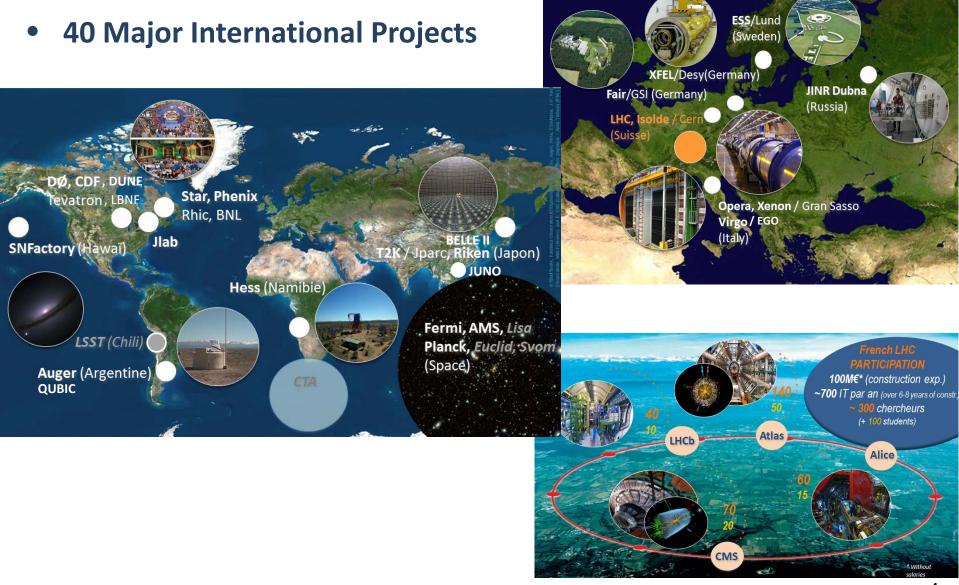
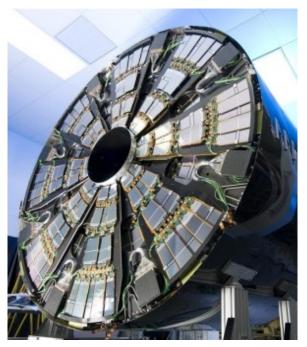

Institut National de Physique Nucléaire et de Physique des Particules

Electronics Developments at IN2P3

- IN2P3 Profile
- Networks for Instrumentation & Microelectronics
- Microelectronics Developments for physics experiments
 - More than a Decade of R&D & Collaborations

CoPil Pôle MicRhAu du 10/05/2019 @ Lyon Présenté @ Joint Workshop of future tau-charm factory - Claude.Colledani@in2p3.fr

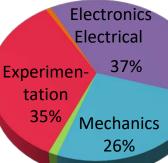

Research Infrastructures



International Collaborations

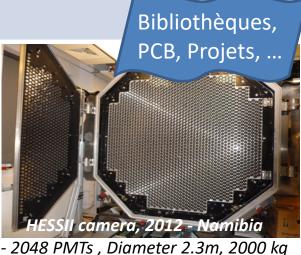
Commitment in R&D for Instrumentation

CMS Silicon Strips Tracker End Cap Petals



MultiWiresProportional Chamber ALICE-Muon Arm - CERN

Supporting Instrumentation R&D


730 Engineers & Technicians
Instrumentation Network

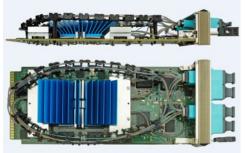
To improve exchanges between experts To promote common actions

DETECTORS	CROSS-CUTTING	
Radiodetection	Mechanics	
Cryogenics	Microelectronics	
Silicon detectors	Data Acquisition	
Gaseous detectors	Command & control	
Photo-detectors	Bibliothèques, PCB Projets	

ITM mirror coated & suspended in the Advanced LIGO interferometer

DAQ Network

- Existing since 2011
 - \rightarrow 30 people
- Promoting
 - Common standards
 - Design reuse, shared FPGA IPs
 - Common developments centered on
 - LHC upgrades
 - GANIL experiments


• Strong interest in xTCA standards

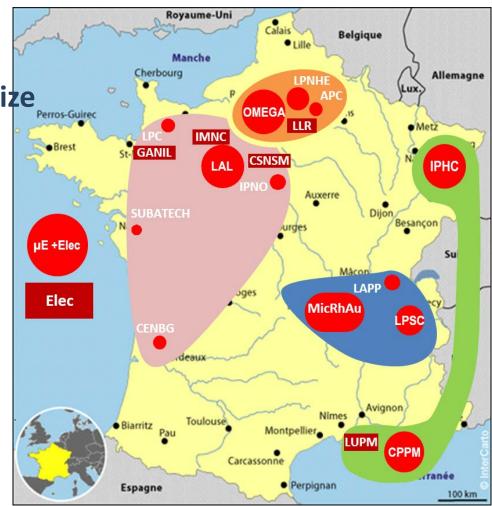
- Member of PICMG
 - PCI Industrial Computer Manufacturers Group
- Working Group of xTCA for Physics
 - Clocks, Gates and Trigger distribution

