

1

# Status of the galileon model from cosmological observations

Clément Leloup – CEA/Irfu/DPhP

Action Dark Energy - IHP

#### Outline



I. Presentation of the galileon model

II. Methodology

III. Constraints from cosmology

IV. On tracker solutions

V. GW170817

#### Outline



I. Presentation of the galileon model

II. Methodology

III. Constraints from cosmology

IV. On tracker solutions

V. GW170817

#### Horndeski theories



- Simple principles for an extension of General Relativity :
  - Additional scalar field  $\pi$  coupled to the metric
  - 2<sup>nd</sup> order e.o.m : easy way to avoid Ostrogradski ghosts

#### Horndeski lagrangians

$$\begin{aligned} \mathcal{L}_{2}^{(H)} &= G_{2}\left(\pi, X\right) \\ \mathcal{L}_{3}^{(H)} &= G_{3}\left(\pi, X\right)\left(\Box\pi\right) \\ \mathcal{L}_{4}^{(H)} &= G_{4}\left(\pi, X\right)R - G_{4,X}\left(\pi, X\right)\left[2\left(\Box\pi\right)^{2} - 2\pi_{;\mu\nu}\pi^{;\mu\nu}\right] \\ \mathcal{L}_{5}^{(H)} &= G_{5}\left(\pi, X\right)G_{\mu\nu}\pi^{;\mu\nu} + \frac{1}{6}G_{5,X}\left(\pi, X\right)\left[\left(\Box\pi\right)^{3} - 3\left(\Box\pi\right)\pi_{;\mu\nu}\pi^{;\mu\nu} + 2\pi^{;\nu}_{;\mu}\pi^{;\rho}_{;\nu}\pi^{;\mu}_{;\rho}\right] \end{aligned}$$

▷ Where the  $G_i$  are arbitrary functions of  $\pi$  and X



- > The galileon model is a particular case of Horndeski :
  - Galilean symmetry in Minkowskii space-time (inspired by DGP, massive gravity, extra dimensions, ...) :

$$\pi \to \pi + c + b_\mu x^\mu$$

• Simple expressions for the arbitrary functions :

$$G_2 = c_1 M^3 \pi + c_2 X, \qquad G_3 = \frac{c_3 X}{M^3}, \qquad G_4 = M_P^2 - \frac{c_4}{M^6} X^2, \qquad G_5 = \frac{3c_5 X^2}{M^9}$$

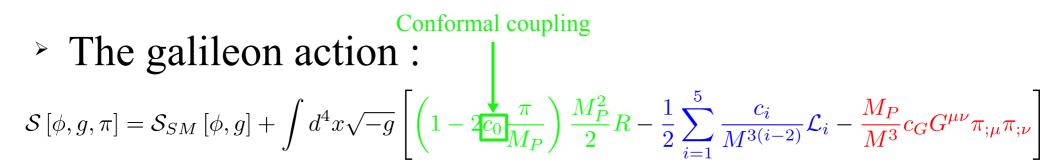
- The  $c_i$  are arbitrary parameters and  $M^3 = M_P H_0^2$
- Addition of direct couplings to matter : conformal and/or disformal

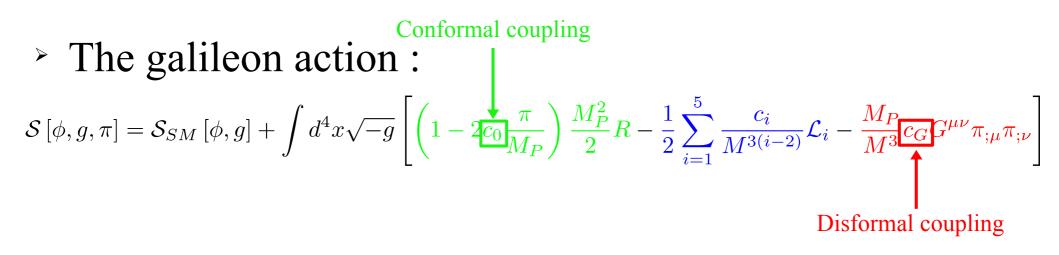


> The galileon action :

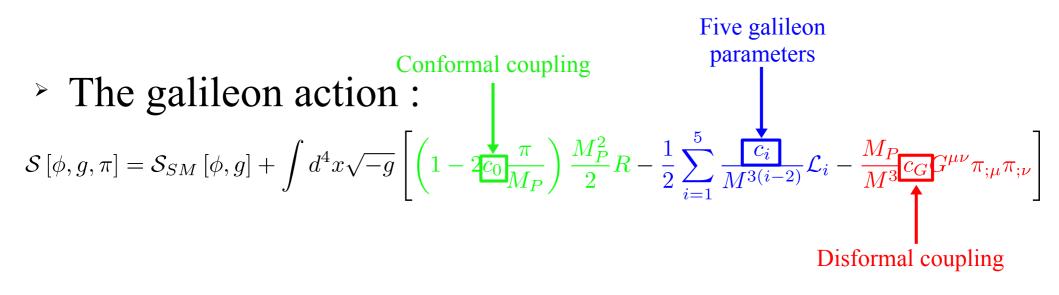
 $\mathcal{S}[\phi, g, \pi] = \mathcal{S}_{SM}[\phi, g] + \int d^4x \sqrt{-g} \left[ \left( 1 - 2c_0 \frac{\pi}{M_P} \right) \frac{M_P^2}{2} R - \frac{1}{2} \sum_{i=1}^5 \frac{c_i}{M^{3(i-2)}} \mathcal{L}_i - \frac{M_P}{M^3} c_G G^{\mu\nu} \pi_{;\mu} \pi_{;\nu} \right]$ 



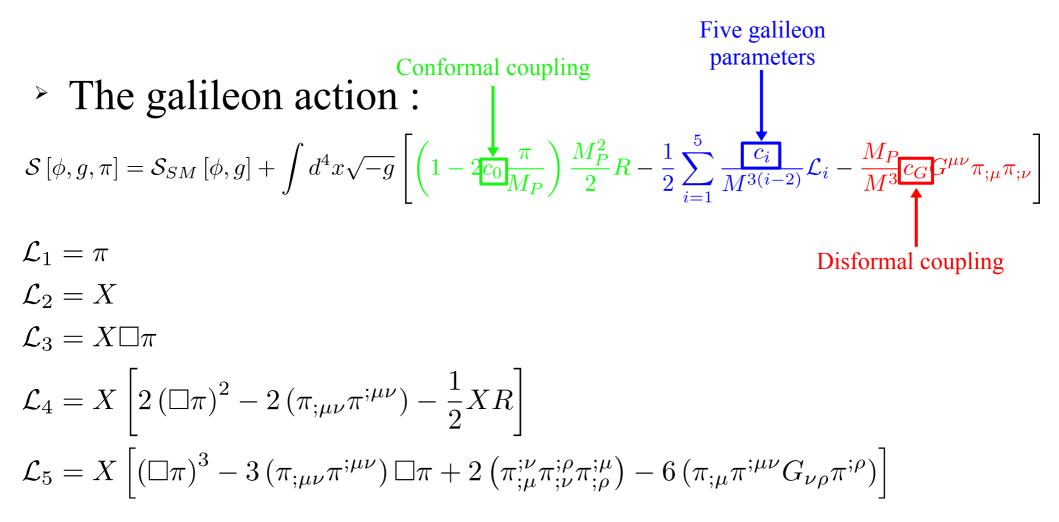














$$\begin{array}{l} & \text{Five galileon} \\ & \text{Five galileon} \\ & \text{S}\left[\phi,g,\pi\right] = \mathcal{S}_{SM}\left[\phi,g\right] + \int d^{4}x \sqrt{-g} \left[ \left(1 - \frac{1}{2^{C_{0}}} \frac{\pi}{M_{P}}\right) \frac{M_{P}^{2}}{2}R - \frac{1}{2} \sum_{i=1}^{5} \frac{c_{i}}{M^{3(i-2)}} \mathcal{L}_{i} - \frac{M_{P}}{M^{3}} \frac{c_{G}}{M^{3}} \mathcal{L}_{i} \pi_{;\mu} \pi$$



Five galileon  

$$The galileon action: 
S[\phi, g, \pi] = S_{SM}[\phi, g] + \int d^4x \sqrt{-g} \left[ \left( 1 - \frac{1}{2} \sum_{i=1}^{5} \frac{1}{M^3} \sum_{i=1}^{5} \frac{1}{M^3(i-2)} \mathcal{L}_i - \frac{M_P}{M^3} \sum_{i=1}^{6} \frac{1}{M^3(i-2)} \mathcal{L}_i - \frac{M_P}{M^3} \sum_{i=1}^{6} \frac{1}{M^3(i-2)} \mathcal{L}_i - \frac{1}{M^3} \sum_{i=1}^{6} \frac{1}{M^3(i-2)} \mathcal{L}_i - \frac{1}{M^3(i-2)} \mathcal{L}_i - \frac{1}{M^3(i-2)} \mathcal{L}_i - \frac{1}{M^3(i-2)} \sum_{i=1}^{6} \frac{1}{M^3(i-2)} \mathcal{L}_i - \frac{1}{M^3(i-2)} \sum_{i=1}^{6} \frac{1}{M^3(i-2)} \mathcal{L}_i - \frac{1}{M^3(i-2)} \mathcal{L}$$



Five galileon  
The galileon action:  

$$S[\phi, g, \pi] = S_{SM}[\phi, g] + \int d^4x \sqrt{-g} \left[ \left( 1 - \frac{1}{2} \sum_{i=1}^{5} \frac{\alpha_i}{M^3(i-2)} \mathcal{L}_i - \frac{M_P}{M^3} \sum_{i=1}^{6} \mathcal{L}_i - \frac{M_P}{M^3(i-2)} \mathcal{L}_i - \frac{M_P}{M^3} \sum_{i=1}^{6} \mathcal{L}_i - \frac{M_P}{M^3(i-2)} \mathcal{L}_i - \frac{M_P}{M^3} \sum_{i=1}^{6} \mathcal{L}_i - \frac{M_P}{M^3(i-2)} \mathcal{L}_i - \frac{M_P}{M^3} \sum_{i=1}^{6} \mathcal{L}_i - \frac{M_P}{M^3} \sum_{i=$$



 Higher order lagrangians necessary to screen the galileon at small scales through Vainshtein effect



- > A popular modified gravity model :
  - Cosmological solution with accelerated expansion
  - ◆ No effect near massive bodies due to Vainshtein screening
     ⇒ necessary to pass tests of gravity in the solar system
  - No ghost degrees of freedom
  - Simple construction principles and limit of other well motivated cosmological models
  - Only up to six real parameters

#### Outline



I. Presentation of the galileon model

II. Methodology

III. Constraints from cosmology

IV. On tracker solutions

V. GW170817



#### Galileon predictions

> Evolution in galileon gravity given by e.o.m of  $\pi$  and Einstein equations :

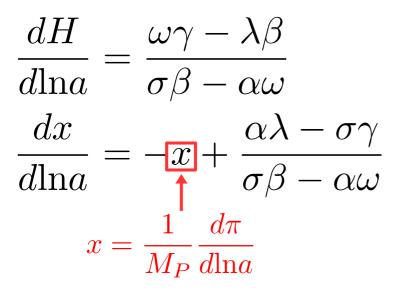
$$\frac{\delta S}{\delta \pi} = 0$$
 and  $G_{\mu\nu} = \kappa T^{SM}_{\mu\nu} + \kappa T^{(\pi)}_{\mu\nu}$ 

- > The galileon field is treated as a new fluid
- At first order ⇒ background evolution necessary to compute cosmological distances
- At linear order ⇒ perturbations evolution necessary to compute CMB powerspectra

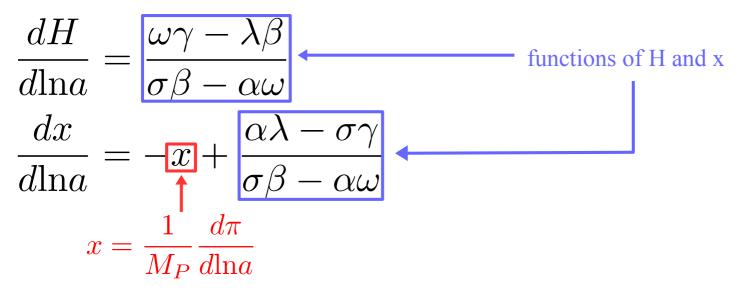


$$\frac{dH}{d\ln a} = \frac{\omega\gamma - \lambda\beta}{\sigma\beta - \alpha\omega}$$
$$\frac{dx}{d\ln a} = -x + \frac{\alpha\lambda - \sigma\gamma}{\sigma\beta - \alpha\omega}$$



