# Etat et Perspectives de la Physique des Particules

Samira Hassani CEA-Saclay, IRFU-DPhP June 20<sup>th</sup>, 2019



DÉPARTEMENT

Physique des deux Infinis





# Outline

1. Introduction to Particle Physics

2. What did we learn from Large Hadron Collider data?

3. What is next?

# Particle Physics (en très bref)

Study the elementary particles (e.g. the building blocks of matter: electrons and quarks) and the forces that control their behaviour at the most fundamental level.



#### **Elementary Particles**







### Particles



- The electrons and the quarks are the elementary particles of matter
- Study the fundamental laws of nature on scales down to 10<sup>-16</sup> cm
  - insight also into the structure and evolution of the Universe
  - from the very small to the very big ...

# The Fondamental Forces of Nature





Strong Nuclear Forceholds nuclei together





7

holds planets and stars together

#### Samira Hassani

#### **7** Electromagnetism

**7** gives light, radio, holds atoms together

#### Weak Nuclear Force

**7** gives radioactivity





5

### Forces Carriers

The exchange of Particles is responsible for the Forces





### The Standard Model in Particle Physics

A crowning achievement of 20th Century Science





- Over the last 100 years: combination of Quantum Mechanics and Special Theory of relativity along with all new particles discovered has led to Standard Model of Particle Physics
- The new (final?) Periodic Table of fundamental elements
- The SM has been tested thousands of times, to excellent precision.
- All particles foreseen by the SM have been observed.
- A major step forward was made in July 2012 with the discovery of the Higgs boson

# The Origin of Particle Masses



 $Mass(top) = \sim 350000 \text{ x Mass(electron)}$ 

- Why particles (and matter) have masses (and so different masses) ?
- The mass mystery could be solved with the « Brout-Englert-Higgs mecanism » (theory 1964): 10<sup>-11</sup> s after Big Bang, "Higgs field" became active and *particles acquired masses* proportional to strength of interactions with Higgs field



A world without "Higgs" would be a very strange one! Atoms may not exist, and the Universe would be very different...

### But, several open questions remain...



 Astrophysics/cosmological measurements show that most matter in the universe is NOT in this table : What is this Dark Matter?





### But, several open questions remain...



### But, several open questions remain...



Astrophysics/cosmological measurements show that most matter in the universe is **NOT in this table** : What is this Dark Matter?



- Why is there so little antimatter in the
- Are there other forces in addition to the
- Are there additional (microscopic) space



- **Quark-Gluon Plasma (QGP)** : a state of matter where quarks and gluons move freely over distances large in comparison to the typical size of a hadron
- Study the properties of nuclear matter under extreme conditions in **heavy ions collisions** 
  - Quantify the properties of the Quark-Gluon Plasma
  - Shed light on the evolution of the early Universe



# How to produce particles in lab ?



### 2010: a new era in fundamental research





LHC ring: 27 km circumference ALICE

ALICE

vrin S

# Where did P2I labs contribute?



### The Context of LHC in P2I

- Early and strong support to LHC in the P2I labs (since Lausanne workshop 1984)
- Contributions to the conception, design and technological choices of LHC experiments
- Continuous efforts, strong involvement and extreme dedication by the teams in:
  - 20 years of detector and physics simulations (historical contributions to the Higgs studies)
  - 15 years of detector construction and test beams
  - 8 years of world-wide computing data challenges
  - 3 years of detectors commissioning
  - 9 years of data taking with wealth of physics results
- **Participation to the physics and detector coordination of the experiments**: data preparation, computing , performance convenors, physics convenors, analysis review chairs, publications committee,...
- Many physicists, engineers and technicians from P2I labs are involved in the LHC program. Many PhD thesis/year

# LHC data





Total integrated luminosity Run 2  $\sqrt{s_{NN}} \sim 5$  TeV: ALICE: ~ 1.3 nb<sup>-1</sup> ATLAS, CMS: ~ 2.4 nb<sup>-1</sup> Goal for Run 2 was ~1 nb<sup>-1</sup>

Run 1 + Run 2: ATLAS, CMS: ~189 fb<sup>-1</sup> (goal was 150); LHCb: ~10 fb<sup>-1</sup>

Luminosity = # events/cross section/time

### Observation of New Boson (Higgs) at CERN







Peak ("resonance") at mass<sub> $\gamma\gamma$ </sub> around 125 GeV (~130 x proton mass) indicates the production of a **new particle** 

# Higgs re-discovery@13 TeV



- Excellent detector resolution.
- Strong contributions of LAL and IRFU teams in detector calibration and data analyses.