HEP - LHCb Upgrade –LS2 ATCA 40 Board -

HEP - ATLAS LAr upgrade – LS2 AMC Board - LATOME -

Radiodetection - BAORADIO- PAON Digitizer Frequency Separator

Nuc Phy - SPIRAL2/FAIR MUTANT



Microelectronics Network

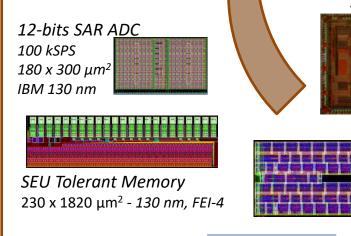
- ~90 Engineers, design and test
- 14 Teams gathered in
- 4 Federations → reach critical size
- 1 Advising Committee
- Internal workshops
- Upfront R&D projects
 - 2019: OMME, PICMIC, QUARTET,
 - 2018: DiamAsic, Lojic130
 - 2016: BB-130
 - Knowhow / IP exchanges

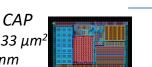
Common CAD tools

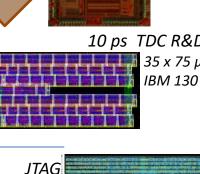
- Remote collaborative tools
- Unified management
- Training program
 - On Cadence ASIC and PCB

2. Réseau de la microélectronique

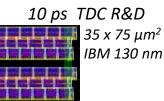
- Un réseau (2005) transverse au réseau Instrumentation (2012)
- Fédère les compétences de ~90 personnels, IN2P3, IRFU de la μE


				# Personnels	
Profil	IN2P3		Spécialités	IN2P3	RESEAU μE - Chiffres 2016/17: Membres -
lu cí Domesou outo	Déc/2016	1	Tcad	5	ΚΕΣΕΛΟ μΕ - Chimes 2010/17: Membres - 3
Ingés Permanents AI.	73 3	2	Analogue	59	⁷⁰ Spécialités:
IE		3	Mixte	41	Plusieurs spécialités par personne 50 59 • Migrer vers Mixte
IR Ingés PostDoc / CDD	62 4	4	Numérique	17 (5 PhD/CDD)	– Attention redondance
E-C/C	4	5	Architecture	4	• Plutôt la dizaine
Visiteur PhD	1 9	6	Support	8	 A développer A moins que cela ne soit révélateur
Masters	10	7	Test	49	²⁵ • Pas de μE sans ceci
Autres		8	Banc de test	36	20 17 13
Total – (Masters + Autres)	91	9	РСВ	21	
		10	Resp. Projets	25	
		11	Resp Serv./Tech	13	TOP AND A CONTRACT TO A CONTRACT TO A CONTRACT OF A CONTRA
			Total/Max	278/1001 (91 p)	


Skill & Knowhow


Building Blocks Program – BB130 Libraries of low noise, low power & radiation tolerant Analog, Mixed, Digital blocks

- FE amplifiers, shapers
- DAC / ADC / Tog A-based, D-based
- Memories: Digital / Analog
- RO & Ctrl: Serializer, Tx, I2C, JTAG
- Band Gaps, Regulators, POR 4 x 12-bits SAR ADC



725x112 μm², TJ 180 nm

Ctlr

40 MSPS. 5mW/ch 10 mm^2 , 130 nm

System Level Design for SoC

Layout Rules

esigi

Cmplx Architectures embedding

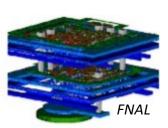
- Multi-Channel FF + Massive A 2 D
- Data Reduction Processing
- Memory Buffers/Management
- **Embedded Regulation Systems**

Distribution

- Power Distribution Grid / Domain
- **Clock Distribution**
- **Data Flow**

Looking for synergies

- Participating to International R&D Programs
 - CERN's initiative for R&D on Experimental Technologies
 - ATTRACT 2018 (H2020)
 - AIDA (2011) + H2020



- RD53 (2013)

- EUDET (2006-2010)
- 3DIC TSV (2009)

R&D covers all IN2P3 physics and detectors domains

- Large discrepancy in the projects size \rightarrow From small analog ASIC to full SoC

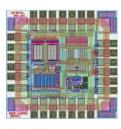
Looking for synergies

- Impact on profiles of the design teams
- Impact on process #
- New designs are always required but Design Reuse has to be considered first
 - Has an impact on manpower, schedule, budget
- Pushing for coherent ASIC families development, which will provide flexible designs with staged performances

Networks and federations help to converge by gathering the experts

- Following of presentation is organized by detector categories
- Focus on circuits Designed for specific projects,

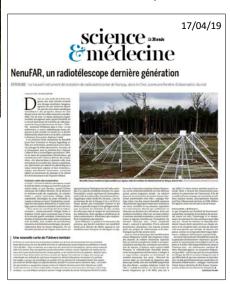
Reused for other applications



- Full Custom LNA optimized for associated antennas Analog ASIC -
- LONAMOS for Butterfly & LWA
 - Developed to detect Air Showers produced by Ultra-High-Energy cosmic rays
 - Optimized for 20-80 MHz
 - Efficient up to 200 MHz
- Small but Successful
 - 1^{rst} generation, 0.8 μm CMOS
 - 2004, 400 chips
 - 2nd generation, 0.35 μm CMOS
 - 2011 700 chips
 - 2014 6000 chips

