Matière condensée topologique

Mark Oliver Goerbig

Sergueï Tchoumakov, <u>Xin Lu</u> (PhD thesis) <u>Dibya Kanti Mukherjee</u> (post-doc)

Collaborators: D. Carpentier (ENS-Lyon)

Journée PhOM-P2I, Saclay, 20/06/2019

Comprendre le monde, construire l'avenir

Théorie de la matière topologique au LPS

- Graphène et semi-conducteurs bi-dimensionnels
- Semi-métaux de Dirac et de Weyl tri-dimensionnels
- Supraconductivité topologique
- Effets Hall quantiques

Outline

- Introduction to Berry curvature and bulk-edge correspondence
- Dirac fermions and "half Chern numbers"
- 2D Model of a smooth interface from chiral to massive *relativistic* interface states
- Weyl semimetals with smooth surfaces

Outline

- Introduction to Berry curvature and bulk-edge correspondence
- Dirac fermions and "half Chern numbers"
- 2D Model of a smooth interface from chiral to massive *relativistic* interface states
- Weyl semimetals with smooth surfaces

Topological insulators (1980 \rightarrow 2007)

Science,766, 318 (2007), Würzburg group

Topological insulator = Bulk insulator + Conducting edges (surfaces)

Quantum Hall effect

Quantum spin Hall effect

Information beyond the spectrum

Wave functions (\rightarrow "spin"): $H = \begin{pmatrix} \Delta & f(\mathbf{k})^* \\ f(\mathbf{k}) & -\Delta \end{pmatrix}$

Mathematical formulation (→ Berry) Geometric (Berry) phase (~ magnetic flux):

$$\gamma_C = \int_C d{f k} \cdot {\cal A}_\lambda({f k}) \ \lambda = \pm \ : {
m band index}$$

Berry connection (~ vector potential): $\mathcal{A}_{\lambda}(\mathbf{k}) = i\psi_{\lambda,\mathbf{k}}^{\dagger}\nabla_{\mathbf{k}}\psi_{\lambda,\mathbf{k}}$

Berry curvature (~ magnetic field):

$$\mathcal{B}_{\lambda,\mathbf{k}} =
abla_{\mathbf{k}} imes \mathcal{A}_{\lambda}(\mathbf{k})$$

Chern number (topological invariant):

$$C_{\lambda} = \frac{1}{2\pi} \int_{BZ} d^2 k \mathcal{B}_{\lambda,\mathbf{k}}$$

integer

 $\psi_{\lambda}(t) = e^{-iEt/\hbar} e^{-i\gamma_{C}} \psi_{\lambda,\mathbf{k}(t)}$

Berry curvature – some properties

$$\mathcal{B}_{n}^{\sigma}(\mathbf{k}) = i\epsilon^{\sigma\mu\nu} \sum_{m \neq n} \frac{\langle u_{n} | \partial_{k_{\mu}} H(\mathbf{k}) | u_{m} \rangle \langle u_{m} | \partial_{k_{\nu}} H(\mathbf{k}) | u_{n} \rangle}{[E_{n}(\mathbf{k}) - E_{m}(\mathbf{k})]^{2}}$$

$$\rightarrow \text{ link to perturbation theory :}$$

$$|u_{n}(\mathbf{k} + d\mathbf{k})\rangle = |u_{n}(\mathbf{k})\rangle + \sum_{\substack{m \neq n \\ m \neq n}} |u_{m}(\mathbf{k})\rangle \frac{\langle u_{m}(\mathbf{k}) | d\mathbf{k} \cdot \nabla_{\mathbf{k}} H | u_{n}(\mathbf{k}) \rangle}{E_{n}(\mathbf{k}) - E_{m}(\mathbf{k})}$$
Brillouin zone
$$\overbrace{k_{0}}^{\varepsilon_{n}(k)} \overbrace{k_{0}}^{\varepsilon_{n}(k)} \overbrace{k_{0}}^{\varepsilon_{n}(k)} \overbrace{k_{0}}^{\varepsilon_{n}(k)} \overbrace{k_{0}}^{\varepsilon_{n}(k)} \overbrace{k_{0}}^{\varepsilon_{n}(\mathbf{k})} = 0$$