# Higgs Decay



# **Higgs Production**



# Higgs : what did we learn ?



- The newly found boson has properties as expected for a Standard Model Higgs
- We continue to look for anomalies, i.e. unexpected decay modes or couplings, multi-Higgs production, heavier Higgses, charged Higgses...

# Higgs Results @ 13 TeV



- **H\rightarrowbb observed** with more than 5 $\sigma$  in both experiments
- **Observation of ttH production**: combination of all Higgs decay channels and combination with the 7/8 TeV data of Run-1  $\rightarrow$  6.3 $\sigma$  significance

# Higgs : Coupling vs Particle mass



• Observation of good agreement with the Standard Model within uncertainties across 3 orders of magnitude in particle mass.

# Precision Measurements : W mass



- The relation between W, top, and Higgs masses provides stringent test of the Standard Model consistency and is sensitive to new Physics.
- The result is consistent with the SM expectation.
- The measurement required an accurate calibration of the detector response.

# Standard Model Measurements



Agreement with theory across orders of magnitude is impressive.

# Exploring the unknown



### SUSY searches: NULL so far...

| ATLAS SUSY Searches* - 95% CL Lower Limits 1 T    |                                                                                                                                                                                                    |                                         |                                      |                      |                      |                                                                                                                      | TeV                                   |                                                          | <b>ATLAS</b> Preliminary $\sqrt{s} = 7, 8, 13$ TeV                                                                                                                                                                                                                                        |                                                                                        |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                   | Model                                                                                                                                                                                              | $e, \mu, \tau, \gamma$                  | Jets                                 | $E_{ m T}^{ m miss}$ | ∫£ dt[fb             | Mass I                                                                                                               | imit                                  | $\sqrt{s}$ = 7, 8 TeV                                    | $\sqrt{s} = 13 \text{ TeV}$                                                                                                                                                                                                                                                               | Reference                                                                              |
| Inclusive Searches                                | $\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$                                                                                                                                    | 0<br>mono-jet                           | 2-6 jets<br>1-3 jets                 | Yes<br>Yes           | 36.1<br>36.1         | <i>q̃</i> [2×, 8× Degen.]<br><i>q̃</i> [1×, 8× Degen.]                                                               | 0.9<br>0.43 0.71                      | 1.55                                                     | $m(\tilde{\chi}_{1}^{0}) < 100  GeV$<br>$m(\tilde{q}) \cdot m(\tilde{\chi}_{1}^{0}) = 5  GeV$                                                                                                                                                                                             | 1712.02332<br>1711.03301                                                               |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$                                                                                                                           | 0                                       | 2-6 jets                             | Yes                  | 36.1                 | ğ<br>ğ                                                                                                               | Forbidden                             | 2.0<br>0.95-1.6                                          | $m(\tilde{\chi}_{1}^{0}) < 200  GeV$<br>$m(\tilde{\chi}_{1}^{0}) = 900  GeV$                                                                                                                                                                                                              | 1712.02332<br>1712.02332                                                               |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$                                                                                                                     | 3 e,μ<br>ee,μμ                          | 4 jets<br>2 jets                     | -<br>Yes             | 36.1<br>36.1         | ge<br>Be                                                                                                             |                                       | 1.85<br>1.2                                              | $m(\tilde{\chi}_{1}^{0}) < 800  GeV$<br>$m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 50  GeV$                                                                                                                                                                                                | 1706.03731<br>1805.11381                                                               |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$                                                                                                                                   | 0<br>3 <i>e</i> , µ                     | 7-11 jets<br>4 jets                  | Yes                  | 36.1<br>36.1         | ig<br>ge                                                                                                             | 0.98                                  | 1.8                                                      | $m(\tilde{\chi}^0_1)$ <400 GeV<br>$m(\tilde{g})$ - $m(\tilde{\chi}^0_1)$ =200 GeV                                                                                                                                                                                                         | 1708.02794<br>1706.03731                                                               |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$                                                                                                                                   | 0-1 e,μ<br>3 e,μ                        | 3 <i>b</i><br>4 jets                 | Yes<br>-             | 36.1<br>36.1         | ĩ<br>ğ<br>ğ                                                                                                          |                                       | 2.0<br>1.25                                              | $m(\tilde{\chi}_{1}^{0})$ <200 GeV<br>$m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =300 GeV                                                                                                                                                                                                 | 1711.01901<br>1706.03731                                                               |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}_1^0/t\tilde{\chi}_1^\pm$                                                                                                          |                                         | Multiple<br>Multiple<br>Multiple     |                      | 36.1<br>36.1<br>36.1 | $\tilde{b}_1$ Forbidden $\tilde{b}_1$ Foi $\tilde{b}_1$ Foi                                                          | 0.9<br>bidden 0.58-0.82<br>bidden 0.7 | $m(\tilde{\chi}_{1}^{0}) = 200$                          | $\begin{array}{l} m(\tilde{\chi}_{1}^{0}){=}300~GeV,~BR(b\tilde{\chi}_{1}^{0}){=}1\\ {=}300~GeV,~BR(b\tilde{\chi}_{1}^{0}){=}BR(t\tilde{\chi}_{1}^{\pm}){=}0.5\\ {\rm GeV},~m(\tilde{\chi}_{1}^{\pm}){=}300~GeV,~BR(t\tilde{\chi}_{1}^{\pm}){=}1 \end{array}$                             | 1708.09266, 1711.03301<br>1708.09266<br>1706.03731                                     |
|                                                   | $\tilde{b}_1\tilde{b}_1,\tilde{\imath}_1\tilde{\imath}_1,M_2=2\times M_1$                                                                                                                          |                                         | Multiple<br>Multiple                 |                      | 36.1<br>36.1         |                                                                                                                      | 0.7                                   |                                                          | $m(	ilde{\chi}_1^0)$ =60 GeV $m(	ilde{\chi}_1^0)$ =200 GeV                                                                                                                                                                                                                                | 1709.04183, 1711.11520, 1708.03247<br>1709.04183, 1711.11520, 1708.03247               |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$<br>$\tilde{t}_1 \tilde{t}_1, \tilde{H} LSP$                                                         | 0-2 <i>e</i> , μ 0                      | 0-2 jets/1-2<br>Multiple<br>Multiple | b Yes                | 36.1<br>36.1<br>36.1 |                                                                                                                      | 1.0<br>0.4-0.9<br>0.6-0.8             | $m(\tilde{k}_{1}^{0})=150$<br>$m(\tilde{k}_{1}^{0})=300$ | $m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$<br>$0 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{r}_{1} \approx \tilde{r}_{L}$<br>$0 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{r}_{1} \approx \tilde{r}_{L}$ | 1506.08616, 1709.04183, 1711.11520<br>1709.04183, 1711.11520<br>1709.04183, 1711.11520 |