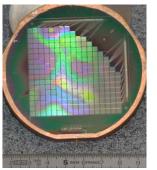
Experiment		Installed	
CODALEMA@ Nançay-France		(60 Butterflies + 10 LWA) x 2	
AERA	@Auger-Argentina	200 Butterflies	
TREND	@ China	108 Butterflies	
HELYCON	@ Greece	12 Butterflies	
NenuFAR	@ Nançay-France	57 LWA x 2 + 6000	
Ongoing discussion with the GRAND experiment Giant Radio Array for Neutrino Detection - China			

LONAMOS 1,4 x 1,4 mm² CMOS 0.35 μm , 2011

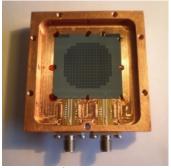


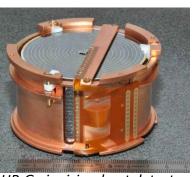
Long-Wavelength Antenna NenuFAR @ Nancay - France

Fully differential architecture
Zin digitally adjustable
OIP3=33dBm
NF<1dB
Gp=27dB
BW>200MHz



Butterfly Antenna, 2.2 x 1.5 m Codalema @ Nancay - France

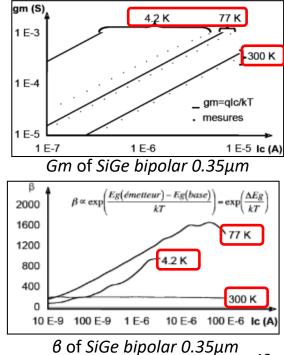



Cryogenics Network

250 pixels **TES** matrix (Transition Edge Sensors) **QUBIC @ Argentina**

Kinetic Inductance Detector NIKA @ Pico Veleta, Spain

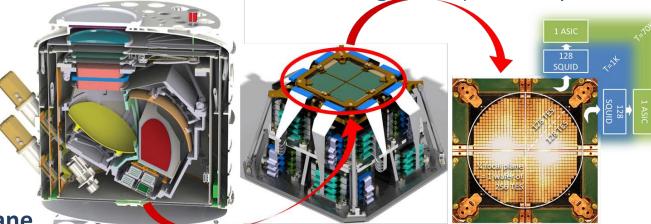
HP-Ge ionizing-heat detector EDELWEISS @ LSM, France

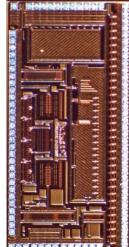

Scintillating Bolometer ZnMo4 and its 2 light detectors LUMINEU @ LSM, France

• RO Electronics @ ~4 - 40 K (QUBIC)

- Industrial process do not provide valid transistor models
 - → Characterization
 - Bipolar: gm \nearrow , $\beta \nearrow$...
 - MOS: Substrate becomes Insulated → Kink Effect

 \rightarrow T_{parasitic} , I_{leakage}, V_{th} distorsions


• Thermal & Electric effects of Interconnects


Cryogenic electronics for QUBIC

• QUBIC Cryostat, 2019 in Argentina

To measure Cosmic Microwave Background (B-mode polarization)

SQMUX128 evo AMS BICMOS SiGE 350 nm

Focal plane

- 4 x 256 NbSi Transition Edge Sensor @ 0.3 K
- 1 TDM Readout system for 1/8 focal plane
 - 128 SQUID @1 K + 1 ASIC @40 K

Mixed ASIC, SQMUX128_evo

- Analog
 - FE LNA with mplx inputs (1:4)
 - SQUIDs bias with mplx current supply (1:32)
- Digital \rightarrow Full custom library, cryogenics effects
- 6 modules in 2025: 96 ASIC

CRYO: Don't forget WA105 / DUNE

Chip variant for PMO collaboration

(Purple Mountain Observatory - China)

• Submitted Q4 2017

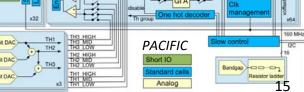
Spin-off for ATHENA space mission

• Hot and Energetic Universe science

X-IFU instrument

- Micro-calorimeter measuring X-ray range
- Equipped with 4 k pixels of TES

Photo-detectors Network

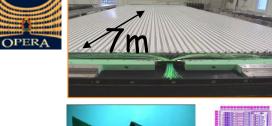

- PMT, MA-PMT, MCP-PMT, Si-PM, Scintillators, ... Moderator Overlap with Semiconductors Network (CCD, SiPM, APD) Η G С Α LHCb Tracker upgrade Phase 1 - CERN HESSII camera. 2012 - Namibia CMS Endcap Calorimeters for HL-LHC HGCAL: Si Sensors & SiPM, LS3 (2024-26) - 2048 PMTs, Dia. 2.3m, Weight 2 Tons FEE for SciFi + SiPM, 152 (2019-20) **FEE increases in complexity** Detector
 - Team @ critical size (10-20) / collaborations
 - **2** categories of FEE
 - Shapers and Peak Detectors circuits
 - Waveform Sampling circuits
 - Successive improved generations
 - **Derived for different application fields**