Berry curvature for insulating graphene

Berry curvature concentrated around Dirac points

Berry curvature for insulating graphene

Berry curvature concentrated around Dirac points

Outline

- Introduction to Berry curvature and bulk-edge correspondence
- Dirac fermions and "half Chern numbers"
- 2D Model of a smooth interface from chiral to massive *relativistic* interface states
- Weyl semimetals with smooth surfaces

Berry phase of a single Dirac point

Continuum Hamiltonian : $H_D = \begin{pmatrix} \sigma \Delta & \hbar v q e^{-i\xi\phi} \\ \hbar v q e^{i\xi\phi} & -\sigma\Delta \end{pmatrix}$ $\xi = \pm$: valley index (K and K') Berry connection: $\mathcal{A}_{\sigma,\lambda,\xi}(\mathbf{q}) = -\lambda \sigma \sin^2 \frac{\theta}{2} \xi \nabla_{\mathbf{q}} \phi$ Berry curvature: $\mathcal{B}_{\sigma,\lambda,\xi}(\mathbf{q}) = -\frac{\lambda\sigma\xi}{2} \frac{\hbar^2 v^2 \Delta}{(\Delta^2 + \hbar^2 v^2 a^2)^{3/2}}$ → Berry phase: $\Gamma_{|q|} = -\pi\lambda\sigma\xi\left(1 - \frac{\Delta}{\sqrt{\Delta^2 + \hbar^2 v^2 q^2}}\right) \to -\pi\lambda\sigma\xi$ \rightarrow Chern number: $C_{\lambda,\xi} = -\frac{1}{2}\lambda\sigma\xi \quad ???$

"Half Chern number"

- Calculation in continuum limit
 - \rightarrow non-compact space (2D plane)
 - → Dirac points arise necessarily in pairs ! [Nielssen and Ninomiya (1983)]
- Each (massive) Dirac point contributes $\pm 1/2$ to the total Chern number

 \rightarrow in order to obtain a non-zero Chern number (per band), **one needs an inverted gap**

$$\sigma \to \sigma(\xi) = \sigma\xi$$

Berry curvature of a massive Dirac fermion \rightarrow correlations

$$\mathcal{B}_{\sigma,\lambda,\xi}(\mathbf{q}) = -\frac{\lambda \sigma \xi}{2} \frac{\hbar^2 v^2 \Delta}{(\Delta^2 + \hbar^2 v^2 q^2)^{3/2}} \xrightarrow{\mathbf{q} \to 0} -\frac{\lambda \sigma \xi}{2} \ell_C^2$$

 $\ell_C = \frac{\hbar v}{\Delta} = \frac{\hbar}{m_D v}$: effective Compton length

 \rightarrow "minimal" length scale

Berry curvature of a massive Dirac fermion \rightarrow correlations

$$\mathcal{B}_{\sigma,\lambda,\xi}(\mathbf{q}) = -\frac{\lambda \sigma \xi}{2} \frac{\hbar^2 v^2 \Delta}{(\Delta^2 + \hbar^2 v^2 q^2)^{3/2}} \xrightarrow{\mathbf{q} \to 0} -\frac{\lambda \sigma \xi}{2} \ell_C^2$$

$$\ell_C = \frac{\hbar v}{\Delta} = \frac{\hbar}{m_D v}$$

: effective Compton length

→ Berry curvature corrections in exciton spectra of 2D TMDC

Zhou et al., PRL (2015) Srivastava & Imamoglu, PRL (2015) Trushin, MOG, Belzig, PRL (2018) Hishri, Jaziri, MOG, arXiv (2018)