|                                                   | $\tilde{t}_1 \tilde{t}_1$ , Well-Tempered LSP                                                                                                                                                      |                                         | Multiple                             |                      | 36.1                 | ĩ,                                                                                                                   | 0.48-0.84                             | $m(\tilde{\chi}_1^0)=150$                                | GeV, m $(\tilde{\chi}_1^{\pm})$ -m $(\tilde{\chi}_1^0)$ =5 GeV, $\tilde{t}_1 \approx \tilde{t}_L$                                                                                                                                                                                         | 1709.04183, 1711.11520                                                                 |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$                                                              | 0                                       | 20                                   | Yes                  | 36.1                 |                                                                                                                      | 0.85                                  |                                                          | $m(\tilde{\chi}_1^0)=0 \text{ GeV}$<br>$m(\tilde{r}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$                                                                                                                                                                                      | 1805.01649<br>1805.01649                                                               |
|                                                   | ž. ž. v ž. v h                                                                                                                                                                                     | 0<br>1-2 e u                            | mono-jet                             | Yes                  | 36.1                 | <i>t</i> 1<br>7                                                                                                      | 0.43                                  |                                                          | $m(\tilde{t}_1, \tilde{c}) - m(\tilde{\lambda}_1') = 5 \text{ GeV}$                                                                                                                                                                                                                       | 1711.03301                                                                             |
|                                                   | $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via $WZ$                                                                                                                                                   | 2-3 e, µ<br>ee, µµ                      | -                                    | Yes                  | 36.1                 | $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0}$ $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0}$ 0.17                     | 0.6                                   | mį                                                       | $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(r_{1})-m(r_{1})=180$ GeV<br>$m(\tilde{\chi}_{1}^{0})=0$<br>$m(\tilde{\chi}_{1}^{0})-10$ GeV                                                                                                                                                           | 1403.5294, 1806.02293                                                                  |
|                                                   | $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh                                                                                                                                                | <i>ℓℓ/ℓγγ/ℓbb</i>                       | -                                    | Yes                  | 20.3                 | $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0.17 $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0.26 $        |                                       |                                                          | $m(\tilde{x}_1) - m(\tilde{x}_1) = 10 \text{ GeV}$<br>$m(\tilde{\chi}_1^0) = 0$                                                                                                                                                                                                           | 1501.07110                                                                             |
| EW<br>irect                                       | $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu})$ | 2 τ                                     | -                                    | Yes                  | 36.1                 |                                                                                                                      | 0.76                                  | $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=1$    | $\begin{array}{l} h(\tilde{\chi}_{1}^{0}) = 0, \ m(\tilde{\tau},\tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ 00 \ GeV, \ m(\tilde{\tau},\tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \end{array}$                                | 1708.07875<br>1708.07875                                                               |
| d L                                               | $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R},  \tilde{\ell} {\rightarrow} \ell \tilde{\chi}_1^0$                                                                                                          | 2 e, μ<br>2 e, μ                        | 0<br>≥ 1                             | Yes<br>Yes           | 36.1<br>36.1         | <ul> <li><i>ℓ</i></li> <li><i>ℓ</i></li> <li>0.18</li> </ul>                                                         | 0.5                                   |                                                          | $m(\tilde{\ell}_1^0)=0$<br>$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$                                                                                                                                                                                                            | 1803.02762<br>1712.08119                                                               |
|                                                   | $\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$                                                                                                                                    | 0<br>4 <i>e</i> , µ                     | $\geq 3b$<br>0                       | Yes<br>Yes           | 36.1<br>36.1         | <i>H</i> 0.13-0.23<br><i>H</i> 0.3                                                                                   | 0.29-0.88                             |                                                          | $ BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 $                                                                                                                                                                                                    | 1806.04030<br>1804.03602                                                               |
| Long-lived<br>particles                           | $Direct\tilde{\chi}_1^*\tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$                                                                                                                    | Disapp. trk                             | 1 jet                                | Yes                  | 36.1                 | $ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm}  0.15 $                                                           | 0.46                                  |                                                          | Pure Wino<br>Pure Higgsino                                                                                                                                                                                                                                                                | 1712.02118<br>ATL-PHYS-PUB-2017-019                                                    |
|                                                   | Stable $\tilde{g}$ R-hadron                                                                                                                                                                        | SMP                                     | -                                    | -                    | 3.2                  | ğ                                                                                                                    |                                       | 1.6                                                      | -0                                                                                                                                                                                                                                                                                        | 1606.05129                                                                             |