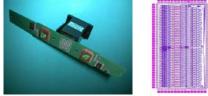
PACIFIC: Barcelona, Valencia, Heidelberg Universities, ETH Zurich & IN2P3 Collaboration

PACIFIC chip (2015)	64 ch, TSMC 130 nm
Input Dynamic Range	0.5 to 32 pe
ADC resolution	Nonlinear, 2-bit, 40 MHz
SNR	≥ 10
Mx Pwr / Ch	< 10 mW
SIOB24 B	GIA Th group One hot decoder

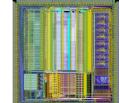
300 000 channels

Brackets

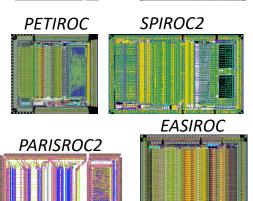



Shapers & Peak Detectors circuits

ROC chips : OPERA-ROC, early 2000

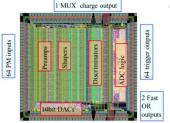

For OPERA Target Tracker at Gran Sasso, 3000 chips

Chip	DType	Ch	Plrty	Dyn Range	Spec
MAROC	PM	64	< 0	5 fC- 5 pC	64 trigger outputs, internal 8/10/12-bit ADC
					for charge measurement
SPACIROC	PM	64	< 0	2 pC - 220 pC	Fast photon counting (50 Mhz)
PARISROC	PM	16	< 0	50 fC - 100 pC	Internal TDC (<1 ns), 16 trigger outputs
SPIROC	SiPM	36	> 0	10 fC -300 pC	36 HV SiPM tuning (8 bits), internal 12-bit ADC
					for charge & time measurement
EASIROC	SiPM	32	> 0	10 fC -300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs
CITIROC	SiPM	32	> 0	10 fC -300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs
PETIROC	SiPM	32	< 0	100 fC -300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs,
					internal 10-bit ADC for charge & time (25 ps)

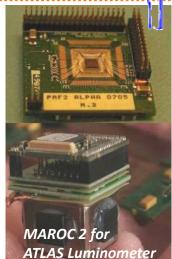


SPACIROC

Flexible Front-End \rightarrow Variants suited to


- Detector type, # of channels, Input Dynamic Range
- **Adaptive Back-End**
 - 8/10/12-bits ADC for charge measurement
 - W /Wo time measurement, 1 ns / 25 ps TDC
 - Counting
- From .35 µm SiGe BiCMOS To 130 nm CMOS

Evolution of PMT Read-Out Chips


Ŷ

- From MAROC for ATLAS
 - Produced for ATLAS Luminometer
 - 1000 chips, 2006s
 - Improved Maroc3
 - 1000 chips (2010) for > 50 users
 - Double-Chooz, Neutrinos experiment
 - Medical Imaging, ...

MAROC 3, 16 mm², 0.35 SiGe

64 channels (Z_{in} 50-100 Ω) 6-bit individual gain correction Auto-trigger on 1/3 p.e. at 10 MHz 12-bit Wilkinson ADC Multiplexed on the Charge Output Power = 3 mW/ch

- JUNO
- **To CATIROC for JUNO** (Jiangmen Underground Neutrino Observatory)
- Determination of neutrino mass hierarchy: 20 ktons liquid scintillator detector
- 2000 chips to produce (Q4 2018)
 for reading 25,000 small 3" PMTs inserted between ~18,000 20" PMTs (75% of inner area)

128 small PMTs RO Board – 8 CATIROC chips

16 independent channels:
Analog FE + Trigger outputs + charge and time digitization
Dual gain front-end, Charge dynamic range 0 to 400 p.e.(at PMT gain 10 ⁶)
Time stamping, resolution ~ 170 ps rms / 25 ns
Charge resolution 10 bits, 160 MHz
Autotrigger mode, 100% efficiency @ 1/3 p.e
Hit rate 100 kHz/ch (all channels hit)
Serial Read Out 80 MHz (50 bits / channel)

Evolution of SiPM Readout chips

• SPIROC for Analog hadronic calorimeter of CALICE

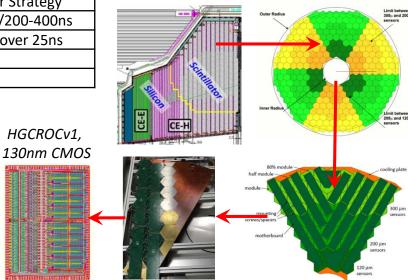
- F-E customized for 36 channels
- B-E implements Time Measurement
- Power pulsing for Power budget
 - Embedded inside the detector 36 ch., auto-trigger & 15bit readout