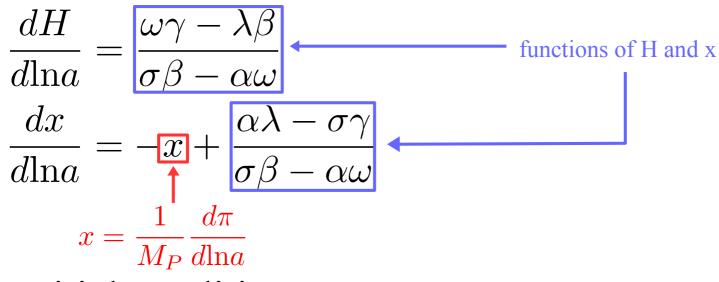






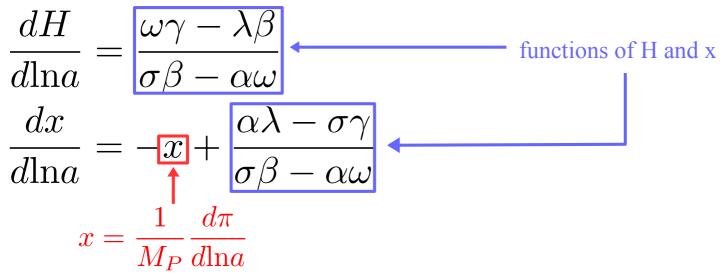


Cosmological background evolution :



▶ Initial condition at  $z = z_i$  :  $(H_i, x_i)$ 



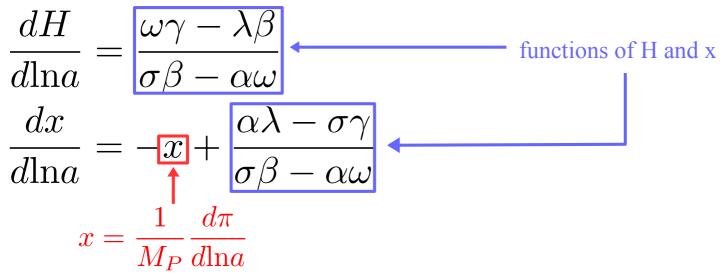


- ▶ Initial condition at  $z = z_i$  :  $(H_i, x_i)$
- Scaling invariance :

$$\begin{array}{cccc} c_i & \to & \bar{c}_i \equiv c_i B^i, & i = 2, ..., 5 \\ c_G & \to & \bar{c}_G \equiv c_G B^2 \\ x & \to & \bar{x} \equiv x/B \end{array}$$



Cosmological background evolution :



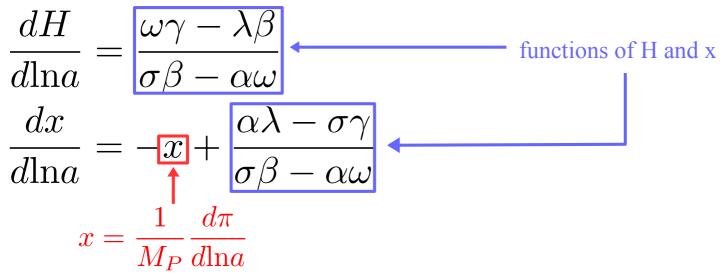
- ▶ Initial condition at  $z = z_i$  :  $(H_i, x_i)$
- Scaling invariance :

$$\begin{vmatrix} c_i & \to & \bar{c}_i \equiv c_i B^i, & i = 2, ..., 5 \\ c_G & \to & \bar{c}_G \equiv c_G B^2 \\ x & \to & \bar{x} \equiv x/B \end{vmatrix}$$

▷  $z_i$  and B can be chosen arbitrarily, here  $z_i = 0$  and  $B = x_0$ 



Cosmological background evolution :



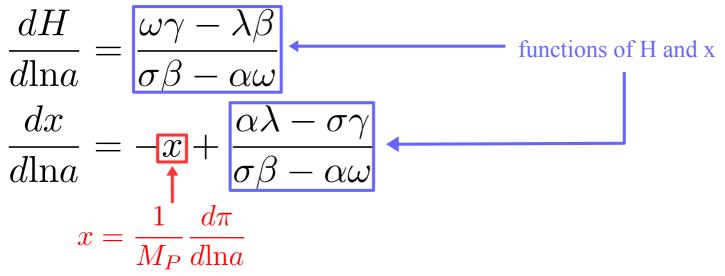
- > Initial condition at  $z = z_i : (H_i, x_i)$
- Scaling invariance :

$$\begin{vmatrix} c_i & \to & \bar{c}_i \equiv c_i x_0^i, & i = 2, ..., 5 \\ c_G & \to & \bar{c}_G \equiv c_G x_0^2 \\ x & \to & \bar{x} \equiv x/x_0 \end{vmatrix}$$

▷  $z_i$  and B can be chosen arbitrarily, here  $z_i = 0$  and  $B = x_0$ 



Cosmological background evolution :



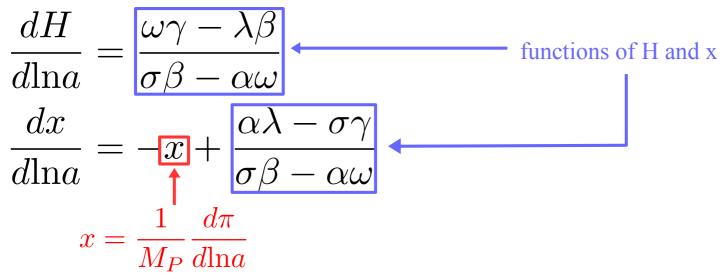
- > Initial condition at z = 0 :  $(H_i, x_i)$
- Scaling invariance :

$$\begin{vmatrix} c_i & \to & \bar{c}_i \equiv c_i x_0^i, & i = 2, ..., 5 \\ c_G & \to & \bar{c}_G \equiv c_G x_0^2 \\ x & \to & \bar{x} \equiv x/x_0 \end{vmatrix}$$

 $z_i$  and *B* can be chosen arbitrarily, here  $z_i = 0$  and  $B = x_0$ 



Cosmological background evolution :



- > Initial condition at z = 0 :  $(H_0, 1)$
- Scaling invariance :

$$\begin{vmatrix} c_i & \to & \bar{c}_i \equiv c_i x_0^i, & i = 2, ..., 5 \\ c_G & \to & \bar{c}_G \equiv c_G x_0^2 \\ x & \to & \bar{x} \equiv x/x_0 \end{vmatrix}$$

▷  $z_i$  and B can be chosen arbitrarily, here  $z_i = 0$  and  $B = x_0$ 





Scalar perturbations evolution in the synchronous gauge:  $0 = f_1^{eom} \cdot \bar{\gamma}'' + f_2^{eom} \cdot \bar{\gamma}' + f_3^{eom} \cdot k^2 \bar{\gamma} + f_4^{eom} \cdot k\mathcal{HZ}$   $+ f_5^{eom} \cdot k\mathcal{Z}' + f_6^{eom} \cdot k^2 \eta$ 

#### Perturbations evolution



 $\begin{array}{l} \succ \quad \text{Scalar perturbations evolution in the synchronous} \\ \text{gauge :} \quad 0 = f_1^{eom} \cdot \bar{\gamma}'' + f_2^{eom} \cdot \bar{\gamma}' + f_3^{eom} \cdot k^2 \bar{\gamma} + f_4^{eom} \cdot k\mathcal{HZ} \\ \quad + f_5^{eom} \cdot k\mathcal{Z}' + f_6^{eom} \cdot k^2 \eta \\ \quad \delta \rho^{(\pi)} = f_1^{\chi} \cdot \bar{\gamma} + f_2^{\chi} \cdot \bar{\gamma}' + \frac{1}{\kappa a^2} \left( f_3^{\chi} \cdot k\mathcal{HZ} + f_4^{\chi} \cdot k^2 \eta \right) \\ \quad q^{(\pi)} = f_1^q + \frac{1}{\kappa a^2} f_2^q \cdot k^2 \left( \sigma - \mathcal{Z} \right) \\ \quad \Pi^{(\pi)} = f_1^{\Pi} + \frac{1}{\kappa a^2} \left( f_2^{\Pi} \cdot k\mathcal{H}\sigma - f_3^{\Pi} \cdot k\sigma' + f_4^{\Pi} \cdot k^2 \phi \right) \end{aligned}$ 

#### Perturbations evolution



- $\begin{array}{l} \succ \quad \text{Scalar perturbations evolution in the synchronous} \\ \text{gauge:} \quad 0 = f_1^{eom} \cdot \bar{\gamma}'' + f_2^{eom} \cdot \bar{\gamma}' + f_3^{eom} \cdot k^2 \bar{\gamma} + f_4^{eom} \cdot k\mathcal{HZ} \\ \quad + f_5^{eom} \cdot k\mathcal{Z}' + f_6^{eom} \cdot k^2 \eta \\ \quad \delta \rho^{(\pi)} = f_1^{\chi} \cdot \bar{\gamma} + f_2^{\chi} \cdot \bar{\gamma}' + \frac{1}{\kappa a^2} \left( f_3^{\chi} \cdot k\mathcal{HZ} + f_4^{\chi} \cdot k^2 \eta \right) \\ \quad q^{(\pi)} = f_1^q + \frac{1}{\kappa a^2} f_2^q \cdot k^2 \left( \sigma \mathcal{Z} \right) \\ \quad \Pi^{(\pi)} = f_1^{\Pi} + \frac{1}{\kappa a^2} \left( f_2^{\Pi} \cdot k\mathcal{H}\sigma f_3^{\Pi} \cdot k\sigma' + f_4^{\Pi} \cdot k^2 \phi \right) \end{aligned}$
- > Where the  $f_i^{\chi,q,\Pi,eom}$  are functions of the background

#### Perturbations evolution



- $\begin{array}{l} \succ \quad \text{Scalar perturbations evolution in the synchronous} \\ \text{gauge:} \quad 0 = f_1^{eom} \cdot \bar{\gamma}'' + f_2^{eom} \cdot \bar{\gamma}' + f_3^{eom} \cdot k^2 \bar{\gamma} + f_4^{eom} \cdot k\mathcal{HZ} \\ \quad + f_5^{eom} \cdot k\mathcal{Z}' + f_6^{eom} \cdot k^2 \eta \\ \quad \delta \rho^{(\pi)} = f_1^{\chi} \cdot \bar{\gamma} + f_2^{\chi} \cdot \bar{\gamma}' + \frac{1}{\kappa a^2} \left( f_3^{\chi} \cdot k\mathcal{HZ} + f_4^{\chi} \cdot k^2 \eta \right) \\ \quad q^{(\pi)} = f_1^q + \frac{1}{\kappa a^2} f_2^q \cdot k^2 \left( \sigma \mathcal{Z} \right) \\ \quad \Pi^{(\pi)} = f_1^{\Pi} + \frac{1}{\kappa a^2} \left( f_2^{\Pi} \cdot k\mathcal{H}\sigma f_3^{\Pi} \cdot k\sigma' + f_4^{\Pi} \cdot k^2 \phi \right) \end{aligned}$
- > Where the  $f_i^{\chi,q,\Pi,eom}$  are functions of the background
- Barreira et al. 2013 showed that initial conditions for galileon perturbations can be taken as :

$$\gamma = \gamma' = 0$$
 at  $z \sim 10^{10}$ 



#### Parameter space exploration

 Background and perturbations evolution in galileon gravity obtained using our own modified version code CAMB





- Background and perturbations evolution in galileon gravity obtained using our own modified version code CAMB
- MCMC exploration of the parameter space against cosmological observations using our modified version of CosmoMC :



- Background and perturbations evolution in galileon gravity obtained using our own modified version code CAMB
- MCMC exploration of the parameter space against cosmological observations using our modified version of CosmoMC :
  - Constraints on full galileon parameters { $cosmo, c_2, c_3, c_4, c_5, c_G, x_0$ }
  - Constraints on cubic galileon parameters  $\{cosmo, c_2, c_3, 0, 0, 0, x_0\}$
  - Common cosmological parameters  $\{\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, n_s, A_s\}$



- Background and perturbations evolution in galileon gravity obtained using our own modified version code CAMB
- MCMC exploration of the parameter space against cosmological observations using our modified version of CosmoMC :
  - Constraints on full galileon parameters { $cosmo, c_2, c_3, c_4, c_5, c_G, x_0$ }
  - Constraints on cubic galileon parameters  $\{cosmo, c_2, c_3, 0, 0, 0, x_0\}$
  - Common cosmological parameters  $\{\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, n_s, A_s\}$
  - Reject scenarios with instabilities in scalar or tensorial perturbations



- Background and perturbations evolution in galileon gravity obtained using our own modified version code CAMB
- MCMC exploration of the parameter space against cosmological observations using our modified version of CosmoMC :
  - Constraints on full galileon parameters { $cosmo, c_2, c_3, c_4, c_5, c_G, x_0$ }
  - Constraints on cubic galileon parameters  $\{cosmo, c_2, c_3, 0, 0, 0, x_0\}$
  - Common cosmological parameters  $\{\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, n_s, A_s\}$
  - Reject scenarios with instabilities in scalar or tensorial perturbations
  - No restriction to tracker solutions



- Background and perturbations evolution in galileon gravity obtained using our own modified version code CAMB
- MCMC exploration of the parameter space against cosmological observations using our modified version of CosmoMC :
  - Constraints on full galileon parameters { $cosmo, c_2, c_3, c_4, c_5, c_G, x_0$ }
  - Constraints on cubic galileon parameters  $\{cosmo, c_2, c_3, 0, 0, 0, x_0\}$
  - Common cosmological parameters { $\Omega_b h^2$ ,  $\Omega_c h^2$ ,  $100\theta_{MC}$ ,  $\tau$ ,  $n_s$ ,  $A_s$ }
  - Reject scenarios with instabilities in scalar or tensorial perturbations
  - No restriction to tracker solutions
- A posteriori comparison to GW speed constraint from GW170817