|                                                   | Metastable $\tilde{g}$ R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$<br>GMSB $\tilde{\chi}_1^0 \rightarrow q \tilde{G}$ long-lived $\tilde{\chi}_1^0$                                      | 2γ                                      | Multiple                             | Yes                  | 32.8<br>20.3         | $\tilde{g} = [\tau(\tilde{g}) = 100 \text{ ns}, 0.2 \text{ ns}]$<br>$\tilde{\chi}_{0}^{0}$                           | 0.44                                  | 1.6 2.4                                                  | $m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$                                                                                                                                                                                                                                               | 1710.04901, 1604.04520<br>1409.5542                                                    |
|                                                   | $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$                                                                                                                             | displ. ee/eµ/µ                          | μ-                                   | -                    | 20.3                 | ğ                                                                                                                    | 0.11                                  | <b>1.3</b> e                                             | $< c\tau(\tilde{\chi}_1^0) < 1000 \text{ mm, m}(\tilde{\chi}_1^0) = 1 \text{ TeV}$                                                                                                                                                                                                        | 1504.05162                                                                             |
|                                                   | LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$                                                                                                         | εμ,ετ,μτ                                | -                                    | -                    | 3.2                  | ν <sub>τ</sub>                                                                                                       |                                       | 1.9                                                      | $\lambda'_{311}$ =0.11, $\lambda_{132/133/233}$ =0.07                                                                                                                                                                                                                                     | 1607.08079                                                                             |
|                                                   | $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$                                                                                              | 4 e,μ                                   | 0<br>E lorgo <i>B</i> i              | Yes                  | 36.1                 | $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}  [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$                          | 0.82                                  | 1.33                                                     | $m(\tilde{\chi}_1^0)=100 \text{ GeV}$                                                                                                                                                                                                                                                     | 1804.03602                                                                             |
| NdB                                               | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\chi_1, \chi_1 \rightarrow qqq$                                                                                                                       | 0 4                                     | Multiple                             | els -                | 36.1                 | $\tilde{g} = [m(\mathcal{X}_1)=200 \text{ GeV}, 1100 \text{ GeV}]$<br>$\tilde{g} = [\mathcal{X}''_{112}=2e-4, 2e-5]$ | 1.0                                   | 1.3 1.9                                                  | m( $\tilde{\chi}_1^0$ )=200 GeV, bino-like                                                                                                                                                                                                                                                | ATLAS-CONF-2018-003                                                                    |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$                                                                                                |                                         | Multiple                             |                      | 36.1                 | $\tilde{g} = [\lambda_{323}'' = 1, 1e-2]$                                                                            |                                       | 1.8 2.1                                                  | $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like                                                                                                                                                                                                                                                 | ATLAS-CONF-2018-003                                                                    |
|                                                   | $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$                                                                                            | 0                                       | Multiple                             | h -                  | 36.1                 | $g [A_{323}^{-}=20.4, 10.2]$                                                                                         | 0.55 1.0                              |                                                          | $m(\tilde{\chi}_1^{\prime})=200 \text{ GeV}, \text{ bino-like}$                                                                                                                                                                                                                           | ATLAS-CONF-2018-003                                                                    |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$                                                                                                                                           | 2 e,µ                                   | 2 b                                  | -                    | 36.1                 | <i>t</i> <sub>1</sub> [99, 03]                                                                                       | 0.01                                  | 0.4-1.45                                                 | $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$                                                                                                                                                                                                                                              | 1710.05544                                                                             |
|                                                   |                                                                                                                                                                                                    |                                         |                                      |                      |                      |                                                                                                                      |                                       |                                                          |                                                                                                                                                                                                                                                                                           |                                                                                        |
| *Only                                             | a selection of the available ma                                                                                                                                                                    | es limite on                            | now state                            | os or                | 1                    | 0 <sup>-1</sup>                                                                                                      |                                       | · · · · ·                                                | Maga angle (T-\/)                                                                                                                                                                                                                                                                         | I                                                                                      |
| Uniy                                              | a selection of the available ma                                                                                                                                                                    | 100 11111111111111111111111111111111111 | iew sidle                            | 5 01                 |                      | 0                                                                                                                    |                                       |                                                          | wass scale [IEV]                                                                                                                                                                                                                                                                          |                                                                                        |