36 ch., auto-trigger & 15bit readout Energy measurement : 15 bits, 2 gains Auto-trigger down to ½ p.e. Time measurement up to ~1ns Power: 25μW/ch (pulsed power)

spirace, 0.35 SiGe BicMos

AHCAL Slab 6 HBUs in a row HBU HCAL Base Un 12 x 12 tiles SPIROC 4 on a HBU HEB HCAL Endcap Board HCAL Base Un SPIROC 4 on a HBU HCAL Slab SPIROC 4 on a HBU HCAL Slab SPIROC 4 on a HBU HCAL Endcap Board HCAL Base Un SPIROC 4 on a HBU HCAL Endcap Board HCAL Base Un SPIROC 4 on a HBU HCAL Endcap Board HCAL Base Un SPIROC 4 on a HBU HCAL Endcap Board HCAL Base Un SPIROC 4 on a HBU HCAL Endcap Board HCAL Base Un HCAL Endcap Board HCAL Base Un HCAL Endcap Board HCAL Base Un HCAL Base Un HCAL Endcap Board HCAL Base Un HCAL Base Un HCAL Endcap Board HCAL Base Un HCAL Base Un HCAL Base Un HCAL Endcap Board HCAL Base Un HCAL Base U

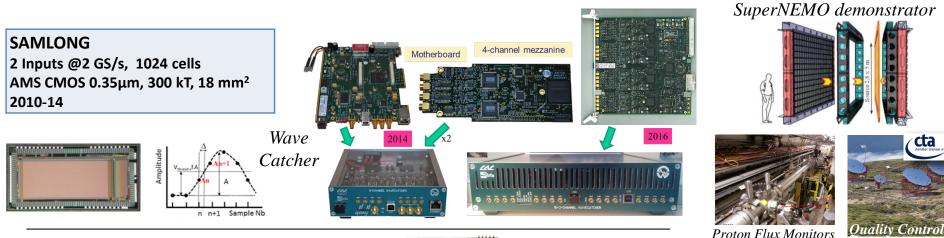
(0.36m)² Tiles + SiPM + SPIROC (144ch)

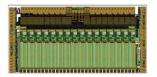

HCAL Base Units

HGCROC for 5D HG Calorimeter of CMS

- Large collaboration of designers
- F-E @ 32 \rightarrow 72 channels
- Energy, ToT & ToA
- Cmplx trigger strategy
- Tight schedule
 - July 17: HGCROCv1, 5x7 mm²
 - All analog and mixed blocks; large part of digital blocks
 - Dec 18 : HGCROCDV1, 15x6 mm²
 - Final size, packaging and I/Os
- 100 000 FE chips to produce

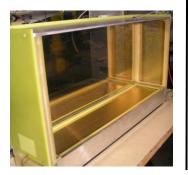
32 ch., Dual Polarity, Trigger Strategy Time Over Threshold, 50ps/200-400ns Time Of Arrival: 10/11 bits over 25ns ADC 11 bits, 40 MHz Serial link 1.28 GHz





- Fast Waveform Sampling → Amplitude & Time for signal reconstruction
- Common IRFU & IN2P3 developments
 - Based on initial IRFU's R&D on HAMAC chip for ATLAS LAr Calorimeter, 80 000 chips, 2002
- Constant improvements: sampling speed, memory size, embedded A2D

SAMPIC 16 Inputs @10 GSPS for ~1 ps resolution AMS CMOS 0.18μm, 7 mm² V1 2013, V2 2014


Tested with PMTs, MCPPMTs, APDs, SiPMs, Fast Silicon Detectors, Diamonds Test beams of **TOTEM and ATLAS HGTD at CERN** Test beams of **SHIP** collaboration **PANDA EndCap DIRC** caracterization Different R&Ds ongoing with the **TOF-PET** community

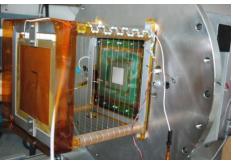
(CERN, ...)

Powerfull & versatile, used in numerous applications, @labs & on sites

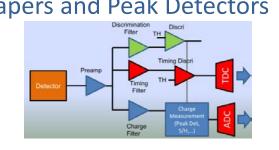
Gaseous Detectors Network

Drift chamber - SHARAQ spectrometer -Japan

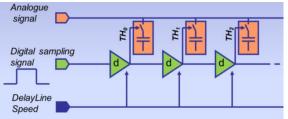
Multi Wire


MWPC 1m² ALICE-Muon Arm - CERN

Micro Pattern Gaseous Detectors - Micromegas or GEM -


Micromegas SDHCAL- ILC

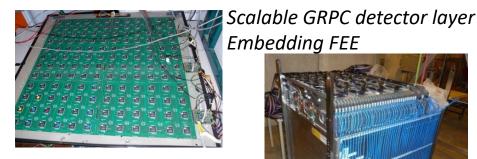
Ionizing Chambers TPC (IO + MPGD or MWPC)



Micro TPC + Micromegas for MIMAC @ LSM Modane

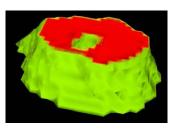
• FEE for Gaseous detectors is similar to FEE for photo-detectors