→ Stability of matter, breakdown effects for

 $\alpha^* > 1$

- → "minimal" length scale
- → important for correlations

Haldane model (broken timereversal symmetry, 1988)

Broken TR symmetry : $E(\mathbf{k}) \neq E(-\mathbf{k})$

modify Dirac points independently from one another

Haldane model (broken timereversal symmetry, 1988)

Broken TR symmetry : $E(\mathbf{k}) \neq E(-\mathbf{k})$

modify Dirac points independently from one another

Haldane model (broken timereversal symmetry, 1988)

Broken TR symmetry : $E(\mathbf{k}) \neq E(-\mathbf{k})$

Change in total Chern number: $\Delta C = \Delta C_K = \pm 1$

Outline

- Introduction to Berry curvature and bulk-edge correspondence
- Dirac fermions and "half Chern numbers"
- 2D Model of a smooth interface from chiral to massive relativistic interface states
- Weyl semimetals with smooth surfaces

How can we use this to describe an interface ?

in parameter space

How can we use this to describe an interface ?

Simplified 2D model of a smooth interface (*topological heterojunction*)

$$H = \begin{pmatrix} \Delta \frac{x}{\ell} & \hbar v(q_x - iq_y) \\ \hbar v(q_x + iq_y) & -\Delta \frac{x}{\ell} \end{pmatrix}$$

Sign change in an interface of size ℓ

Simplified 2D model of a smooth interface (*topological heterojunction*)

Change of "quantization axis" (unitary trafo)

$$\begin{aligned} \sigma_z &\to -\sigma_y, & \sigma_y \to \sigma_z \\ H &= \hbar \begin{pmatrix} vq_y & v(q_x + i\frac{x}{\ell_S^2}) \\ v(q_x - i\frac{x}{\ell_S^2}) & -vq_y \end{pmatrix} \end{aligned}$$

With characteristic (~"magnetic") length: $\ell_S = \sqrt{\ell \hbar v / \Delta} = \sqrt{\ell \xi}$ (intrinsic length: $\xi = \hbar v / \Delta$)

solution via ladder operators of harmonic oscillator:

$$\hat{a} = \frac{\ell_S}{\sqrt{2}}(q_x + ix/\ell_S^2) \qquad \hat{a}^{\dagger} = \frac{\ell_S}{\sqrt{2}}(q_x - ix/\ell_S^2) \qquad [\hat{a}, \hat{a}^{\dagger}] = 1$$
Tchoumakov et al., PRB (2017)

Simplified 2D model of a smooth interface (*topological heterojunction*)

 \rightarrow Hamiltonian of massive Dirac fermions in a magnetic field

$$H = \begin{pmatrix} \hbar v q_y & \sqrt{2}\hbar \frac{v}{\ell_S} \hat{a} \\ \sqrt{2}\hbar \frac{v}{\ell_S} \hat{a}^{\dagger} & -\hbar v q_y \end{pmatrix}$$

surface states ~ Landau levels

$$E_{n=0} = vq_y$$

$$E_{\lambda,n\neq 0} = \lambda v \sqrt{q_y^2 + 2n/\ell_S^2}$$

Surface (edge) states

Surface (edge) states

• How to change sign of chirality:

 \rightarrow changing the valley (for helical edge states with spin)

 $\xi \to -\xi$

 $\ell \to -\ell$

 → changing the edge
 (~ flipping orientation of "magnetic field")

E

Surface states in 3D materials

≻e.g. PbTe/SnTe and HgTe/CdTe interfaces : gap switches sign

S. Tchoumakov et al., PRB 96, 201302 (2017) Volkov and Pankratov, JETP Lett. 42, 4 (1985)

Conclusions

- Surface states of topological materials with smooth interfaces ~ Landau bands of Dirac fermions
- Topologically protected surface state ~ chiral n=0 Landau band
- Additional massive Landau bands $(n \neq 0)$
- Intriguing relativistic effects
- Experimental evidence in HgTe samples

