Cosmological structure formation with negative mass

Giovanni Manfredi

Centre National de la Recherche Scientifique Institut de Physique et Chimie des Matériaux de Strasbourg

Jean-Louis Rouet, Université d'Orléans, France Bruce Miller, Texas Christian University, USA Gabriel Chardin, CNRS, France

Antimatter and gravitation

• Why we see no antimatter in today's universe?

- Antimatter created in the primordial universe, but...
- Observations exclude large amounts of antimatter in visible universe
 - No signature of gamma rays produced during annihilations
- CP violation cannot explain observed asymmetry
- Open questions on gravitation
 - Acceleration of the expansion of the universe (1998) Dark Energy
 - Matter content of the universe Dark Matter
 - Primordial inflation (~1980) Inflaton field
- Gravitational behavior of antimatter
 - Current experiments at CERN: GBAR, ALPHA-g, AEGIS

Cosmological models

- The standard model: ACDM
 - $\Lambda \rightarrow$ dark energy (70%) \rightarrow accelerated expansion (\approx *repulsive gravity!*)
 - CDM (Cold Dark Matter): 25%
 - Ordinary matter (baryonic) : 5%
 - Scale factor:
 - > $a(t) \sim t^{2/3}$ (matter-dominated age)
 - $\succ a(t) \sim e^{\Lambda t}$ (Λ -dominated age)
- **Dirac-Milne universe** (see: A. Benoit-Lévy and G. Chardin, A&A 537, A78 (2012))
 - Matter-antimatter symmetric universe
 - Repulsion between matter and antimatter (negative mass)
 - Antimatter spreads almost uniformly across the universe
 - Total matter content = 0 ($\Omega_M = 0$)
 - No cosmological constant ($\Omega_{\Lambda} = 0$); No need for inflationary phase
 - Scale factor: $a(t) \sim t$

Mass in Newtonian mechanics

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
antimatter	B (antiplasma)	_	_	+
	C (Bondi)	_	+	+
	D (antiinertia)	+	_	+

EP:

 $m_p = m_i$

Mass in Newtonian mechanics

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
antimatter	B (antiplasma)	—	—	+
	C (Bondi)	—	+	+
	D (antiinertia)	+	_	+

Bondi: runaway acceleration

 $EP: \quad m_p = m_i$

Dirac-Milne scenario

- However, the above scenarios are not suited to model the Dirac-Milne universe
- Antiplasma:
 - Does not respect the EP
 - Allows formation of negative mass structures
- Bondi:
 - Requires negative inertial mass to ensure energy conservation
 - Unlikely features such as runaway acceleration
- We need a **generalization of Newtonian gravity** for two particles species

Type of matter	Type of matter	Interaction
+	+	Attraction
_	_	Repulsion
_	+	Repulsion
+	_	Repulsion

- Antimatter spreads
 uniformly
- Matter coalesces into structures
- Cannot be realized with a single Poisson's equation

 $\Delta \phi_{+} = 4\pi Gm(+n_{+} - n_{-}), \\ \Delta \phi_{-} = 4\pi Gm(-n_{+} - n_{-})$

General matrix formalism

$$\Delta \Phi = 4\pi Gm \ \widehat{\mathsf{M}} \,\mathsf{n}, \qquad \text{Matrix Poisson's equation}$$
$$\Phi = \begin{pmatrix} \phi_+ \\ \phi_- \end{pmatrix}, \quad \mathsf{n} = \begin{pmatrix} n_+ \\ n_- \end{pmatrix}, \quad \widehat{\mathsf{M}} = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix} \qquad \qquad M_{ij} = \pm 1$$

Since $M_{++} = 1$, there are $2^3 = 8$ possible cases (one trivial, with all elements = +1)

AntiplasmaBondiAnti-inertiaDirac-Milne
$$\widehat{\mathsf{M}}_{\mathrm{ap}} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \widehat{\mathsf{M}}_{\mathrm{Bondi}} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad \widehat{\mathsf{M}}_{\mathrm{ai}} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}.$$
 $\widehat{\mathsf{M}}_{\mathrm{DM}} = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$

Open question: how to incorporate this approach into General Relativity

• Bimetric theory?

Expanding universe – Comoving coordinates

One-dimensional geometry

Dirac-Milne vs. Einstein- de Sitter

G. Manfredi, J.-L. Rouet, B. Miller, G. Chardin, Phys. Rev. D 98, 023514 (2018) ArXiv 1804.03067

- (EdS: like Λ CDM , but with $\Lambda = 0$)
- Structure formation occurs for Dirac-Milne too
 - Earlier and faster compared to EdS
- Importantly, structure formation in the Dirac-Milne universe stops after a few billion years
 - Qualitatively similar to ΛCDM universe
- Direct comparison Dirac-Milne vs. ACDM is underway
- Today, I show some <u>preliminary</u> results.

ACDM cosmology

ACDM cosmology (zooms)

Dirac-Milne cosmology

Dirac-Milne cosmology (zooms)

Phase space

Matter-density power spectrum

Evolution of power spectrum peak

k_{peak} in comoving coordinates

Conclusions

- Newtonian gravity with negative mass
 - Standard cases with various choices of m_i , m_a , m_p (Bondi, antiplasma,...)
 - Alternative "bimetric" theories \rightarrow Dirac-Milne
- Cosmological structure formation with negative mass
 - Comparison between Einstein-de Sitter and Dirac-Milne
 - ➢ G. Manfredi, J.-L. Rouet, B. Miller, G. Chardin, Phys. Rev. D 98, 023514 (2018)
 - Here, comparison between ΛCDM and Dirac-Milne
 - In the Dirac-Milne universe, structure formation begins at an earlier epoch and freezes before ≈10¹⁰ Gy
 - Qualitatively similar to ΛCDM

Future developments

- 3D simulations of Dirac-Milne cosmologies
- Development of general-relativistic bimetric gravity yielding Dirac-Milne in the Newtonian limit.