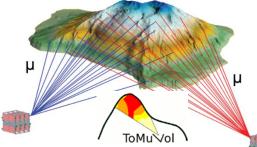
With additional constraints such as material and power budgets


Extended FEE for Gaseous Detectors

HARDROC: GRPC DHCAL - CALICE

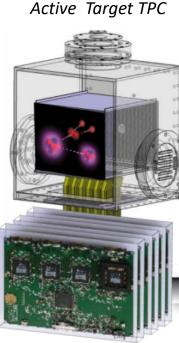
- 64 ch, 3 discri/ch
 - 3 encoded charge values
- Event memory
- Power pulsing




26 mm², SiGe 0.35 μm

Demonstrator, 1 m³ 40 layers, 400 000 Channels

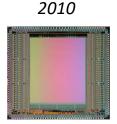
GRPC FEE Spinoff TOMUVOL: Volcano Tomography with Muons



AGET for ACTAR TPC R&D actar,



- To Study exotic nuclear structures @SPIRAL2
- AGET for the 2048 channels of the TPC
 - Variant of AFTER for µmegas @ T2K (6000 chips)

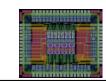


256 channels AsAd board

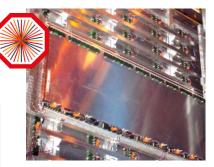
- 4 x AGET
- 12-bits, 25 MHz digitizer
- AGET steering, test, calibration

AGET 0.35 μm CMOS, 65 mm^{2,}

64-ch, Pos / Neg polarity
4 Ranges : 120 fC; 240 fC; 1 pC; 10 pC
16 Peaking Time Values (50ns to 1μs)
Fsampling: 1-100MHz; Fread: 25MHz
Auto trig: discri/ch + DACthreshold
Ch RO: All, Hit, Specific channels
SCA cells readout: 128/256/512

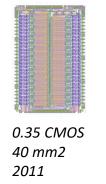

Designs for specific configurations

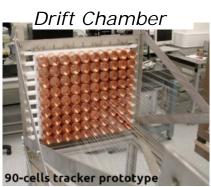
Trigger upgrade of Dimuon Spectrometer of ALICE


- FEERIC dedicated to new RPC in avalanche mode
- To replace ADulT chips for actual RPC in streamer mode
- To provide calibrated pulses to trigger logic
- >3000 chips produced for install during LS2

SHiP @ CERN: ~ 2000 chips foreseen

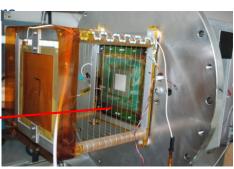
	·
Number of ch.	8
Input polarity	±
Dynamic range	Q=20 fC-3 pC
Input noise (rms)	< 4fC
Power cons.	< 100 <i>mW/c</i> h
Power supply	3 V
One-shot	yes(100ns)
Time resolution (rms)	< 1 ns
Time walk	< 2 <i>ns</i>
Output format	LVDS, 23 \pm 2 ns


Also RPC @ CMS Cf CRONOTIC


FEERIC 4mm² 0.35μm CMOS

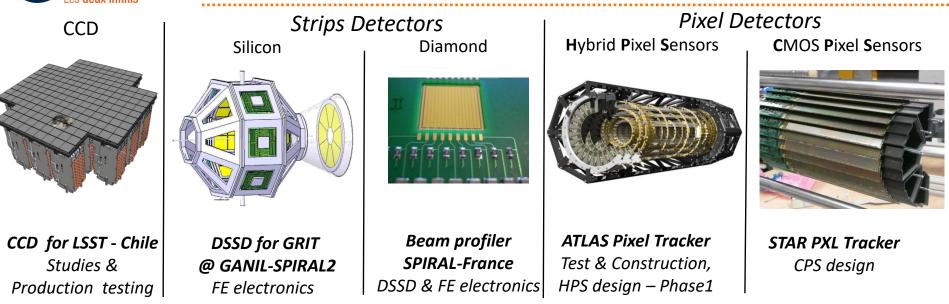
TDC for SNEMO @ LSM

- 54 ch. TDC, 3.6 ns resolution
- Configurable Inputs gain & discri. threshold for anodic and cathodic signals
- 150 samples


Manchester-UK courtesy

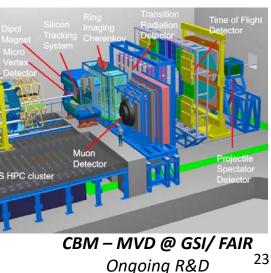
Micromegas TPC, MIMAC @ LSM

- 64 ch., Coincidences detect. + TOT measures
- 50 MHz discriminato
- 400 MHz serializer
- ~100 samples



