
In the following, we will consider ↵1 = ↵2 = ↵T = 0, which can be satisfied by setting
c1 + c3 = c1 + c4 = 0 if c1 6= 0; see however ref. [34] for a thorough status of the current
constraints on the ci, including constraints from the big-bang nucleosynthesis [29]. The last
term in (2.16) is a constraint which ensures the normalisation uµuµ = �1 of the æther four-
velocity, while � is a Lagrange multiplier. This theory can be considered a low-energy limit of
Hořava gravity [35–37]. Note finally that the action (2.16) can be further generalised [38, 39]
by replacing the kinetic term by a general function F (Kµ⌫

⇢�rµu⇢r⌫u�).
An explicit violation of the equivalence principle can then be implemented by coupling

dark matter particles to uµ similarly to how charged particles couple to the electromagnetic
four-potential; namely, the action of a dark matter point particle is taken to be [28]

S1 = �m

Z
d⌧ F (�), (2.21)

where � ⌘ �uµvµ is the relative Lorentz factor between dark matter and æther, and F is a
function such that F (1) = 1. Due to its similarity with the conformal coupling to a scalar
field given in sec. 2.2.1, we expect similar phenomena to appear: fifth force, modification of
the inertial and gravitational masses, etc.

The full set of equations of motion for gµ⌫ , uµ and dark matter is rather heavy. We
choose to leave it in the Appendix A, while focussing on the dynamics of dark matter for now.
If vµ denotes the four-velocity of the dark matter flow, and ⇢ its energy density in the absence
of coupling to æther, then

rµ(⇢vµ) = 0 (2.22)

v⌫r⌫ [(F � �F,�)v
µ] = F,�!

µ
⌫u⌫ � �̇F,��v

µ , (2.23)

where �̇ ⌘ d�/d⌧ , and !µ⌫ ⌘ @µu⌫ � @⌫uµ. As in the scalar-tensor case, eq. (2.22) tells us
that the bare energy of dark matter is conserved. The phenomenology of eq. (2.23) is richer.
On the one hand, the inertial mass is modified by a factor (F � �F,�). On the other hand,
it experiences two kinds of additional forces. The second term on the right-hand side is a
kind of friction, proportional to the relative acceleration between dark matter and æther.
The first term is reminiscent of the Lorentz force, !µ⌫ being analogous to the field strength
of electrodynamics. A more kinetic interpretation consists in viewing !µ⌫u⌫ like an inertial
force, containing both dragging-like and Coriolis-like e↵ects. This rich phenomenology will
turn out to highly simplify in the context of linear cosmological perturbations.

2.3.2 Cosmological aspects

In strictly homogeneous and isotropic cosmology, æther has to be comoving with matter
in order to preserve the symmetries of the FLRW space-time. Thus � = �uµvµ = 1 and
everything goes as if dark matter and æther were uncoupled. The expansion dynamics
is nonetheless a↵ected, due to the stress-energy of æther itself. This stress-energy tensor
turns out to be directly related to the extrinsic curvature of the homogeneity hypersurfaces,
and the net e↵ect is to multiply both H2 and a�1d2a/dt2 in the Friedmann equations6

by 1 � (c1 + 3c2 + c4)/2.

6The e↵ect of æther on the dynamics of cosmic expansion was first considered in ref. [29], for c4 = 0 and no
cosmological constant. The authors chose to interpret the factor 1� (c1 + 3c2 + c4)/2 as a renormalisation of
Newton’s constant and spatial curvature. Had they considered ⇤ 6= 0, they would have concluded that the
cosmological constant had to be renormalised as well.
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