# Outline



I.Presentation of the galileon model

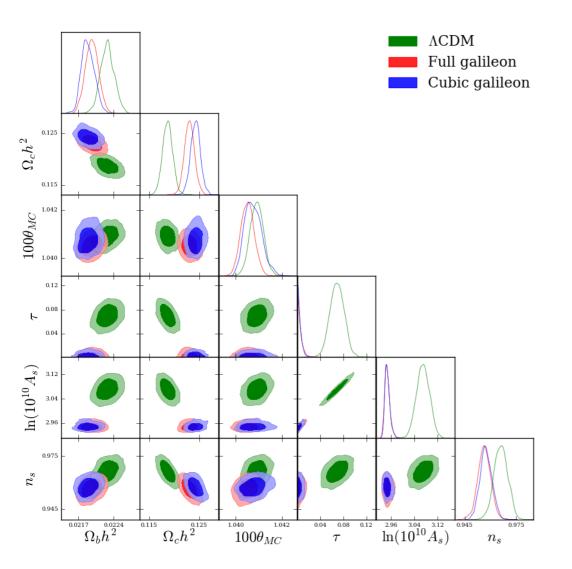
II. Methodology

III. Constraints from cosmology

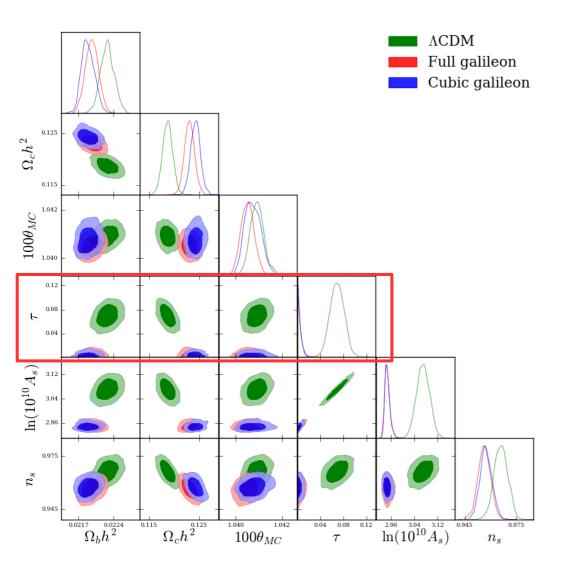
IV. On tracker solutions

#### V. GW170817

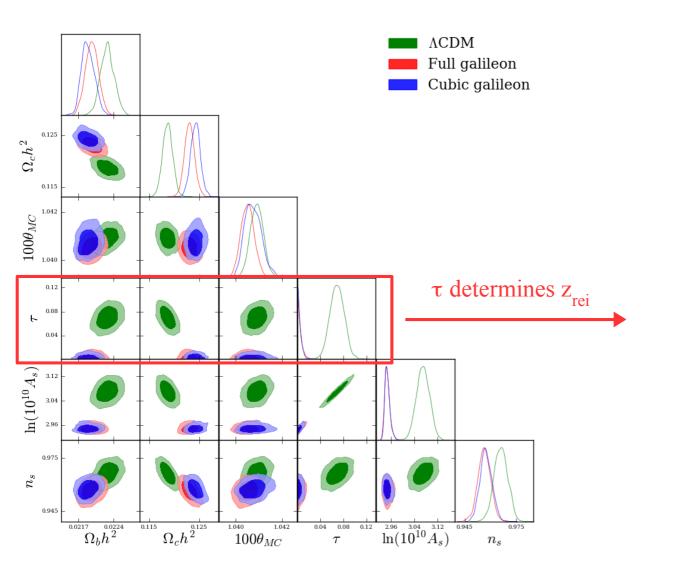




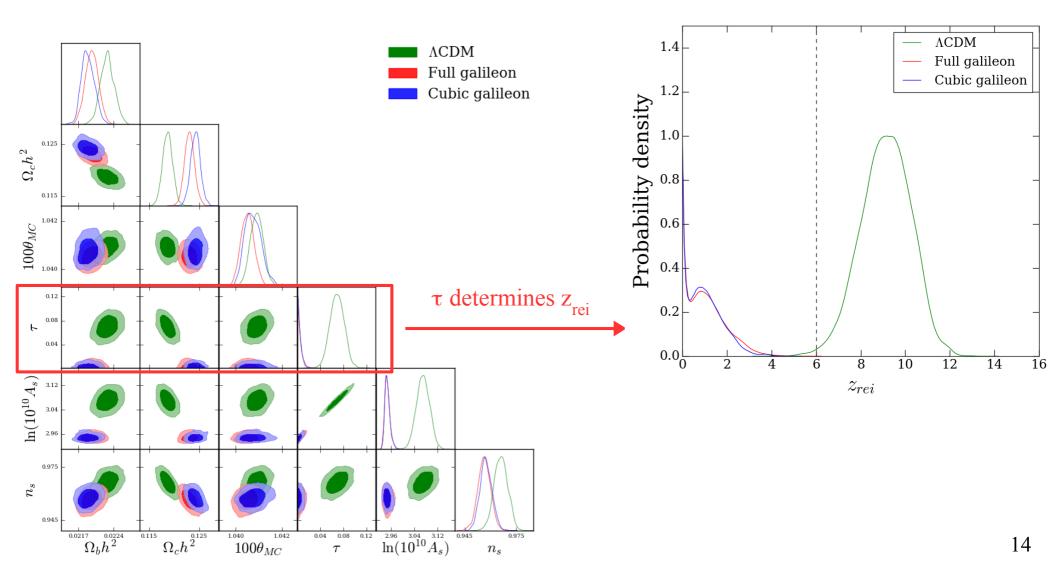




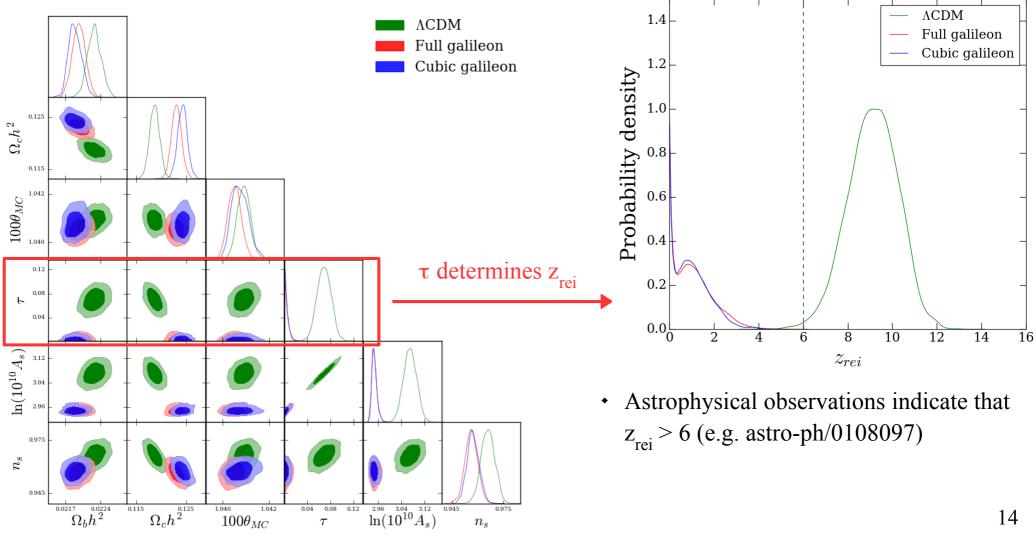














|                    | $\chi^2(\text{CMB})$ | $\chi^2(BAO)$ | $\chi^2(\text{JLA})$ |
|--------------------|----------------------|---------------|----------------------|
| $\Lambda { m CDM}$ | 12946                | 5.6           | 706.7                |
| Full galileon      | 12966                | 30.4          | 723.3                |
| Cubic galileon     | 12993                | 29.9          | 723.6                |

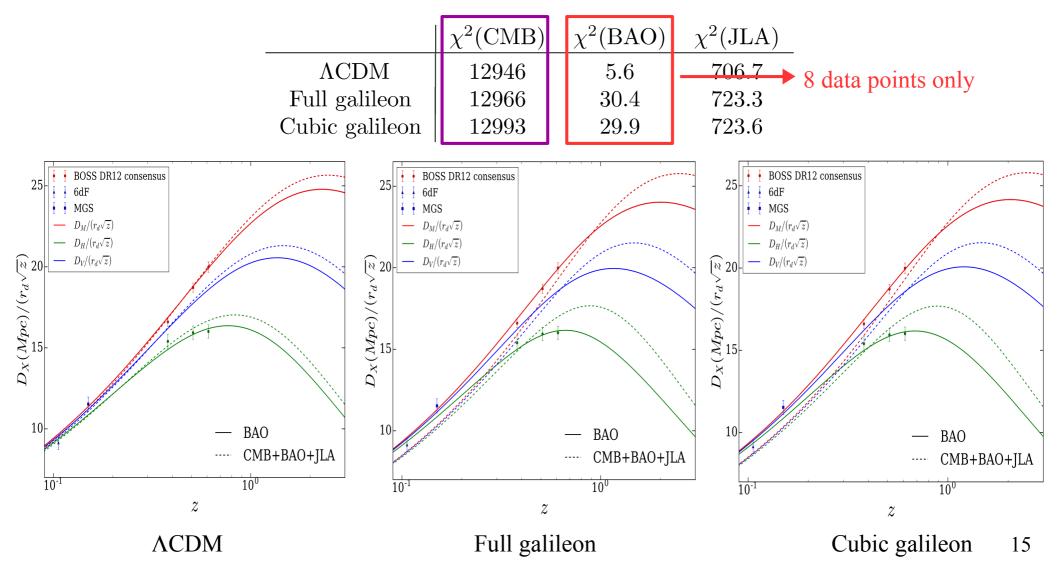


|                        | $\chi^2(\text{CMB})$ | $\chi^2({ m BAO})$ | $\chi^2(\text{JLA})$ |
|------------------------|----------------------|--------------------|----------------------|
| $\Lambda \mathrm{CDM}$ | 12946                | 5.6                | 706.7                |
| Full galileon          | 12966                | 30.4               | 723.3                |
| Cubic galileon         | 12993                | 29.9               | 723.6                |



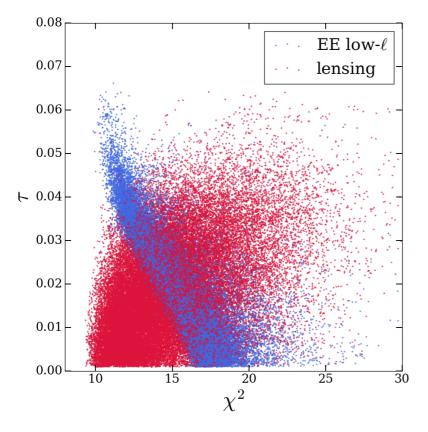
|                       | $\chi^2(\text{CMB})$ | $\chi^2(\text{BAO})$ | $\chi^2({ m JLA})$ |                    |
|-----------------------|----------------------|----------------------|--------------------|--------------------|
| ΛCDM<br>Full galileon | $12946 \\ 12966$     | $5.6\\30.4$          | 706.7<br>723.3     | 8 data points only |
| Cubic galileon        | 12993                | 29.9                 | 723.6              |                    |







- > Tension on  $\tau$  due to :
  - lensing
  - low-l of polarization



#### 16

# Tensions in base models

- > Tension on  $\tau$  due to :
  - lensing

0.08

0.07

0.06

0.05

0.03

0.02

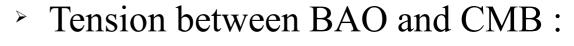
0.01

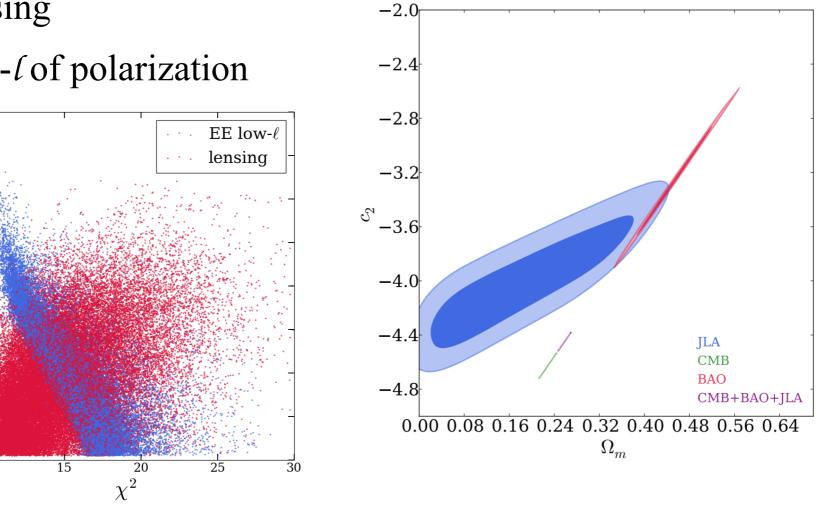
0.00

10

ト 0.04

• low-l of polarization







# Tensions in base models

- > Tension on  $\tau$  due to :
  - lensing

0.08

0.07

0.06

0.05

0.03

0.02

0.01

0.00

 $\triangleright$ 

10

ト 0.04

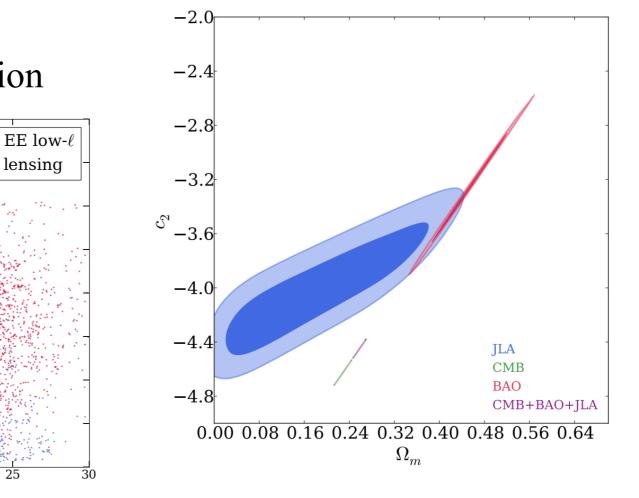
• low-l of polarization

20

25

15

 $\chi^2$ Improve the situation with new parameters ?



