

Study of energy shower profile and 1m3 energy resolution

Jan Blaha

Laboratoire d'Annecy-le-Vieux de Physique des Particules

> MicroMegas Physics Meeting LAPP, 22 Avril 2009

> > 1

PART 1

Study of energy shower profile

Calorimeter configuration

Properties of the absorber materials:

absorber	Ζ	ρ [g.cm -3]	λ [g.cm ⁻²]	λ [cm]	1 abs. [cm]	80 planes [cm]
Fe	26	7.87	132.1	16.78	1.9	200
W	74	19.30	191.9	9.97	1.127	170.16
Pb	82	11.35	199.6	17.6	1.993	239.44

Calorimeter with Fe absorber:

Passive layer: 9 λ (including 4 mm thick steel cover) Active layer: 6 mm (3 mm of gas)

Calorimeter with W and Pb absorbers: Passive layer: 9 λ Active layer: 6 mm (3 mm of gas) + 4 mm of Al (32 cm in total (0.8 λ))

Longitudinal profile – Fe Abs

Longitudinal energy and hit profile (Fe abs, 9 λ)

22/04/09

DD

Longitudinal profile – Fe Abs

Longitudinal energy (hit) profile and energy fraction in shower

Lateral profile – Fe Abs

Lateral energy (hit) profile as an energy (hit) density vs radius

Lateral profile – Fe Abs

Lateral energy (hit) profile and energy fraction in shower

J. Blaha

7

Long. and lateral profile – Fe Abs

Comparison of the long and lateral profiles for 1m3

Analog vs Digital – Fe Abs

Comparison of the longitudinal energy (hit) profiles for different energies

Analog vs Digital – Fe Abs

Comparison of the lateral energy (hit) profiles for different energies

Longitudinal profile

Longitudinal energy profile for different absorbers (Fe, W, Pb)

Longitudinal profile

Longitudinal hit profile for different absorbers (Fe, W, Pb)

Lateral profile

Lateral energy profile for different absorbers (Fe, W, Pb)

22/04/09

Lateral profile

Lateral energy profile for different absorbers (Fe, W, Pb)

Mean shower radius

PART 2

Study of 1m3 energy resolution (preliminary results)

Configuration

- 1m3 calorimeter
- Fe absorber, 40 planes (4.5 λ)
- No threshold for digital mode

Dep. energy distributions

Hit distributions

Nb. of Hits vs dep. energy

Nb. of Hits vs dep. energy

Energy resolution and linearity

Energy resolution

Linearity

22/04/09

Summary and prospectives

Energy shower profile:

- Longitudinal shower profile behaves as expected: similar profile for W and Pb (high Z materials) in comparison with Fe
- Lateral shower profile shows surprisingly similar behavior for Fe and W and slightly worsen behavior for Pb – this need to be explained
- Different shower profile behavior for higher energy in case of analog and digital mode has been found – this could be due to the saturation effect and need to be verified with in threshold study

1m3 energy resolution:

- Digital energy resolution has been found superior to analog contrary to the linearity which is better in analogue mode (comparable results were found for 8m3)
- Energy leakage plays important role and need to be take into account (leakage corrections?)
- Up to which energy we are interested?
- As in previous case, an optimal threshold(s) need to be found with respect to energy resolution and linearity performance

Next work:

Threshold study!