Facility for Antiproton and Ion Research (FAIR) (under construction in Darmstadt, Germany)

Status of CBM

- challenges in data processing in the context of EOSC and the FAIR principles

Kilian Schwarz (with slides from J. Eschke and V. Friese) GSI GmbH

FAIR

ESCAPE WP5 meeting, Groningen, 16 April 2019

Facility for Antiproton & Ion Research

FAIR GmbH | GSI GmbH

CBM Status, Kilian Schwarz, ESCAPE WP5 meeting, 17 Apr 2019

FAIR Collaborations

more than 2500 scientist from ~200 institutions in over 50 countries

NUSTAR Collaboration: 180 institutes

> 700 members

SPARC Collaboration:

20 institutions, ~400 members

CBM Collaboration: 56 institutions

>460 members

CBM Experiment at FAIR: Systematically explore QCD matter at large baryon densities with high accuracy and rare probes, at highest interaction rates

Exploring the QCD phase diagram

Courtesy of K. Fukushima & T. Hatsuda

Baryon Chemical Potential $\mu_{\rm B}$

At high baryon density:

- N of baryons >> N of antibaryons Densities like in neutron star cores
- > L-QCD not (yet) applicable
- Models predict first order phase transition with mixed or exotic phases
- ➤ Experiments: BES at RHIC, NA61 at CERN SPS,

CBM at FAIR, NICA at JINR, J-PARC

CBM - Compressed Baryonic Matter experiment at FAIR

- typical collision system: Au + Au at 4 to 11 AGeV at SIS100
- MSV: beam intensity: 10⁹ ions/sec; interaction rate 10 MHz

Experimental requirements:

- 10⁵ 10⁷ Au+Au reactions/sec
 → peak data flow 1 TByte/sec
- determination of displaced vertices (σ ~ 50μm)
- identification of leptons and hadrons
- fast and radiation hard detectors and FEE
- free-streaming readout electronics
- high speed data acquisition and high performance computer farm for online event selection
- 4-D event reconstruction

Needles in the Haystack

- CBM targets at extremely rare probes, which necessitates very high interaction rates (design rate 10 MHz).
- That entails a raw data rate of up to 1 TB/s.
- To be reduced online to a storage rate of several GB/s.
- Trigger signatures are mostly complex (e.g. weak cascade decays) and cannot be realized in hardware.
- Readout concept:
 - No hardware trigger
 - Self-triggered front-end electronics deliver time-stamped data
 - Data-push architecture to online compute farm
 - Event reconstruction and –selection to be performed on CPU

CBM Status, Kilian Schwarz, ESCAPE WP5 meeting, 17 Apr 2019

Data Rates

- Raw data event size: 50 100 kB / min. bias event (Au+Au)
- At 10 MHz event rate: raw data rate up to 1 TB/s
- Archival rate:
 - technologically possible are rates of 100 GB/s and above
 - limiting factor are the storage costs
 - typical runtime scenario 2 effective months / year (5 x 10⁶ s)
 - At 1 GB/s: gives a storage volume of 5 PB/year

We aim at an data archival rate of a few GB/s, meaning that the raw data volume has to be suppressed online by factors 300 - 1000.

Computing – step 1: Experiment requirements determined

Assumptions for resource requirements: Day-1 and MSV detector setups, nominal accelerator performance, multi-year integrated values (data lifetime)

CBM DAQ and online event selection $FAIR \equiv \equiv II$

3200 3400 3600 3800 4000 4200 CBM Status, Kilian Schwarz, ESCAPE WPSimeeting, 17 Apr 2019

2400

2600

2800

3000

Online Data Flow

- Data are aggregated and pre-processed in an FPGA layer near the experiment.
- Time-slice building is performed on CPU (input nodes, in service building).
- Event reconstruction and –selection is performed in real-time on CPU (compute nodes) in the GSI "Green Cube" (already existing at GSI).

Data Processing Framework

- Mission: to provide a flexible and efficient environment for data analysis and simulation (regulate data model, I/O, run configuration, execution of processing graph)
- For both offline and online purposes
- Since many years, the CbmRoot framework is used, using ROOT as a platform and the FairRoot software layer (synergy with PANDA, ALICE, ...)

Data Processing Framework

- Shortcoming of the current framework: linear task queue, no concurrency features -> not well suited for online data processing
- Moving to message-queue-based system (FairMQ); intra-node and inter-node data transport possible
- First deployment (proof-of-principle): online monitoring for mCBM

• Progress is moderate; project suffers from serious understaffing

Simulation Software

SIM PL: V. Friese, GSI

- Detector geometry model
 - according to current technical planning
 - comprising all relevant contributors to the material budget
 - format: TGeo
 - subject to continuous adjustments / improvements

Volker Friese

CBM status/requirements computing/ESCAPE WP5/questionaire:

- 400 GB/s into online farm, 8 GB/s on disk
- no hardware trigger on events, detector hits with time stamps
- simulated event size (CBM): 250 kB
- meta data are planned to be made VO compliant
- access rights to data: proprietary period after which public
- at least parts of the data will be geographically distributed
- data will have replicas
- offline data processing will to some extent be geographically distributed
- currently data are stored and processed mainly at GSI
- software visualisation tools should be integrated into science platform
- building blocks for standard processing pipeline are available

- ESCAPE takes place right before the official start of CBM.
- within ESCAPE essential IT ingredients are being developed, especially infrastructures for distributed data management and computing, which are needed by CBM.
- CBM hopes to profit from taking part in ESCAPE by getting important support and ideas for setting up their own infrastructure for distributed computing.