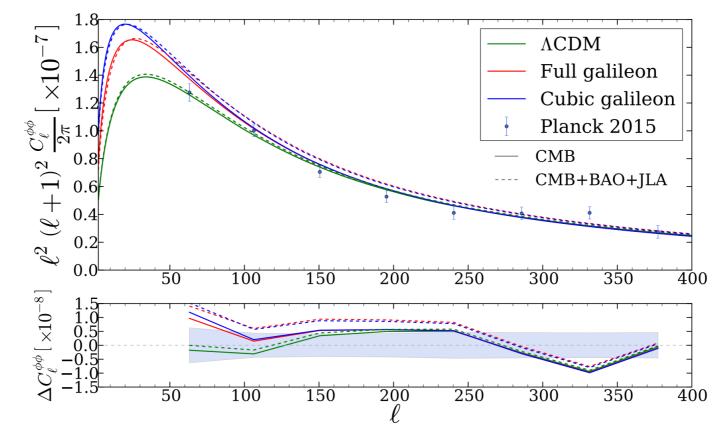
Tension between BAO and CMB :







- CMB lensing power spectrum favours low A<sub>s</sub>
- Because lensing effect stronger in galileon scenarios

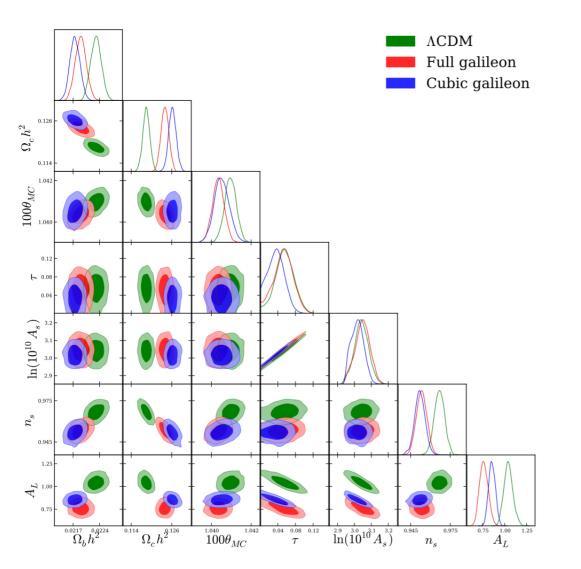


> Additional parameters that have an effect on lensing normalization :  $A_L$  or  $\Sigma m_v$ 

# Extension to A<sub>I</sub>



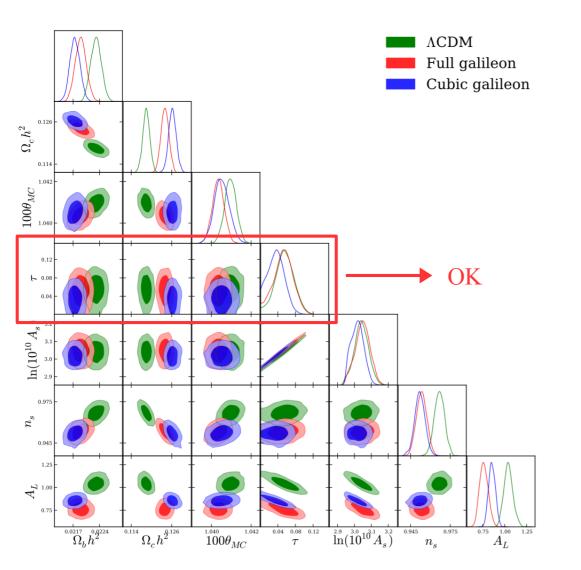
> Model extended to the parameter  $A_L$ :



# Extension to A<sub>I</sub>



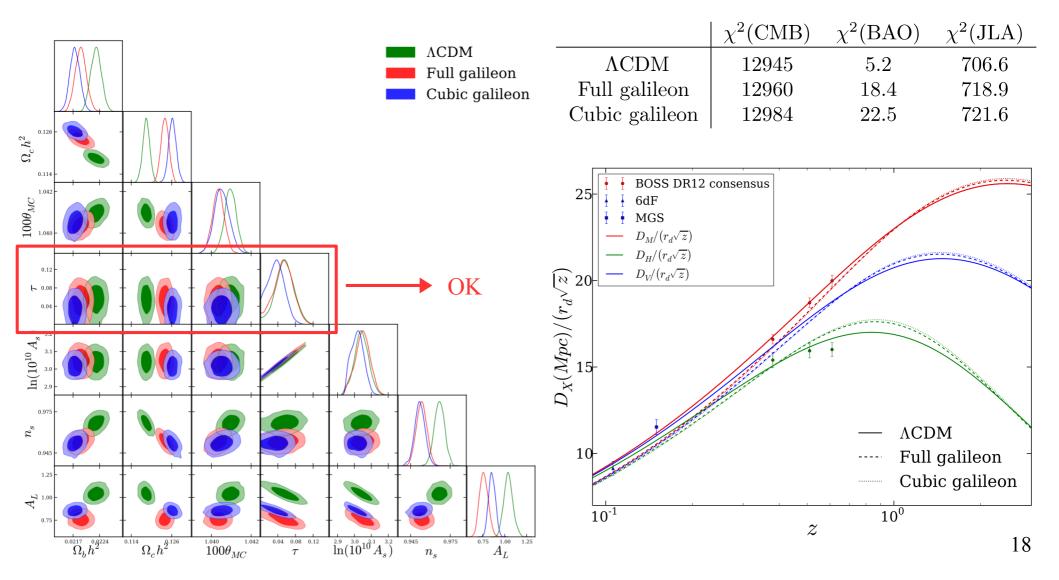
> Model extended to the parameter  $A_L$ :



# Extension to A<sub>1</sub>



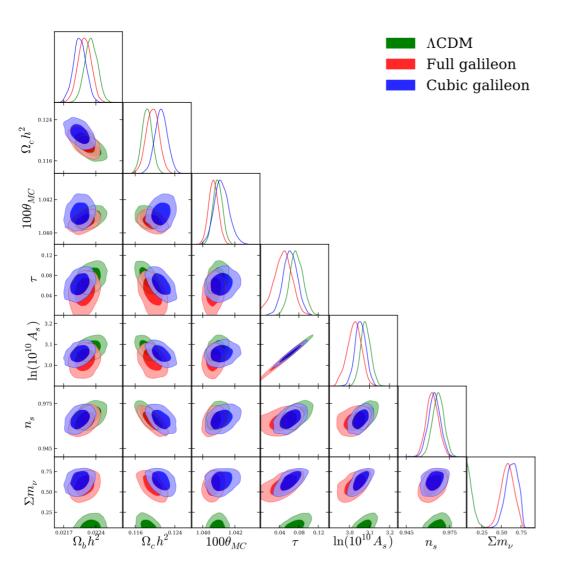
> Model extended to the parameter  $A_L$ :



# Extension to $\Sigma m_{v}$



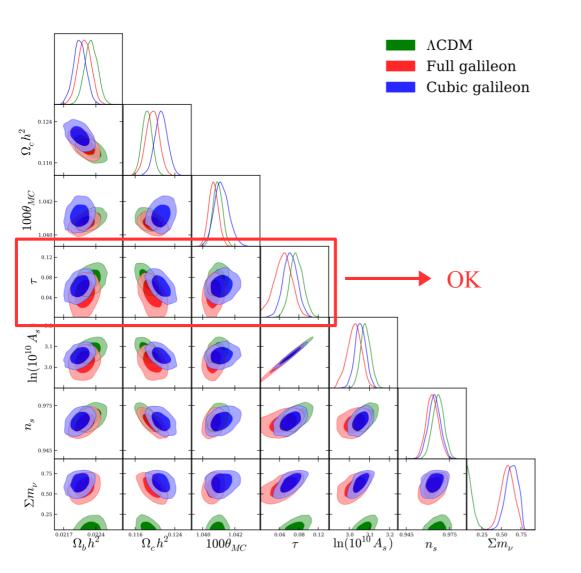
> Model extended to the parameter  $\Sigma m_v$ :



# Extension to $\Sigma m_{v}$



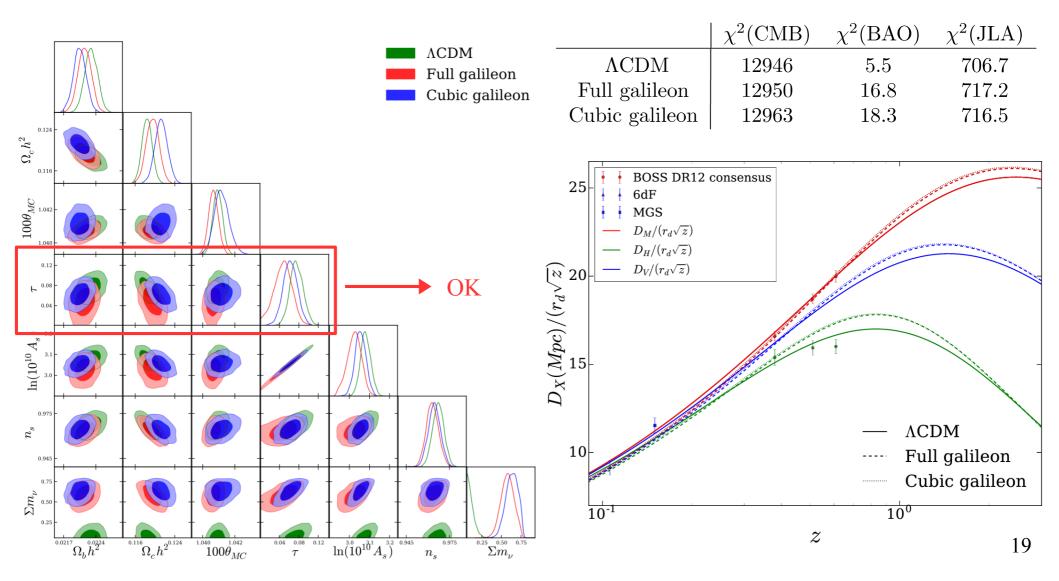
> Model extended to the parameter  $\Sigma m_v$ :



# Extension to $\Sigma m_{\chi}$



> Model extended to the parameter  $\Sigma m_v$ :



# Outline



I.Presentation of the galileon model

II. Methodology

III. Constraints from cosmology

IV. On tracker solutions

V. GW170817



> Trackers are a subset of general solutions :



- > Trackers are a subset of general solutions :
  - Attractor solutions, defined by

$$H^2\dot{\pi} = \xi = \text{cste}$$



- > Trackers are a subset of general solutions :
  - Attractor solutions, defined by

$$H^2\dot{\pi} = \xi = \text{cste}$$

• Additional relation between  $c_i$  (one less free parameter)

$$c_2\xi^2 - 6c_3\xi^3 + 18c_4\xi^4 - 15c_5\xi^5 = 0$$



- Trackers are a subset of general solutions :
  - Attractor solutions, defined by

$$H^2\dot{\pi} = \xi = \text{cste}$$

• Additional relation between  $c_i$  (one less free parameter)

$$c_2\xi^2 - 6c_3\xi^3 + 18c_4\xi^4 - 15c_5\xi^5 = 0$$

 Analytical solution for the background evolution  $\sqrt{2}$  $\frac{H}{H_{c}}$ 

$$\left(\frac{1}{2}\right)^{2} = \frac{1}{2} \left[ \frac{\Omega_{m}^{0}}{a^{3}} + \frac{\Omega_{\gamma}^{0}}{a^{4}} + \frac{\rho_{\nu}}{3M_{P}^{2}H_{0}^{2}} + \sqrt{4\Omega_{\pi}^{0} + \left(\frac{\Omega_{m}^{0}}{a^{3}} + \frac{\Omega_{\gamma}^{0}}{a^{4}} + \frac{\rho_{\nu}}{3M_{P}^{2}H_{0}^{2}}\right)^{2}} \right]^{2}$$