\*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

# Tests of Lepton Universality

• Test of the universality of leptonic couplings (e/ $\mu$ ) by comparing the rates of B<sup>0</sup>  $\rightarrow$  K\*  $\ell^+ \ell^-$  (R<sub>K\*</sub>)

$$R_{\mathcal{K}^{(*)}} = \frac{\mathcal{B}(B \to \mathcal{K}^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to \mathcal{K}^{(*)}e^+e^-)} \stackrel{\text{SM}}{=} 1.0$$



 $R_{K^*} = 0.66^{+0.11}_{-0.07} \pm 0.03 \text{ for } 0.045 < q^2 < 1.1 \text{ GeV}^2, \sim 2.2 \sigma \text{ from SM};$  $R_{K^*} = 0.69^{+0.11}_{-0.07} \pm 0.05 \text{ for } 1.1 < q^2 < 6.0 \text{ GeV}^2, \sim 2.4 \sigma \text{ from SM};$ 

• Puzzling results from the LHCb experiment → Update eagerly awaited !!

#### Samira Hassani

??



### Quarkonia : Nuclear modification factor R<sub>AA</sub>



- Nuclear modification factor R<sub>AA</sub> compares Pb-Pb to p-p : 1 means no medium effect
- Less suppression observed at LHC compared to RICH
- Charm regeneration observed at LHC: mainly at low p<sub>T</sub>.

