frac{M}{\widehat{M}}t_{L}^{\prime\prime\prime}, \quad T_{L}^{\prime} = t_{L}^{\prime\prime}, \quad \widetilde{T}_{L} = t_{L}^{\prime}$$
(12)

$$\widetilde{t}_R = t_R + \frac{y_R \mathbf{v}}{\sqrt{2}M} t_R^{\prime\prime} + \frac{y_R \mathbf{v}M}{\sqrt{2}\widehat{M}^2} t_R^{\prime\prime\prime}, \quad T_R = t_R^{\prime\prime\prime} - \frac{y_R \mathbf{v}M}{\sqrt{2}\widehat{M}^2} t_R, \quad T_R^\prime = t_R^{\prime\prime} - \frac{y_R \mathbf{v}}{\sqrt{2}M} t_R, \quad \widetilde{T}_R = t_R^\prime.$$