Outline

- Introduction to Berry curvature and bulk-edge correspondence
- Dirac fermions and "half Chern numbers"
- 2D Model of a smooth interface from chiral to massive *relativistic* interface states
- Weyl semimetals with smooth surfaces

Weyl semimetals – "3D graphene" $H = \begin{pmatrix} \Delta - \frac{\hbar^2 k_z^2}{2m_0} & \hbar v (k_x - ik_y) \\ \hbar v (k_x + ik_y) & -\Delta + \frac{\hbar^2 k_z^2}{2m_0} \end{pmatrix}$ energy Kι Surface BZ 0 k_{z} $|k_x|$ Fermi arc Dirac monopoles k_u (in wave function) Bulk BZ k_z

Weyl semimetals – "3D graphene" $H = \begin{pmatrix} \Delta - \frac{\hbar^2 k_z^2}{2m_0} & \hbar v (k_x - ik_y) \\ \hbar v (k_x + ik_y) & -\Delta + \frac{\hbar^2 k_z^2}{2m_0} \end{pmatrix}$ energy $k_{\rm I}$ Surface BZ Δ_{k_z} 0 k_{z} 2D Berry curvature: $\mathcal{B}_{\lambda,k_z}(k_{\parallel}) = -\frac{\lambda}{2} \frac{\hbar^2 v^2 \Delta_{k_z}}{(\Delta_{k_z}^2 + \hbar^2 v^2 k_{\parallel}^2)^{3/2}}$ $|k_x|$ Fermi arc $|k_u|$ Bulk BZ "half Chern number": k_z $C_{\lambda}(k_z) = -\frac{1}{2}\lambda\operatorname{sgn}(\Delta_{k_z})$

Fermi arc as a collection of 1D edge channels

Fermi arc as a collection of 1D edge channels

Tchoumakov, Civelli & MOG, PRB (2017)

Fermi arc in a smooth interface \rightarrow TI

Effective interface model for Weyl node merging:

Fermi arc in a smooth interface \rightarrow TI

Effective interface model for Weyl node merging:

$$\Delta \to \Delta(x) = \Delta - \Delta' \frac{x}{\ell} \qquad \begin{array}{c} \text{change of "quantization axis" (unitary trafo)} \\ \sigma_z \to -\sigma_y, \qquad \sigma_y \to \sigma_z \end{array}$$
$$H = \begin{pmatrix} \hbar v k_y & \sqrt{2}\hbar \frac{v}{\ell_S} a \\ \sqrt{2}\hbar \frac{v}{\ell_S} a^{\dagger} & \hbar v k_y \end{pmatrix}$$

ladder operators:

$$a = \frac{\ell_S}{\sqrt{2}} \left[k_x + i \frac{x - x_0}{\ell_S^2} \right] \quad \text{and} \quad a^{\dagger} = \frac{\ell_S}{\sqrt{2}} \left[k_x - i \frac{x - x_0}{\ell_S^2} \right]$$

with $[a, a^{\dagger}] = 1$

Tchoumakov, Civelli & MOG, PRB (2017) Grushin et al., PRX (2016)

Fermi arc in a smooth interface \rightarrow TI

Effective interface model for Weyl node merging:

Dispersing Fermi arcs

dispersion of Fermi arcs in k_z

 \rightarrow magnetic field in interface (conspires with confinement)

Tchoumakov, Civelli & MOG, PRB (2017)

Surface states of tilted Weyl nodes

S. Tchoumakov, M. Civelli and M.O. Goerbig, Phys. Rev. B 95, 125306 (2017)

Special relativity in surface states

S. Tchoumakov, V. Jouffrey et al., PRB 96, 201302 (2017)

 $\Delta_2 + \mu_2$

 E_a

 $\Delta + \mu)(z)$

Experimental evidence

bulk Δ_1

Electrical resistance and capacitance of HgTe

A. Inhofer et al., PRB 96, 195104 (2017)