- > Trackers are a subset of general solutions :
  - Attractor solutions, defined by

$$H^2\dot{\pi} = \xi = \text{cste}$$

• Additional relation between  $c_i$  (one less free parameter)

$$c_2\xi^2 - 6c_3\xi^3 + 18c_4\xi^4 - 15c_5\xi^5 = 0$$

- Analytical solution for the background evolution  $\left(\frac{H}{H_0}\right)^2 = \frac{1}{2} \left[ \frac{\Omega_m^0}{a^3} + \frac{\Omega_\gamma^0}{a^4} + \frac{\rho_\nu}{3M_P^2 H_0^2} + \sqrt{4\Omega_\pi^0 + \left(\frac{\Omega_m^0}{a^3} + \frac{\Omega_\gamma^0}{a^4} + \frac{\rho_\nu}{3M_P^2 H_0^2}\right)^2} \right]$
- Previously studied (see e.g. Barreira et al. 2014 or Renk et al. 2017)



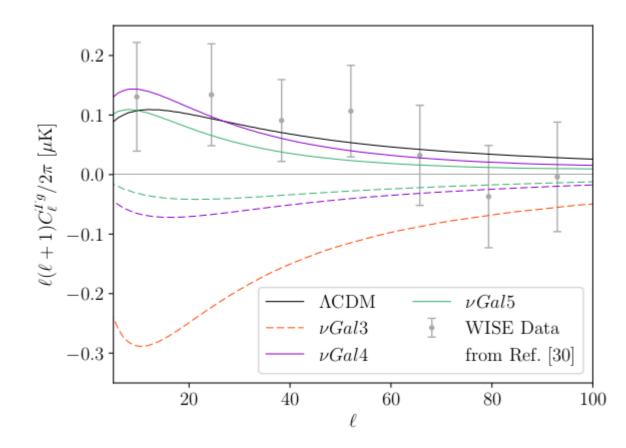


- > Results from previous studies showed :
  - All models excluded unless  $\sum m_{\nu} \neq 0.06 \text{ eV}$

# Constraints on tracker



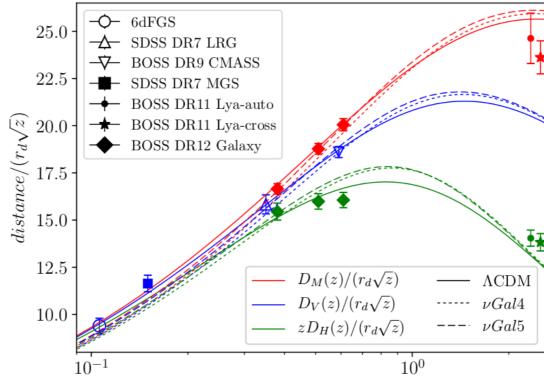
- Results from previous studies showed :
  - All models excluded unless  $\sum m_{\nu} \neq 0.06 \text{ eV}$
  - Cubic galileon excluded by ISW effect



# Constraints on tracker



- Results from previous studies showed :
  - All models excluded unless  $\sum m_{\nu} \neq 0.06 \text{ eV}$
  - Cubic galileon excluded by ISW effect
  - Others in apparent tension with new BAO measurements







Tracker should be reached before the DE dominated era to reproduce correctly CMB TT



# Conclusion on tracker

- Tracker should be reached before the DE dominated era to reproduce correctly CMB TT
- > Define  $a_{5\%}$ , the scale factor at which :

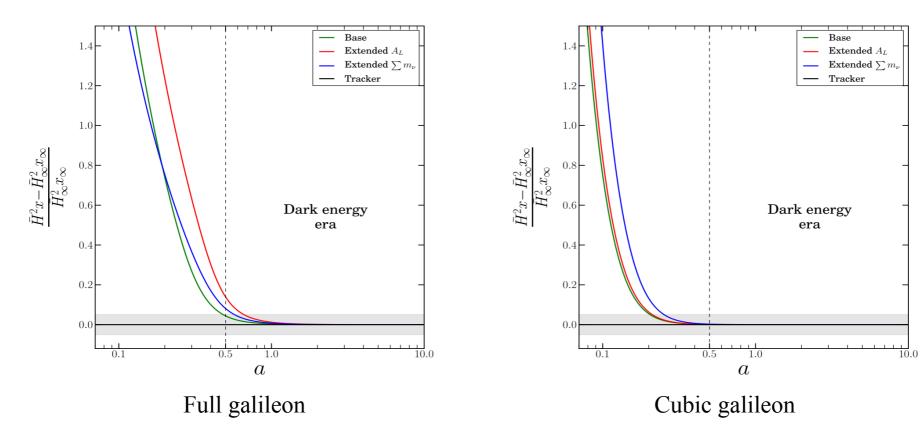
$$\left|\frac{\bar{H}\bar{x} - \bar{H}_{\infty}\bar{x}_{\infty}}{\bar{H}_{\infty}\bar{x}_{\infty}}\right| < 5\%$$





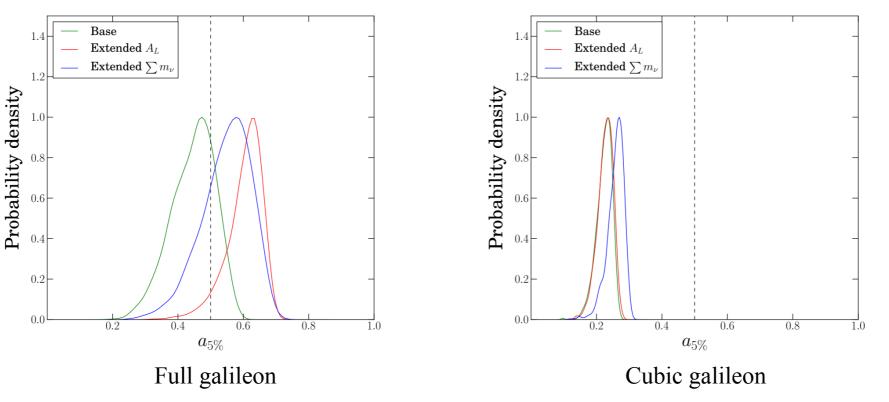
- Tracker should be reached before the DE dominated era to reproduce correctly CMB TT
- > Define  $a_{5\%}$ , the scale factor at which :

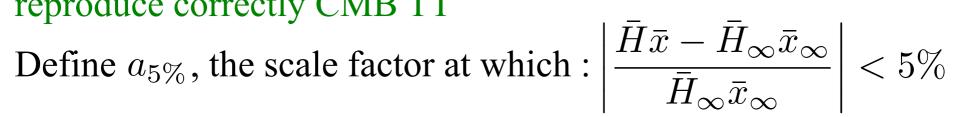
$$\left|\frac{\bar{H}\bar{x} - \bar{H}_{\infty}\bar{x}_{\infty}}{\bar{H}_{\infty}\bar{x}_{\infty}}\right| < 5\%$$



# Conclusion on tracker

- Tracker should be reached before the DE dominated era to reproduce correctly CMB TT







# Outline



I.Presentation of the galileon model

II. Methodology

III. Constraints from cosmology

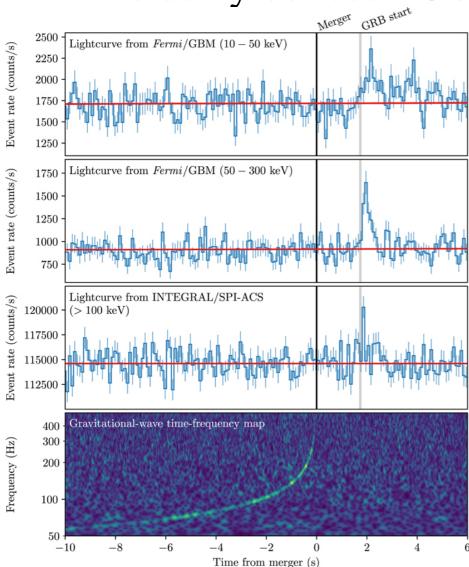
IV. On tracker solutions

#### V. GW170817

# Gravitational waves



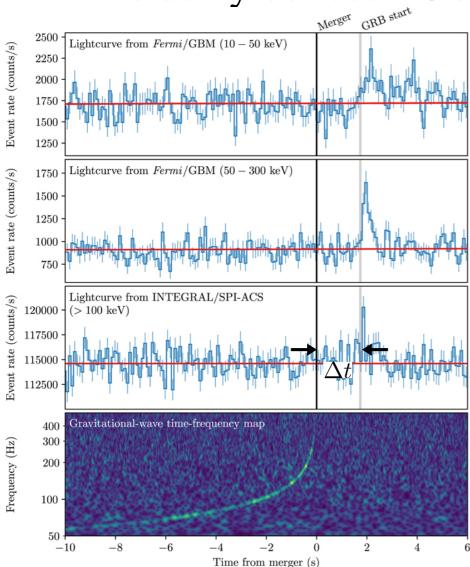
#### > Time delay between GW and light from GW170817



# Gravitational waves



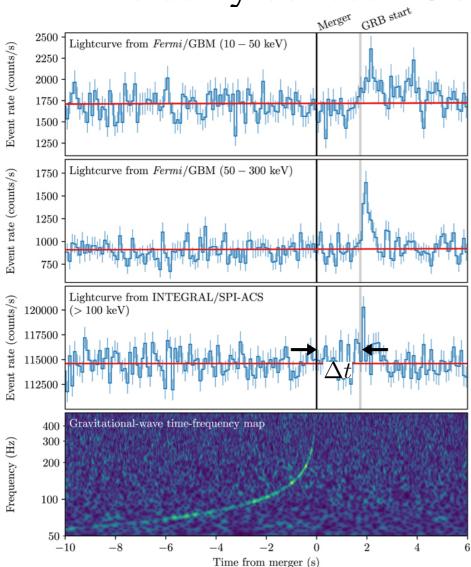
#### Time delay between GW and light from GW170817



$$\Delta t = \int_{a_e}^{1} \frac{da}{aH} \left( 1 - \frac{c}{c_g(a)} \right) + \delta t$$
$$= 1.74 \pm 0.05 \mathrm{s}$$



#### > Time delay between GW and light from GW170817

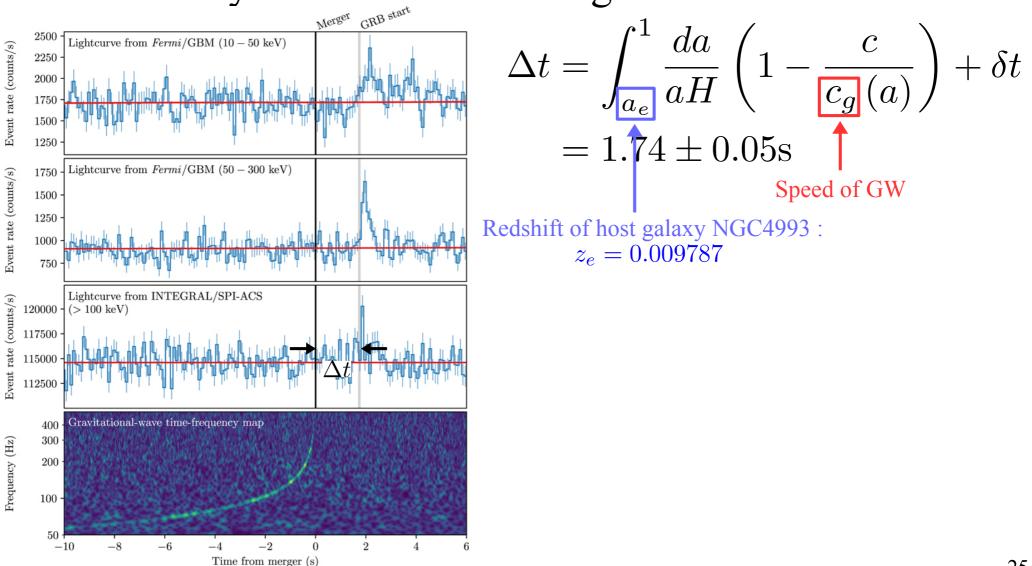


arXiv:1710.05834

$$\Delta t = \int_{a_e}^{1} \frac{da}{aH} \left( 1 - \frac{c}{c_g(a)} \right) + \delta t$$
$$= 1.74 \pm 0.05s \qquad \uparrow$$
Speed of GW