.35 μm SiGe BiCMOS 23 mm² 2010

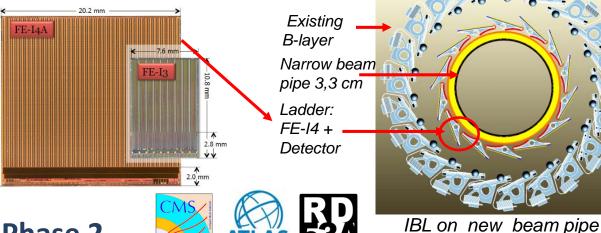
Semiconductors Network

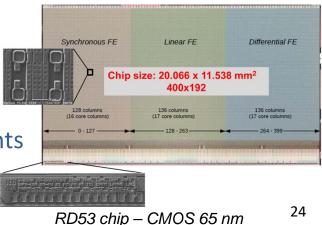

Pixel sensors everywhere

ALICE – Internal Tracker System -Studies & Production

Hybrid & HV CMOS Pixels Ongoing R&D

23


Hybrid Pixel Sensors


– IB-Layer: 16 ladders, 384 FE-I4 with associated pixels

Pixel size	50 x 250	μm²
Matrix array	80 x 336	pixel
Chip size	20.2 x 19.0	mm ²
Active fraction	89	%
A - D currents	10 - 10	µA/pix
Analog voltage	1.4	V
Digital voltage	1.2	V
Process	130 nm	
Radiation Tol	> 200	Mrad

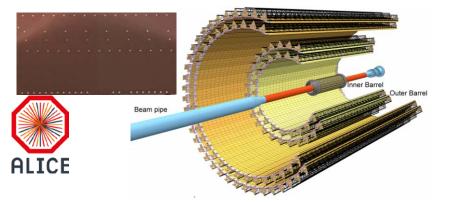
RD53 ATLAS/CMS - Phase 2

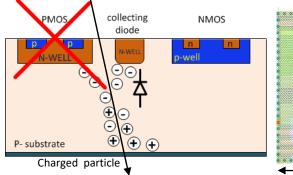
- Involved in many WP of in RD53A pixel RO chip
 - Calibration, Monitoring and building blocks Integration
 - Digital Readout and Control Interface
 - Digital Libraries
 - Radiation effects and models
- An example for future sophisticated SoC developments
 - Strong interactions among international design teams (20 people) via Co-design Tools

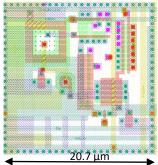
bonn

BERKELEY LAB

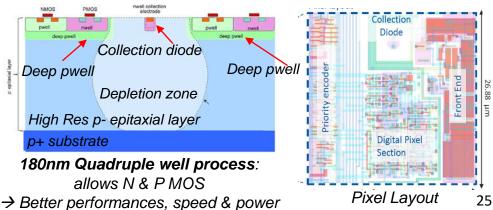
Cmos Pixel Sensors for Heavy Ion Physics -1


Design evolutions versus Foundry processes


• Mimosa28, ~4 cm², 1 Mpixels


2014: HFT of STAR, 360 Mpx, 0.16 m²

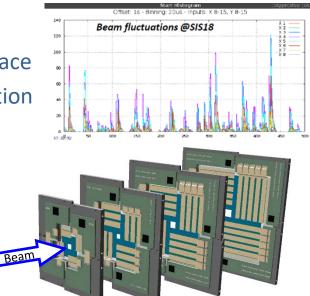
- 1st CPS System in HEP
- ALPIDE, ~4.5 cm², 0.5 Mpixels
 - LS2 2019: ITS of ALICE, 12.5 Gpx, 10 m²

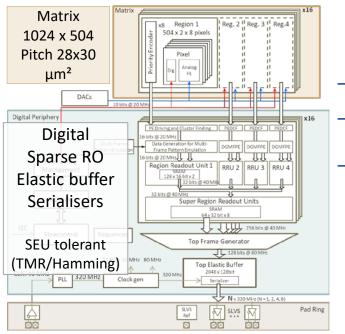


350nm Twin well process PMOS not allowed inside pixels

Pixel Layout Pixel Layout

	STAR – PXL	ALICE - ITS
Spatial Resolution [µm]	3.5	5
Time resolution [µs]	< 200	< 20
Particle rate [kHz/mm ²]	4	10
Total Ionizing Dose [Mrad]	0.2	0.7
NIEL [n _{ea} /cm²]	> 10 ¹²	> 10 ¹³
Digitization (1 bit)	Bottom Column	In Pixel
Data compression	Outside Matrix	In Matrix


CPS for Heavy Ion Physics -2



MIMOSIS ~4,5 cm², 0.5 Mpixels, Matrix RO similar to ALPIDE

- For Micro Vertex Detector of CBM @ GSI/Fair
- Beam fluctuations in terms of hit density in time and space
- Sensor Improvements on Time resolution & Data reduction

ALPIDE / MIMOSIS	ALPIDE ALICE – ITS	MIMSOSIS (MVD Design Goal)
Particle rate [kHz/mm ²]	> 10	700 (peak)
Time resolution [µs]	< 20	5
Data reduction	Cont. / Trigger	Elastic buffer
GBTx compatible	No	Yes

