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Motivation

γ ≡ arg(−
Vud Vub

*

Vcd Vcb
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*
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In Wolfensteing parameterisation, up to order λ
4 , all the CKM

elements involved are real except Vub
* and Vtd :
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V td
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Motivation

Loop vs Tree

Why γ is a key goal ?

Loop processes more easily
altered by presence of NP
constraints on the apex of UT currently
more stringents from loop measurements

γ is least well measured parameter of UT
Theoretically pristine
with LHCb and Belle II the ideal degree level precision is possible



Direct CPV (CPV in decay )

Asymf ≡
Γ(B→f ) − Γ(B→f )
Γ(B→f ) + Γ(B→f )

=
1 − |A f /A f |

2

1 + |A f /A f |
2

In order to have non-vanishing CP asymmetry , Asym≠0, the B→f decay
amplitude needs to receive contributions from (at least) two different terms
with differing weak , ϕ1,2 , and strong phases, δ1,2



Direct CPV (CPV in decay )

The weak phases are due to CKM phase in the SM Lagrangian and change
the sign under CP transformation, while the strong phases are due to on-shell
rescattering of particles (pions, etc) and are thus CP even, the same as QCD
interactions. The CP asymmetry is, in sinplifying limit a2 /a1≪1,

The CP asymmetry vanishes in the limit where either

(i) there is only one contribution to the amplitude a2→0
(ii) if the weak phase difference vanishes, ϕ2−ϕ1→0
(iii) if the strong phase difference vanishes, δ2−δ1→0



γ measurements from B±→ DK±

∘ Access γ via interference between B−
→ D0 K−andB−

→ D0 K−

color allowed
B−

→D0 K−
∼Vcb Vus

*

∼A λ
3

color suppressed
B−

→D0 K−
∼Vub Vcs

*

∼A λ3(ρ+ iη)

∘ Theoretically pristine B → DK approach

CKM elements involved are
Vcs Vub

*

Vus Vcb
* while γ ≡ arg(−

Vud Vub
*

Vcd Vcb
* )

⇒
Vcd Vcs

Vud Vus

=−1 +
A λ

4

2
− A2λ5(ρ+iη−

1
2

) + O(λ6)

⇒ leading order correction on γ is of the order λ
5
∼ 10−4

(negligible)



γ measurements from B±→ DK±

∘ Access γ via interference between B−
→ D0 K−andB−

→ D0 K−

color allowed
B−

→D0 K−
∼Vcb Vus

*

∼A λ
3

color suppressed
B−

→D0 K−
∼Vub Vcs

*

∼A λ3(ρ+ iη)

rB=
|Asuppressed |

|A favoured |
∼

|Vub Vcs
* |

|Vcb Vus
* |

×[color supp] = 0.1-0.2

∘ Theoretically pristine B → DK approach

relative weak phase is γ , relative strong phase is δB

relative magnitude of suppressed amplitude is rB

⇒ for Dπ : same dependence to γ , but different rB ∼ 0.01 (Vus → Vud , Vcs → Vcd)



γ measurements from B±→ DK±

∘ Reconstruct D in final states accessible to both D0 and D0

− D = DCP , CP eigenstates as K+ K− , π
+
π

− , KSπ
0

− D = Dsup , Doubly -Cabbibo suppressed decays as K π

− Three-body decays as D→KS π+ π− , KSK+ K−

GLW method (Gronau-London-Wyler )

ADS method (Atwood-Dunietz -Soni)

GGSZ (Dalitz) method (Giri-Grossman -Soffer -Zupan)

∘ Largest effects due to

− charm mixing

− charm CP violation

∘ Different B decays (DK , D*K , DK *
)

− different hadronic factors (rB , δB) for each

Y .Grossman , A .Soffer , J .Zupan
[PRD 72, 031501 (2005)]

negligible



γ , first principles...

A(B−
→D0K−

) = AB and A (B−
→D0K−

) = ABrBei(δB−γ)

A(B+
→D0K+

) = AB and A (B+
→D0K+

) = ABrBei (δB+γ)

amplitudes of the subsequent D0 and D0 decays to a common final state f

A (D0
→f ) = AD and A (D0

→f ) = ADrDei δD

assuming direct CPV in D decays negligibly small : A (D0→f ) ≡ A (D0→f ) and A (D0→f ) ≡ A (D0→f )



γ , first principles...

rates of B−
→DK− and B+

→DK+

if D final state f is CP eigenstates (GLWmethod):
rD = 1, and δD = 0 (π) for CP-even (odd) eigenstate