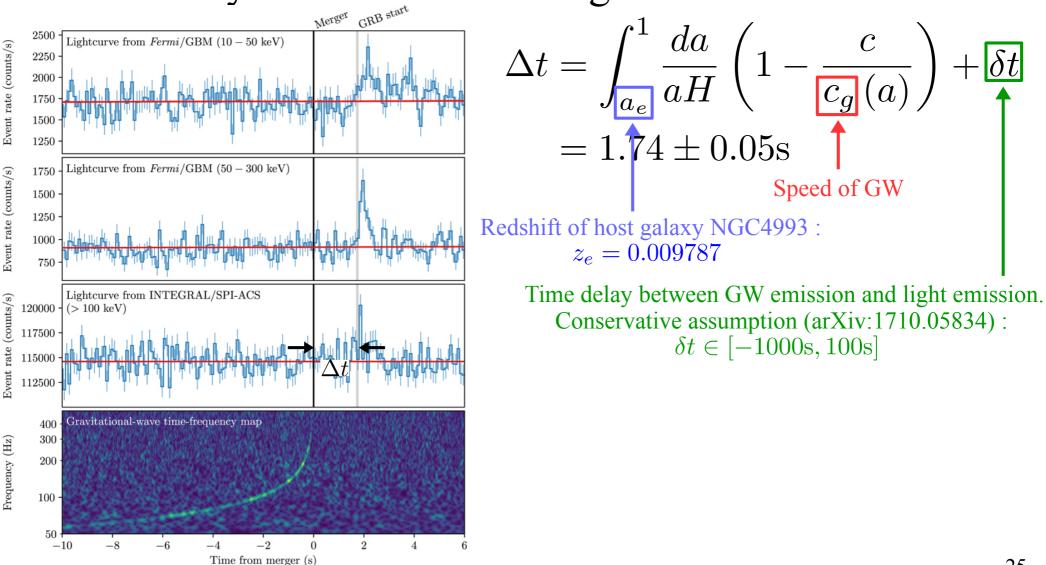
> Time delay between GW and light from GW170817



arXiv:1710.05834

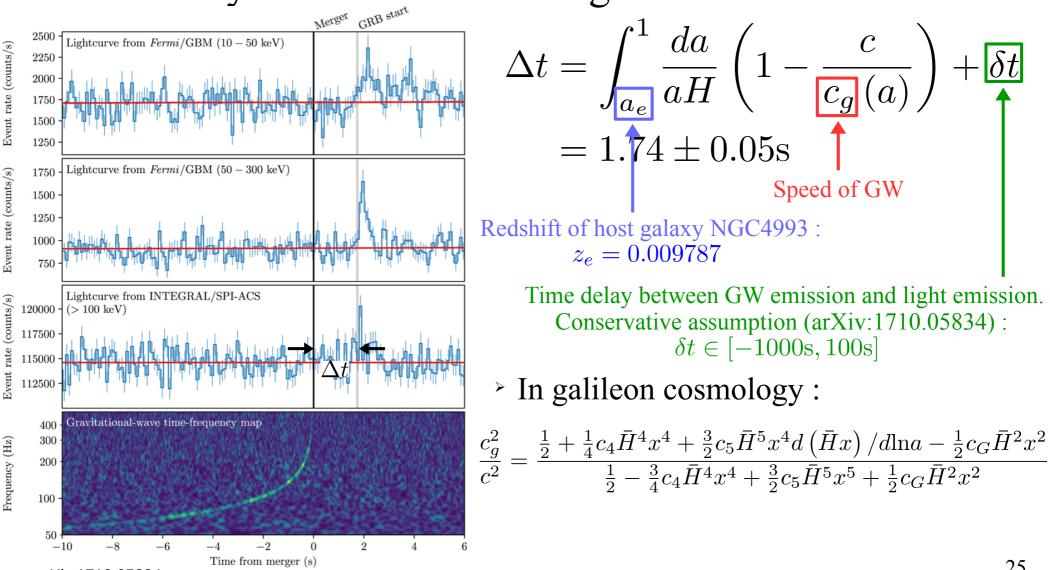


> Time delay between GW and light from GW170817





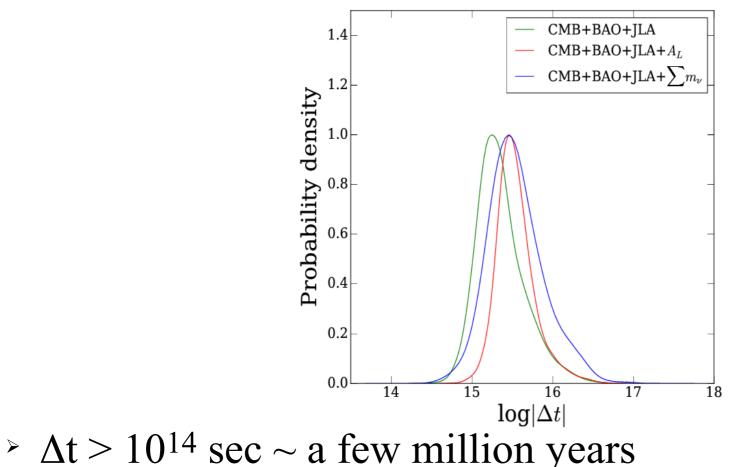
Time delay between GW and light from GW170817







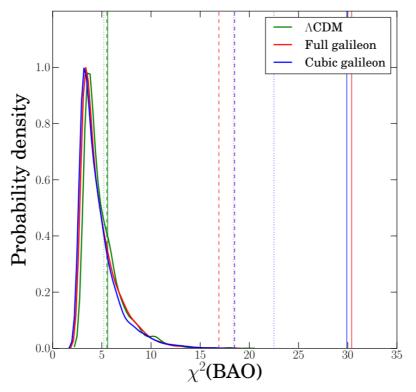
▹ Modification of GW speed only due to  $c_4$ ,  $c_5$  and  $c_G$ ⇒ affects only the full galileon model



## Galileon status



- Status of the general galileon model (see Leloup et al. 2019) :
  - No galileon model can fit all cosmological data (especially BAO)



- Full galileon model excluded by GW170817
- Nevertheless, non-tracker exploration useful



#### Thank you !



 $\tilde{g}_{\mu\nu} = A(\pi, X) g_{\mu\nu} + B(\pi, X) \nabla_{\mu} \pi \nabla_{\nu} \pi$ 