# LHC Roadmap to achieve Full Potential



- All LHC experiments plan upgrades for either 2019-2020 or 2024-2026 for the High Luminosity LHC upgrade (ATLAS, CMS and LHCb, ALICE)
- Approved LHC program to collect 3000 fb<sup>-1</sup> in total with the LHC (HL-LHC)
  - Maximize the reach for searches and for precision measurements (eg Higgs)
- LHC will run till ~2037
  - Only ~5% of the collisions delivered so far...
- Then ...?

### Detector upgrades



# Detector upgrades

- Detector upgrades are planned so as to maintain or improve on the present performance as the instantaneous luminosity increases
  - Improve trigger capabilities
    - better discriminate the desired signal events from background as early as possible in trigger decision
  - Upgrade and/or replace detectors as they e.g.
    - Cannot handle higher rate due to bandwidth limitations
    - Suffer from radiation damage making them less efficient



CMS event with 78 interactions per bunch crossing

# Detector upgrades















- 1. Granularity in the trigger scheme of the LArg calorimeter (Run 3)
- 2. New Small Wheel (Run 3)
- 3. Granularity in tracking (ITK HL-LHC, Run 4)
- 4. New Electronics for LArg (HL-LHC, Run 4)
- 5. Timing (HGTD HL-LHC, Run 4)
- 1. ECAL Barrel electronics (Run 4)
- 2. ECAL Barrel Laser Monitoring (Run 4)
- 3. Endcap Calorimeter electronics (Run 4)
- 4. Mip timing detector(Run 4)
- 1. 40 MHz readout of the full detector (Run 3)
- 2. Full reconstruction at the trigger level (Run 3)
- 3. New ECAL (granularity and timing, Run 4)

- 1. New readout electronic for the Muon Tracker (Run 3)
- 2. Muon Forward Tracker (Run 3/4)

# Physics cases at HL-LHC



- Evidence for di-Higgs production, 50% precision on self-coupling.
- Few % precision on Higgs boson couplings.
- Establish  $H \rightarrow \mu\mu$  observation.
- Increased discovery potential for many models.

# European Strategy for Particle Physics

#### **Conclusion in 2012**

- Highest priority is exploitation of the LHC including luminosity upgrades
- Europe should be able to propose an ambitious project after the LHC
  - Either high energy proton collider (FCC-hh) with lepton collider (FCC-ee) as potential intermediate step
  - Or high energy linear lepton collider (CLIC)
- Europe welcomes Japan to make a proposal to host **ILC**

#### New process from 2019-2020



### Considered High Energy Frontier Collider

#### **Circular colliders:**

- FCC (Future Circular Collider)
  - FCC-hh: 100 TeV proton-proton cms energy, ion operation possible ٠
  - FCC-ee: Potential intermediate step 90-350 GeV lepton collider ٠
  - FCC-he: Lepton-hadron option ٠
  - HE-LHC: Stronger magnets in LHC tunnel
- Great technological challenges for CEPC / SppC (Circular Electron-positron Collider/Super Proton-proton Collider) accelerators and detectors
  - CepC : e<sup>+</sup>e<sup>-</sup> 90 240 GeV cms
  - SppC : pp 70 TeV cms

#### Linear colliders

- ILC (International Linear Collider): e<sup>+</sup>e<sup>-</sup> 500 GeV cms energy, Japan considers hosting project
- CLIC (Compact Linear Collider): e<sup>+</sup>e<sup>-</sup> 380 GeV 3 TeV cms energy, CERN hosts collaboration

#### Mentioned

- Muon collider
- Plasma acceleration in linear collider
- Photon-photon collider ٠
- LHeC

#### Samira Hassani

P21 labs deeply involved

# Future Circular Colliders (FCC)

International FCC collaboration (CERN as host lab) to study:

#### • pp-collider (FCC-hh)

 main emphasis, defining infrastructure requirements

#### 16 T →100 TeV pp in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- **e+e- collider (FCC-ee)**, as potential first step
- **HE-LHC** with FCC-hh technology
- p-e (FCC-he) option