ACP+=
2rBsin δBsin γ

1+rB
2
+2rBcosδBcos γ

ACP-=
−2rBsinδBsin γ

1+rB
2
−2rB cosδBcos γ



⇐

B→DK± at Belle II
illustration with Belle B→D(Kπ)K analysis

B → Dπ
B → DK

BB
continuum

KID<0.6 (pion- like)

KID>0.6 (kaon -like)

for Belle

for Belle II: performances expected
to be as good (better ?) as for Belle MC...
one of the important outputs of current data taking ( jury is still out)



GLW with DCPK

ACP+=
2rBsin δBsin γ

1+rB
2
+2rBcosδBcos γ

ACP-=
−2rBsinδBsin γ

1+rB
2
−2rB cosδBcos γ

RCP+=1+rB
2+2rB cosδBcos γ RCP-=1+rB

2−2rBcosδBcos γ

Relation between (ACP+ , ACP- , RCP + , RCP-) and (γ , rB , δB)

D decays to CP eigenstates

⇒ look for RCP± ≠ 1 and ACP± ≠ 0

Usuallymeasured observables:



The other charged B's decays...
B→D*0K , D*0→D0 π0 ,D0 γ

∘ a new set of (rB, δB) = (rB
* , δB

*
)...

∘ ηX , CP eigenvalue of X
− ηD* = ηD×η

π0/γ
×(−1)

l , l=angular momentum between D and π
0
/ γ

− ηD* = ηD for D*→Dπ0 , ηD* =−1×ηD for D*→Dγ

⇒ shift of π between both cases



GLW observables (predictions vs measurements)
DK [PRD82(2010)072004], D*K [PRD78(2008)092002], DK*

[PRDD80(2009)092001]

DK and D*K [arXiv :1301.2033] DK [PLB 712(2012)203, PLB 713 (2012) 351]

+ 22 obs.



ADS method measures ϕ3 via the interference in rare
B−

→ [K+
π

−
]D K− decays

colour
suppressed

Cabibbo
favoured
D decay

doubly
Cabibbo
suppressed
D decay

Vus

Vcd

Vus

Vcb

Vub

Vcs

Vcs

Vud



ADS rate and asymmetry (relative to the common decay ):

favoured suppressed

common

where



Comparison of the results obtained for D(*)K with expectations
where ''expectations '' are derived from the GGSZ observables , δD and γUT

RADS(DK ) = rB
2
+ rD

2
+ 2rB rDcos( δB + δD)cos γ

AADS(DK) = 2rBrDsin( δB + δD)sin γ /RADS(DK)

RADS(Dπ0

* K ) = rB
* 2

+ rD
2

+ 2rB
* rDcos(δB

*
+ δD)cos γ

AADS(Dπ
0

* K ) = 2rB
* rDsin (δB

* + δD)sin γ /RADS(Dπ
0

* K )

RADS(Dγ
* K ) = rB

* 2
+ rD

2
− 2rB

* rDcos( δB
*

+ δD)cos γ

AADS(Dγ
* K ) = −2rB

* rD sin( δB
* + δD)sin γ /RADS(Dγ

* K )

B→DK

B→D* K , D*
→Dπ

0

B→D* K , D*
→D γ

for illustration



Lot of interesting modes...

challenging modes
with KL , two π

0's ...

not used until now

current study with
Belle promising
promising

D mode 2F+−1 branchingratio

(× 10−3
)

K+ K−
+1 3.96±0.08

π+ π− +1 1.40±0.03
π

0
π

0
+1 0.82±0.04

KL
0
π

0
+1 10.0±0.7

KS
0 π0 π0 +1 9.1±1.1

KS
0 ηπ0 +1 5.5±1.1

KS
0 KS

0KS
0

+1 0.91±0.13

ππ π0 14.3±0.6
K K π0 3.3±0.1
ππ π π 7.4±0.2

D mode 2F+−1 branchingratio

(× 10−3
)

KS
0
π

0
−1 11.9±0.4

KS
0 η −1 4.8±0.3

KS
0
η' −1 9.4±0.5

KS
0KS

0 KL
0

−1 1.0

ηπ0 π0 −1 unknown
η'π0 π0 −1 unknown
KS

0KS
0π0 −1 < 0.6

KS
0KS

0
η −1 unknown

D mode branchingratio(× 10−3
)

KS
0
π

+
π

− 28.3±2.0

KS
0 K+ K− 4.6±0.2

KL
0
π

+
π

−

KL
0 K+K−

KS
0 π+ π− π0 52±6

π
+
π

−
π

0
π

0 10.0±0.9
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