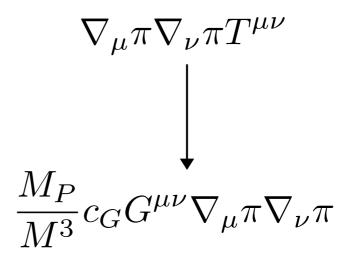
Conformal transformation

$$\pi T^{\mu}_{\mu}$$

$$\downarrow$$

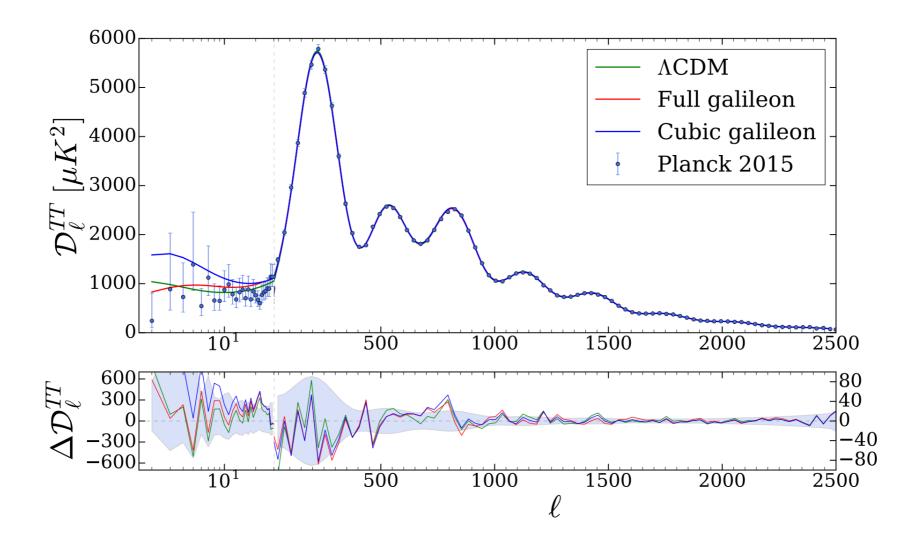
$$M_P c_0 \pi R$$

Disformal transformation



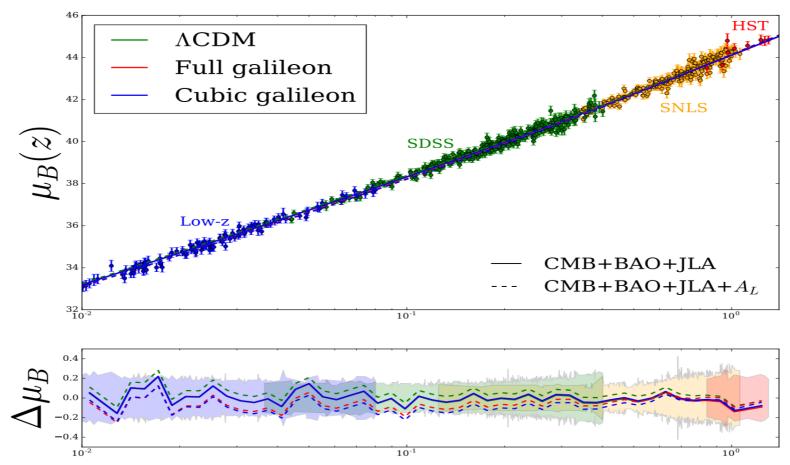


#### > TT powerspectrum with $A_L$



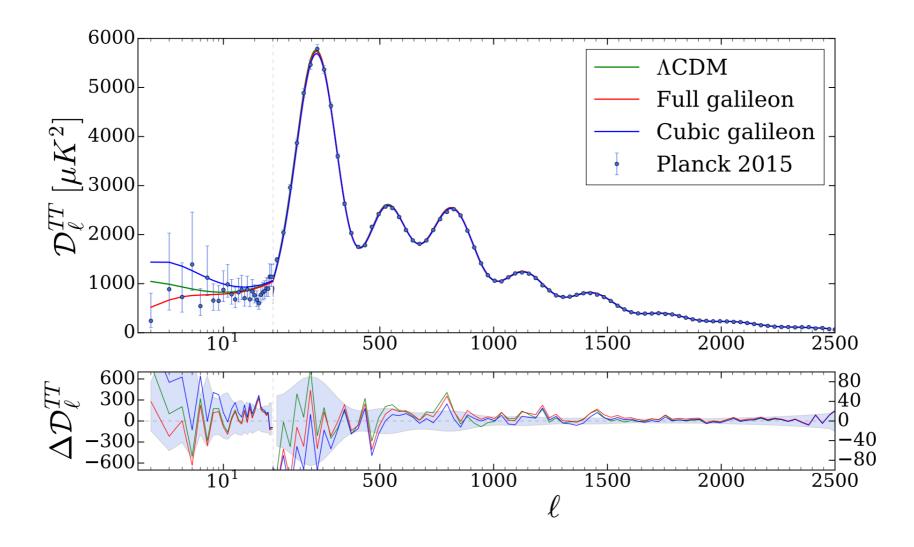


> SN hubble diagram with  $A_L$ 



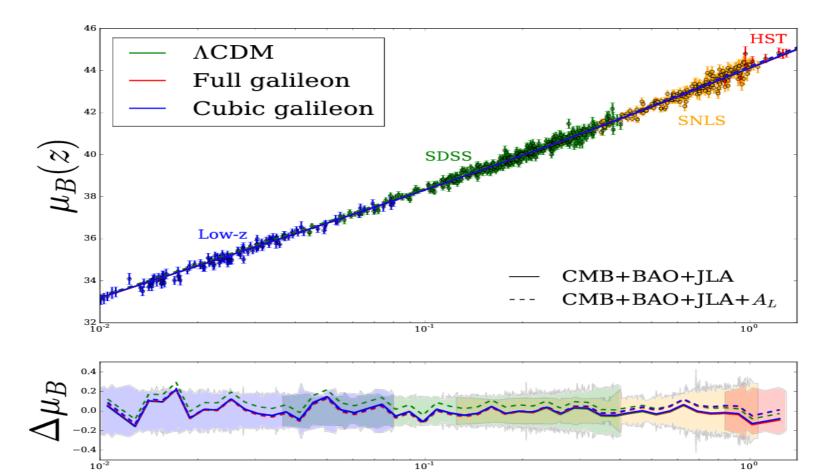


#### > TT powerspectrum with $\Sigma m_{\nu}$

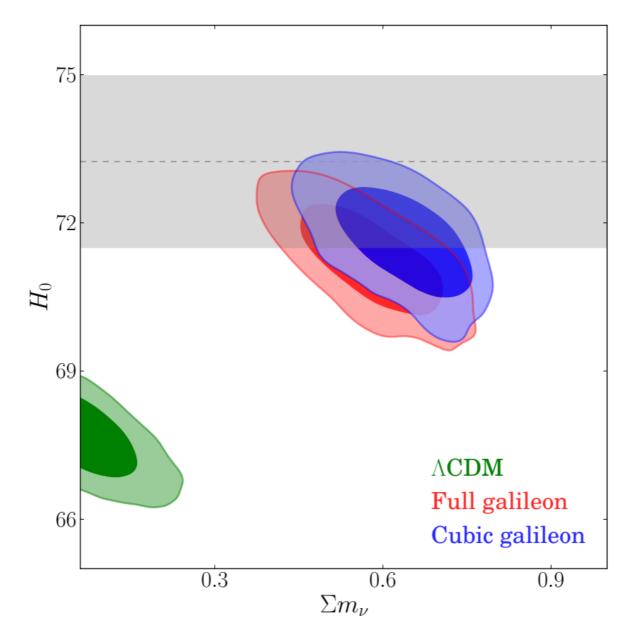




> SN hubble diagram with  $\Sigma m_{\nu}$ 



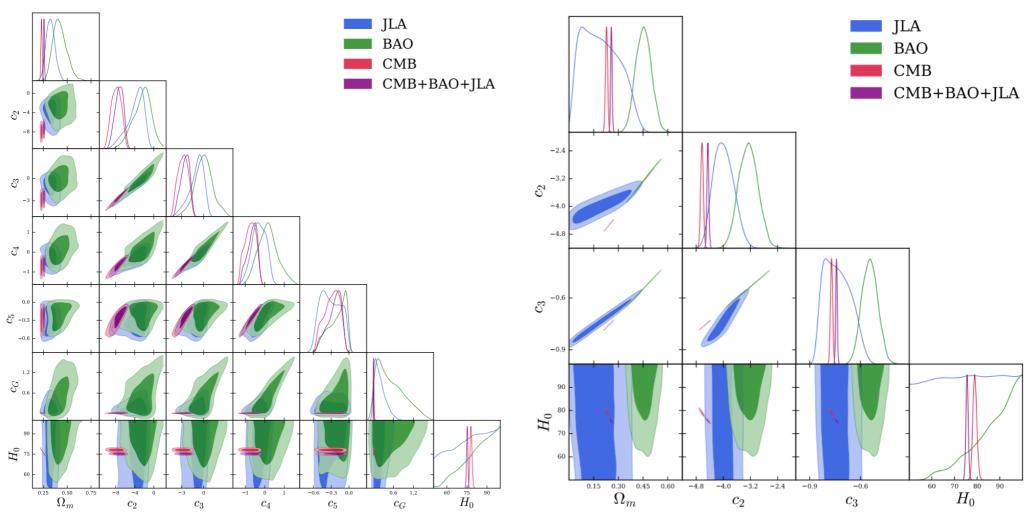




CI on H0 from Riess et al. 2016

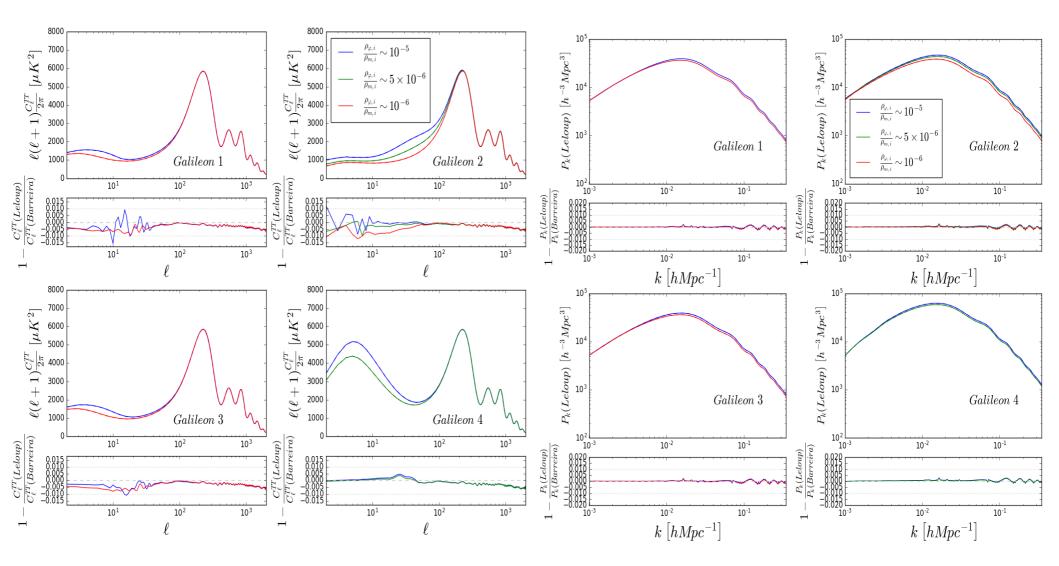


#### Constraints on galileon parameters



Validation of CAMB





$$\begin{split} \alpha &= \frac{c_2}{6}\bar{H}x - 3c_3\bar{H}^3x^2 + 15c_4\bar{H}^5x^3 - \frac{35}{2}c_5\bar{H}^7x^4 - 3c_G\bar{H}^3x \\ \gamma &= \frac{c_2}{3}\bar{H}^2x - c_3\bar{H}^4x^2 + 5\frac{5}{2}c_5\bar{H}^8x^4 - 2c_G\bar{H}^4x \\ \beta &= \frac{c_2}{6}\bar{H}^2 - 2c_3\bar{H}^4x + 9c_4\bar{H}^6x^2 - 10c_5\bar{H}^8x^3 - c_G\bar{H}^4 \\ \sigma &= 2\bar{H} + 2c_3\bar{H}^3x^3 - 15c_4\bar{H}^5x^4 + 21c_5\bar{H}^7x^5 + 6c_G\bar{H}^3x^2 \\ \lambda &= 3\bar{H}^2 + \frac{\Omega_{\gamma}^0}{a^4} + \frac{p_{\nu}}{M_{Pl}^2H_0^2} + \frac{c_2}{2}\bar{H}^2x^2 - 2c_3\bar{H}^4x^3 + \frac{15}{2}c_4\bar{H}^6x^4 - 9c_5\bar{H}^8x^5 - c_G\bar{H}^4x^2 \\ \omega &= 2c_3\bar{H}^4x^2 - 12c_4\bar{H}^6x^3 + 15c_5\bar{H}^8x^4 + 4c_G\bar{H}^4x \end{split}$$

1. 
$$\chi^G = f_1^{\chi} \cdot \gamma + f_2^{\chi} \cdot \gamma' + \frac{1}{\kappa a^2} \left( f_3^{\chi} \cdot k \mathcal{HZ} + f_4^{\chi} \cdot k^2 \eta \right)$$
 with :

$$f_1^{\chi} = \frac{k^2}{\kappa a^2} \left[ -2\frac{c_3}{a^2} x^2 \bar{\mathcal{H}}^2 + 12\frac{c_4}{a^4} x^3 \bar{\mathcal{H}}^4 - 15\frac{c_5}{a^6} x^4 \bar{\mathcal{H}}^6 - 4\frac{c_G}{a^2} x \bar{\mathcal{H}}^2 \right]$$
(A.1)

$$f_2^{\chi} = \frac{H_0}{\kappa a^2} \left[ c_2 x \bar{\mathcal{H}} - 18 \frac{c_3}{a^2} x^2 \bar{\mathcal{H}}^3 + 90 \frac{c_4}{a^4} x^3 \bar{\mathcal{H}}^5 - 105 \frac{c_5}{a^6} x^4 \bar{\mathcal{H}}^7 - 18 \frac{c_G}{a^2} x \bar{\mathcal{H}}^3 \right]$$
(A.2)

$$f_3^{\chi} = -2\frac{c_3}{a^2}x^3\bar{\mathcal{H}}^2 + 15\frac{c_4}{a^4}x^4\bar{\mathcal{H}}^4 - 21\frac{c_5}{a^6}x^5\bar{\mathcal{H}}^6 - 6\frac{c_G}{a^2}x^2\bar{\mathcal{H}}^2$$
(A.3)

$$f_4^{\chi} = \frac{3}{2} \frac{c_4}{a^4} x^4 \bar{\mathcal{H}}^4 - 3 \frac{c_5}{a^6} x^5 \bar{\mathcal{H}}^6 - \frac{c_G}{a^2} x^2 \bar{\mathcal{H}}^2$$
(A.4)

2. 
$$q^G = f_1^q + \frac{1}{\kappa a^2} f_2^q \cdot k^2 (\sigma - Z)$$
 with :

$$f_{1}^{q} = \frac{k}{\kappa a^{2}} \left[ c_{2}H_{0}x\bar{\mathcal{H}}\bar{\gamma} - \frac{c_{3}}{a^{2}} \left( -2x^{2}\bar{H}^{2}\bar{\gamma}' + 6H_{0}x^{2}\bar{\mathcal{H}}^{3}\bar{\gamma} \right) + \frac{c_{4}}{a^{4}} \left( -12x^{3}\bar{\mathcal{H}}^{4}\bar{\gamma}' + 18H_{0}x^{3}\bar{\mathcal{H}}^{5}\bar{\gamma} \right) - \frac{c_{5}}{a^{6}} \left( -15x^{4}\bar{\mathcal{H}}^{6}\bar{\gamma}' + 15H_{0}x^{4}\bar{\mathcal{H}}^{7}\bar{\gamma} \right) - \frac{c_{G}}{a^{2}} \left( -4x\bar{\mathcal{H}}^{2}\bar{\gamma}' + 6H_{0}x\bar{\mathcal{H}}^{3}\bar{\gamma} \right) \right]$$
(A.5)

$$f_2^q = \frac{c_4}{a^4} x^4 \bar{\mathcal{H}}^4 - 2\frac{c_5}{a^6} x^5 \bar{\mathcal{H}}^6 - \frac{2}{3} \frac{c_G}{a^2} x^2 \bar{\mathcal{H}}^2$$
(A.6)





3. 
$$\Pi^G = f_1^{\Pi} + \frac{1}{\kappa a^2} \left( f_2^{\Pi} \cdot k\mathcal{H}\sigma - f_3^{\Pi} \cdot k\sigma' + f_4^{\Pi} \cdot k^2 \phi \right)$$
 with :

$$f_{1}^{\Pi} = \frac{k^{2}}{\kappa a^{2}} \left[ \frac{c_{4}}{a^{4}} \left( 4x^{3} \bar{\mathcal{H}}^{4} \bar{\gamma} - 6x^{2} \bar{\mathcal{H}}^{3} \left( x \bar{\mathcal{H}} \right) \bar{\gamma} \right) - \frac{c_{5}}{a^{6}} \left( 12x^{4} \bar{\mathcal{H}}^{6} \bar{\gamma} - 3x^{4} \bar{\mathcal{H}}^{5} \overset{o}{\bar{\mathcal{H}}} \bar{\gamma} - 12x^{3} \bar{\mathcal{H}}^{5} \left( x \bar{\mathcal{H}} \right) \bar{\gamma} \right) + 2\frac{c_{G}}{a^{2}} \bar{\mathcal{H}} \left( x \overset{o}{\bar{\mathcal{H}}} \right) \bar{\gamma} \right]$$
(A.7)

$$f_{2}^{\Pi} = \frac{c_{4}}{a^{4}} \left( 3x^{4}\bar{\mathcal{H}}^{4} - 6x^{3}\bar{\mathcal{H}}^{3} \begin{pmatrix} a \\ x\bar{\mathcal{H}} \end{pmatrix} \right) - \frac{c_{5}}{a^{6}} \left( 12x^{5}\bar{\mathcal{H}}^{6} - 3x^{5}\bar{\mathcal{H}}^{5} \overset{o}{\bar{\mathcal{H}}} - 15x^{4}\bar{\mathcal{H}}^{5} \begin{pmatrix} a \\ x\bar{\mathcal{H}} \end{pmatrix} \right) + 2\frac{c_{G}}{a^{2}}x\bar{\mathcal{H}} \begin{pmatrix} a \\ x\bar{\mathcal{H}} \end{pmatrix}$$
(A.8)

$$\frac{a^2}{2\Pi} = \frac{c_4}{c_4} x^4 \bar{\mathcal{U}}^4 + 3 \frac{c_5}{c_5} x^4 \bar{\mathcal{H}}^5 (x^0 \bar{\mathcal{U}})$$
(A.9)

$$f_3^{\Pi} = \frac{c_4}{a^4} x^4 \bar{\mathcal{H}}^4 + 3 \frac{c_5}{a^6} x^4 \bar{H}^5 \left( x \bar{\mathcal{H}} \right) \tag{A.9}$$

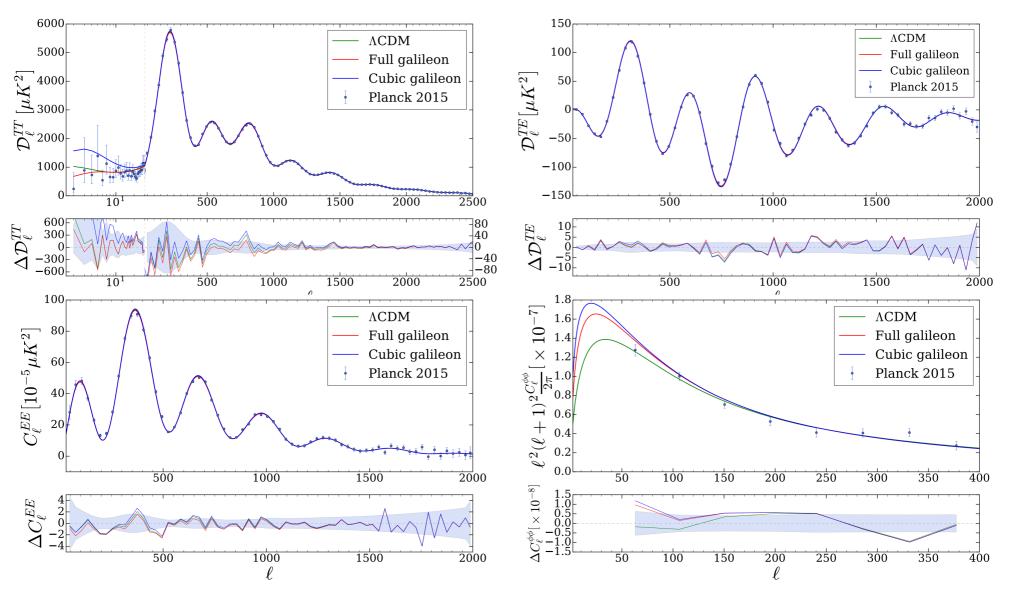
$$f_4^{\Pi} = -\frac{c_4}{a^4} x^4 \bar{\mathcal{H}}^4 - \frac{c_5}{a^6} \left( -6x^5 \bar{\mathcal{H}}^6 + 6x^4 \bar{\mathcal{H}}^5 \left( x \bar{\mathcal{H}} \right) \right) + 2\frac{c_G}{a^2} x^2 \bar{\mathcal{H}}^2$$
(A.10)