# Precision on Higgs boson couplings

#### inspired from

FCC-ee TDR (2018)

| <u>arxiv:1710.07621v4</u> <u>arXiv:1812.01644</u> |        |        |        |        |      |        |        |        |
|---------------------------------------------------|--------|--------|--------|--------|------|--------|--------|--------|
|                                                   |        | HL-LHC | ILC    |        | CLIC | FCC-ee |        | CEPC   |
| √s                                                | (GeV)  | 14000  | 250    | +500   | 380  | 90-240 | +365   | 90-250 |
| L                                                 | (ab-I) | 3      | 2      | +4     | 0.5  | 5      | +1.5   | 5      |
| Years                                             |        | 13     | 15     | +10    | 7    | 3      | +6     | 7      |
| ZZ                                                | (%)    | 3.5    | 0.38   | 0.30   | 0.4  | 0.25   | 0.22   | 0.25   |
| ww                                                | (%)    | 3.5    | 1.8    | 0.4    | 0.8  | 1.3    | 0.46   | 1.2    |
| тт                                                | (%)    | 6.5    | 1.9    | 0.8    | 2.7  | 1.4    | 0.8    | 1.4    |
| tt                                                | (%)    | 4.2    | -      | -      | -    | -      | 3.3(*) | -      |
| bb                                                | (%)    | 8.2    | 1.8    | 0.6    | 1.3  | 1.4    | 0.7    | 1.3    |
| сс                                                | (%)    | -      | 2.4    | 1.2    | 4. I | 1.8    | 1.2    | 1.8    |
| gg                                                | (%)    | -      | 2.2    | 1.0    | 2.1  | 1.7    | 0.9    | 1.4    |
| YY                                                | (%)    | 3.6    | 1.1(*) | 1.0(*) | -    | 4.7    | 1.3(*) | 4.7    |
| Гн                                                | (%)    | 50     | 3.9    | 1.7    | 4.7  | 2.8    | 1.5    | 2.6    |
| exo                                               | (%)    | -      | <1.6   | <1.3   | <0.7 | <1.2   | <1.0   | <1.2   |

(\*) incorporating **HL-LHC** results



### Summary: Physics landscape by 2019

- The Puzzle: The Standard Model is not the ultimate theory of particle physics, because of the many outstanding questions :
  - Nature of Dark Matter ? Matter versus antimatter ?...
- On the other hand, NO evidence of New Physics
  - If New Physics exists at the TeV scale and is discovered at 13 TeV centreof-mass in the future, its spectrum should be quite heavy and it will require a lot of luminosity and energy to study it in detail.
     Future machine : decisions expected in the next years.

"Prediction is very difficult, especially about the future"

Niels Bohr

Samira Hassani

40

# Backup

# How many Higgs bosons do we have?

| Every fb <sup>-1</sup> of pp<br>collision at 13 TeV | Н→үү | H→ZZ         | H→WW            | Н→тт  | H→bb            |
|-----------------------------------------------------|------|--------------|-----------------|-------|-----------------|
| Produced                                            | 130  | 1,500<br>(7) | 12,000<br>(280) | 3,500 | 32,000<br>(310) |
| Selected                                            | 46   | 1.5          | 42              | 17    | 66              |

Assuming  $m_H = 125.09 \text{ GeV}$  from Run 1 ATLAS-CMS combined measurement Number in brackets: for  $H \rightarrow ZZ$  it indicates  $H \rightarrow 4I$  (I=e,  $\mu$ ). For  $H \rightarrow WW$  it is  $H \rightarrow ev\mu v$ . For  $H \rightarrow bb$ , it is VH where vector boson decays to electrons, muons, and/or neutrinos

- With every fb<sup>-1</sup> of 13 TeV pp collision data, the SM predicts about 56,000 Higgs bosons produced
- Analyses discussed today will select about 170 in every fb<sup>-1</sup>
  - Large bkg. at LHC introduces difficulty in trigger and analyses: need to stick to relatively clean signatures (leptonic decay; associated production e.g. VH with V→leptons; high-p<sub>T</sub> phase-space regions)

# Higgs Production and Decay



# **Collider Choices**

#### • Hadron collisions: compound particles

- Protons or ions
- Mix of quarks, anti-quarks and gluons: variety of processes
- Parton energy spread
- QCD processes large background sources
- Hadron collisions  $\Rightarrow$  large discovery range
- Lepton collisions: elementary particles
  - Electrons, positrons and muons
  - Collision process known
  - Well defined energy
  - Less background
  - − Lepton collisions ⇒ precision measurements
- Photons also possible





• Observation

• Observation