Facility for Antiproton and Ion Research (FAIR) (under construction in Darmstadt, Germany)

Status of FAIR

- challenges in data processing in the context of EOSC and the FAIR principles

Kilian Schwarz (with slides from J. Eschke and M. Al-Turany) GSI & FAIR GmbH

FAIR

ESCAPE WP5 meeting, Groningen, 16 April 2019

FAIR: Facility for Antiproton and Ion Research – A World-Wide Unique Accelerator Facility

Poland

Romania

Russia

India

Finland

France

Germany

- International Accelerator Facility with 9+1 Shareholder countries
- ESFRI Landmark

Slovenia Sweden

Top priority for European Nuclear Physics Community

Status of FAIR Project: Civil Construction Progress since official start on 4th of July 2017

SIS100/300 tunnel

3.2 km beamlines

Total area > 200 000 m² Area buildings \sim 98 000 m² Usable area \sim 135 000 m² **Volume of buildings \sim 1 049 000 m³** Substructure: \sim 1500 pillars, up to 65 m deep

FAIR GmbH | GSI GmbH

FAIR Status, Kilian Schwarz, ESCAPE WP5 meeting, 16 Apr 2019

Status of FAIR Project: Civil Construction

Excavation SIS100 tunnel

First tunnel slab is being poured at night

Upgraded SIS18 completed ready for FAIR and FAIR phase 0

Excavation transfer building & CBM cave

construction timeline:

- civil construction completed in 2023
- installation of accelerators and experiments 2022 - 2024
- start of pilot beams in 2025

FAIR GmbH | GSI GmbH

Facility for Antiproton & Ion Research

FAIR GmbH | GSI GmbH

FAIR Status, Kilian Schwarz, ESCAPE WP5 meeting, 16 Apr 2019

FAIR Collaborations

more than 2500 scientist from ~200 institutions in over 50 countries

CBM Collaboration: 56 institutions

>460 members

FAIR Status, Kilian Schwarz, ESCAPE WP5 meeting, 16 Apr 2019

SPARC Collaboration: 20 institutions, ~400 members

NUSTAR Collaboration: 180 institutes

> 700 members

CBM

NUSTAR

Computing at FAIR

APPA

1 TByte/s into online farms 35 PByte/year on disk ~300.000 cores at Tier 0 ~100.000 cores distributed

M. Al-Turany, Perspektiven für HEP Software und Computing in Deutschland

28 Sep 2018

Computing – step 1: Experiment requirements determined

Assumptions for resource requirements: Day-1 and MSV detector setups, nominal accelerator performance, multi-year integrated values (data lifetime)

FAIR Data Center

A common data center for FAIR (Green IT Cube)

CBM FLES

+ 60'000 CPU cores

- To perform online a full event reconstruction on the 1 TB/s input data stream
- +? GPUs
- To speed up the reconstruction

Panda online

- + 66'000 CPU cores
 - To perform online a full event reconstruction on the 300 GB/s input data stream
- +? GPUs
 - To speed up the reconstruction

Dynamically allocated resources for exclusive usage and limited time

6 floors, 4.645 sqm room for 768 19" racks (2,2m) 4 MW cooling (baseline) Max cooling power 12 MW Fully redundant (N+1) PUE <1.07

FAIR Computing: T0/T1 MAN (Metropolitan Area Network) & Grid/Cloud

FAIR Status, Kilian Schwarz, ESCAPE WP5 meeting, 16 Apr 2019

M. Al-Turany, Perspektiven für HEP Software und Computing in

Deutschland

FAIR status/requirements computing:

- data management
 - 2 large experiments with similar requirements as LHC and several smaller non HEP like experiments targeting many different areas of research
 - a common data management infrastructure has to be created which fulfills requirements of all experiments.
- software development
 - FairRoot is already being used by all FAIR experiments and additionally by some non FAIR experiments.
 - software needs to support continuous data read out and complex online processing for event selection at high data rates.
 - online and offline processing needs to become faster and more efficient, also by using new architectures and algorithms.

FAIR status/requirements computing:

- data/software access in the context of EOSC
 - In order to be able to publish at least parts of the data FAIR is in the process of developing corresponding MoUs.
 - The FAIR analysis software (FairRoot) should be made accessible via the software and service repository developed in the context of ESCAPE.

FAIR paradigm

 the FAIR paradigm is planned to be introduced (at least to a large extend) for a consistent data management system which is being developed based to a large extend on common systems and available technologies. Also a meta data system under consideration of the DOI/data cite requirements is under development. FAIR status/requirements computing/ESCAPE WP5/questionaire:

- 1 TB/s into online farm, 10 GB/s on disk
- no hardware trigger on events, detector hits with time stamps
- simulated event size (CBM): 250 kB
- meta data are planned to be made VO compliant
- access rights to data: proprietary period after which public
- at least parts of the data will be geographically distributed
- data will have replicas
- offline data processing will to some extent be geographically distributed
- currently data are stored and processed mainly at GSI
- software visualisation tools should be integrated into science platform
- building blocks for standard processing pipeline are available

- ESCAPE takes place right before the official start of FAIR.
- within ESCAPE essential IT ingredients are being developed, especially infrastructures for distributed data management and computing, which are needed by FAIR.
- FAIR hopes to profit from taking part in ESCAPE by getting important support and ideas for setting up their own infrastructure for distributed computing.