- Micro Vertex Detector, 4 plans, 300 sensors Q2 2017: demonstrator of matrix 1/16 scale
- Q1 2019: Full size chip V1 Production in 2020/21
- Evolution of the μ E Design & Methodologies in HEP
 - Increase of digital functionalities
 - Digital On Top for Integration & Verification
 - Digital models for all blocks, analog included
 - Standardized methods and tools
 - \rightarrow Universal Verification Method, SystemVerilog ²

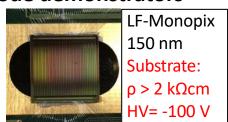
ATLAS CMOS PIXEL COLLABORATION

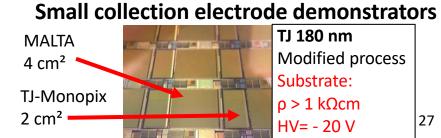
Diode geometries and Process evolutions

Improved Radiation Tolerance

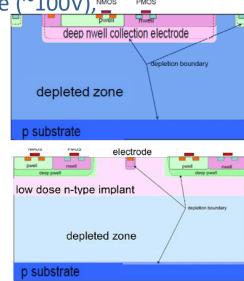
- 5th layer pixel of ITK requires O (50 Mrad, 10¹⁵ n_{eq}/cm²) tolerance
- Limiting non-ionizing radiation effects (displacement damage): creating fast collection by drift in order to decrease signal charge trapping probability \rightarrow large depletion \rightarrow 2 solutions

• Large collection electrode (Deep n-well) - HV CMOS

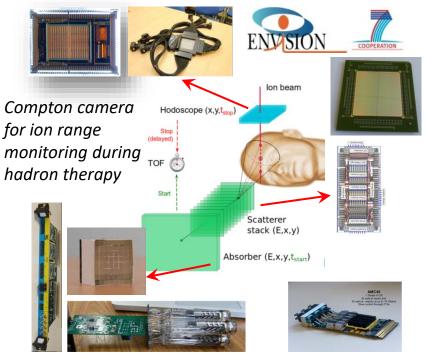

- Transistors isolated from substrate \rightarrow High reverse substrate voltage (~100V), we
- High resistivity p-substrate (>2 k Ω cm) \rightarrow Charge collected by drift
- Limited in pixel circuit area, large capacitance (C > 100 fF)


• Small collection electrode

- Low capacitance \rightarrow lower power, less prone to coupling
- Possibility to achieve full depletion of the sensing volume
 - Modified process developed in collaboration with the Foundry
 - Planar n-type layer significantly improves depletion under deep PWELL


Large collection electrode demonstrators

Cf. ACES 2018 WS T. Kugathasan Talk



R&D for Societal Applications

TRADERA: Beam Profiler for Intensity modulated radiation therapy

Deposited dose monitoring

Radioguided surgery

MAGICS: Peroperative compact imaging

gamma camera. Sentinel lymph-node mapping protocol.

Imaging

• CT & SPECT scanners

IMABIO: Multimodal platform for small animal imaging μCT, μSPECT, μPET

PET scanners

XEMIS1: Liquid Xenon Compton camera

In vivo neuroimaging
 PICSIC: Brain implantable
 β+ radiosensitive probe

Dosimetry

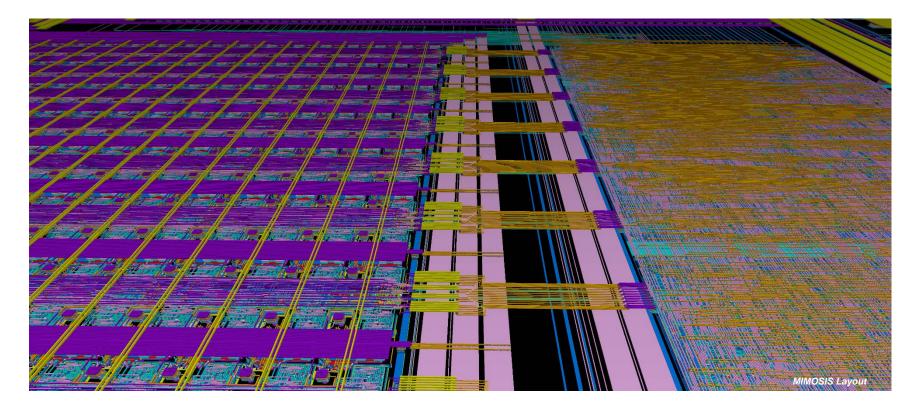
FASTPIXN: Neutron dosimetry for nuclear power plants survey

and shares

• Numerous projects of physics, on large scope

→ Instrumentation Networks are helping for creating synergies

ASIC developments


- Intense and diversified activity
- Many circuits used by international collaborations
- − Evolutionary SoC / Sensors → help to diffuse these technologies
 - Digital functionalities are becoming critical
- Design teams with critical size are required \rightarrow collaborative tools

Microelectronics

- Actual Microelectronics R&D is clearly structured by the big experiments
 - LHC upgrades, future colliders
- Helps to diffuse know-how and to adapt ASICs for the others domains of our physics
- Is an important vector in our exchanges with international R&D initiatives

Thank you for your attention