$$\begin{split} 4. \ 0 &= f_1^{eom} \cdot \bar{\gamma}'' + f_2^{eom} \cdot \bar{\gamma}' + f_3^{eom} \cdot k^2 \bar{\gamma} + f_4^{eom} \cdot k\mathcal{HZ} + f_5^{eom} \cdot k\mathcal{Z}' + f_6^{eom} \cdot k^2 \eta \text{ with }: \\ f_1^{eom} &= c_2 - 12 \frac{c_3}{a^2} x \bar{\mathcal{H}}^2 + 54 \frac{c_4}{a^4} x^2 \bar{\mathcal{H}}^4 - 60 \frac{c_5}{a^6} x^3 \bar{\mathcal{H}}^6 - 6 \frac{c_G}{a^2} \bar{\mathcal{H}}^2 & (A.11) \\ f_2^{eom} &= H_0 \left[ 2c_2 \bar{\mathcal{H}} - \frac{c_3}{a^2} \left( 12x \bar{\mathcal{H}}^2 \bar{\mathcal{H}} + 12 \bar{\mathcal{H}}^2 (x \bar{\mathcal{H}}) \right) + \frac{c_4}{a^4} \left( -108x^2 \bar{\mathcal{H}}^5 + 108x^2 \bar{\mathcal{H}}^4 \bar{\mathcal{H}} + 108x \bar{\mathcal{H}}^4 (x \bar{\mathcal{H}}) \right) \\ &- \frac{c_5}{a^6} \left( -240x^3 \bar{\mathcal{H}}^7 + 180x^3 \bar{\mathcal{H}}^6 \bar{\mathcal{H}} + 180x^2 \bar{\mathcal{H}}^6 (x \bar{\mathcal{H}}) \right) - 12 \frac{c_G}{a^2} \bar{\mathcal{H}}^2 \bar{\mathcal{H}} \right] & (A.12) \\ f_3^{eom} &= c_2 - \frac{c_3}{a^2} \left( 4x \bar{\mathcal{H}}^2 + 4 \bar{\mathcal{H}} (x \bar{\mathcal{H}}) \right) + \frac{c_4}{a^4} \left( -10x^2 \bar{\mathcal{H}}^4 + 12x^2 \bar{\mathcal{H}}^3 \bar{\mathcal{H}}^2 + 24x \bar{\mathcal{H}}^3 (x \bar{\mathcal{H}}) \right) \\ &- \frac{c_5}{a^6} \left( -36x^3 \bar{\mathcal{H}}^6 + 24x^3 \bar{\mathcal{H}}^5 (\bar{\mathcal{H}}) + 36x^2 \bar{\mathcal{H}}^5 (x \bar{\mathcal{H}}) \right) - \frac{c_G}{a^2} \left( 2 \bar{\mathcal{H}} \right) & (A.13) \\ f_4^{eom} &= c_2x - \frac{c_3}{a^2} \left( 6x^2 \bar{\mathcal{H}}^2 + 4x \bar{\mathcal{H}} (x \bar{\mathcal{H}}) \right) + \frac{c_4}{a^4} \left( -6x^3 \bar{\mathcal{H}}^4 + 12x^3 \bar{\mathcal{H}}^3 \bar{\mathcal{H}}^2 + 36x^2 \bar{\mathcal{H}}^3 (x \bar{\mathcal{H}}) \right) \\ &- \frac{c_5}{a^6} \left( -45x^4 \bar{\mathcal{H}}^6 + 30x^4 \bar{\mathcal{H}}^5 \bar{\mathcal{H}}^2 + 60x^3 \bar{\mathcal{H}}^5 (x \bar{\mathcal{H}}) \right) - \frac{c_G}{a^2} \left( 6x \bar{\mathcal{H}}^2 + 4x \bar{\mathcal{H}} \bar{\mathcal{H}} + 4 \bar{\mathcal{H}} (x \bar{\mathcal{H}}) \right) & (A.14) \\ f_5^{eom} &= -22 \frac{c_3}{a^2} x^2 \bar{\mathcal{H}}^2 + 122 \frac{c_4}{a^4} x^2 \bar{\mathcal{H}}^4 - 15 \frac{c_5}{a^6} x^4 \bar{\mathcal{H}}^6 - 4 \frac{c_G}{a^2} x \bar{\mathcal{H}}^2 \\ (A.15) \\ f_6^{eom} &= \frac{c_4}{a^4} \left( -4x^3 \bar{\mathcal{H}}^4 + 6x^2 \bar{\mathcal{H}}^3 (x \bar{\mathcal{H}}) \right) - \frac{c_5}{a^6} \left( -12x^4 \bar{\mathcal{H}}^6 + 3x^4 \bar{\mathcal{H}}^5 \bar{\mathcal{H}} + 12x^3 \bar{\mathcal{H}}^5 (x \bar{\mathcal{H}}) \right) \\ &-2 \frac{c_G}{a^2} \bar{\mathcal{H}} (x \bar{\mathcal{H}}) & (A.16) \end{aligned}$$

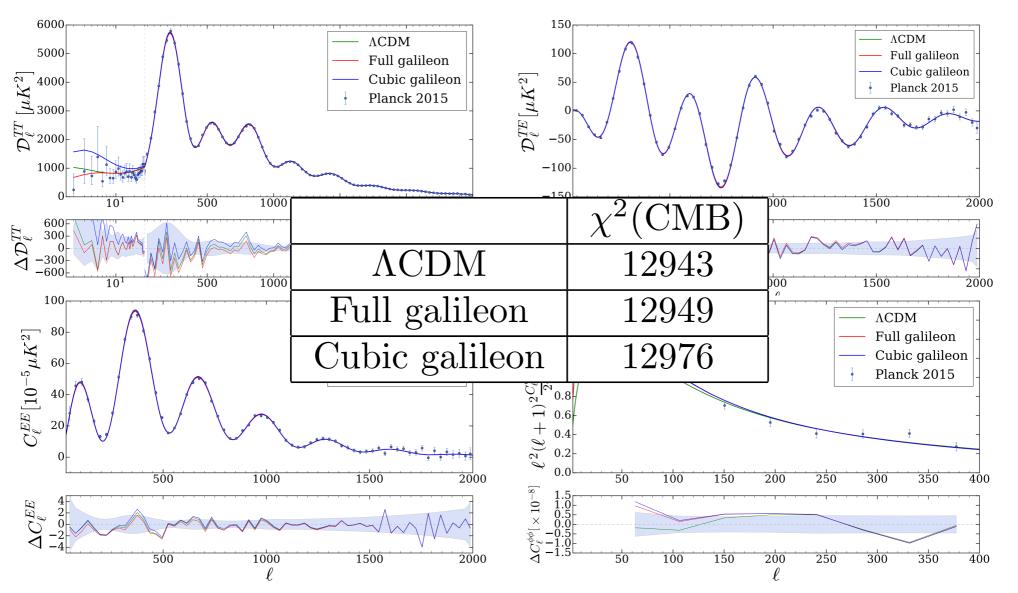


Fit to CMB data only :



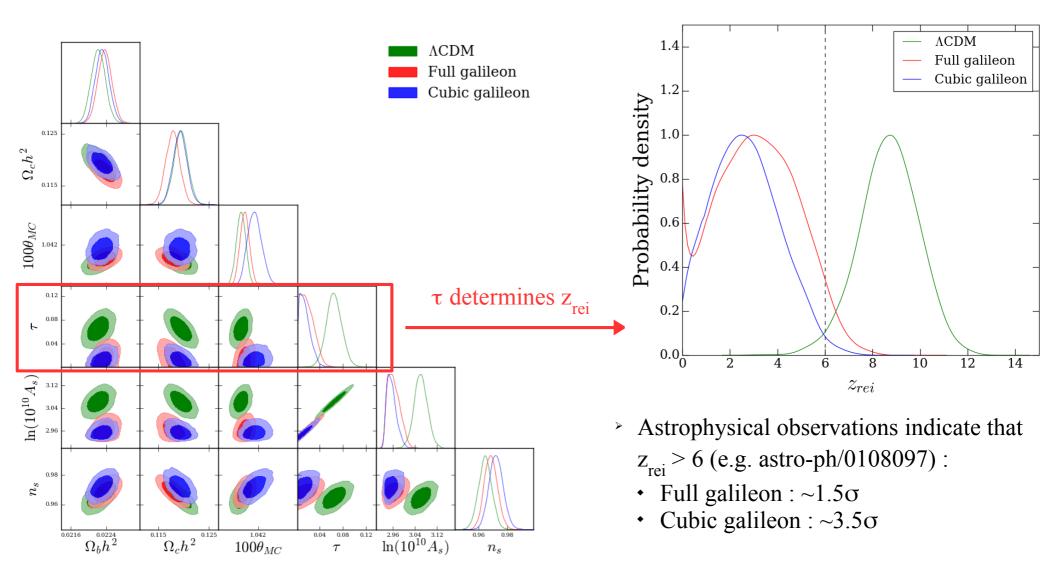


#### Fit to CMB data only :



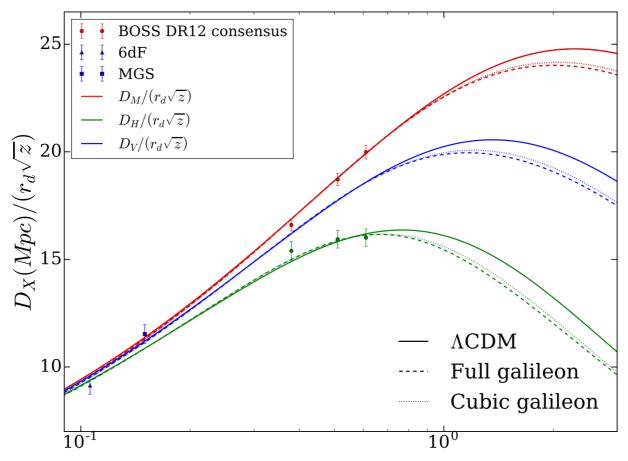


Fit to CMB data only :



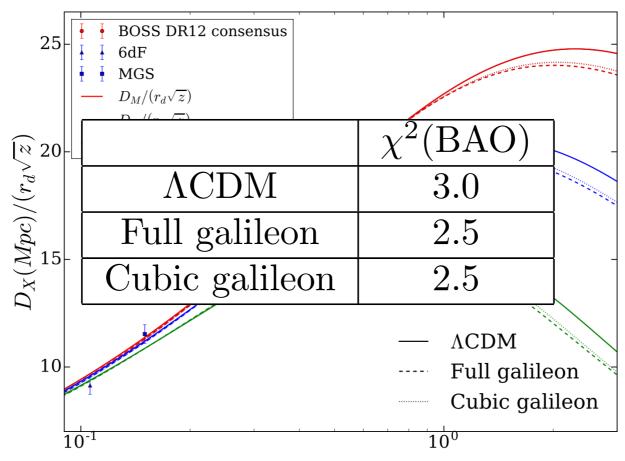


Fit to BAO data only :



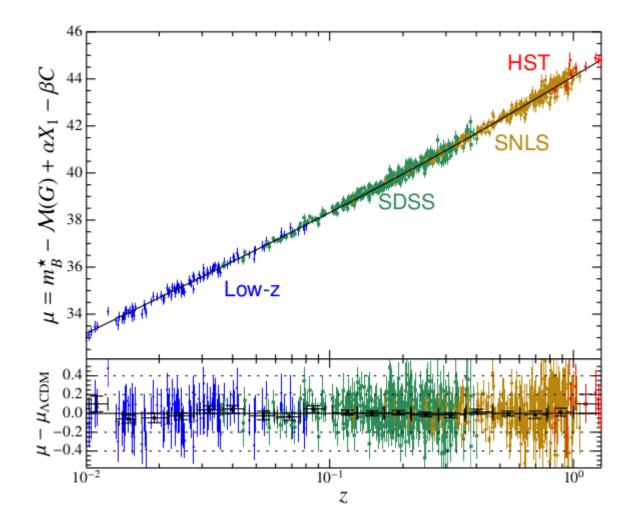


Fit to BAO data only :



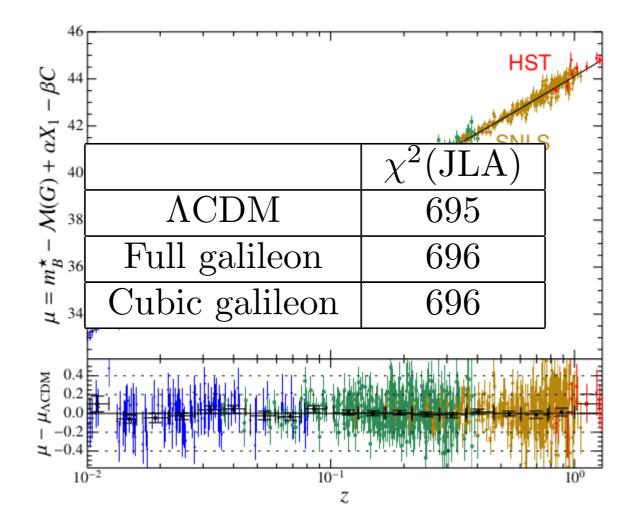


> Fit to JLA data only :



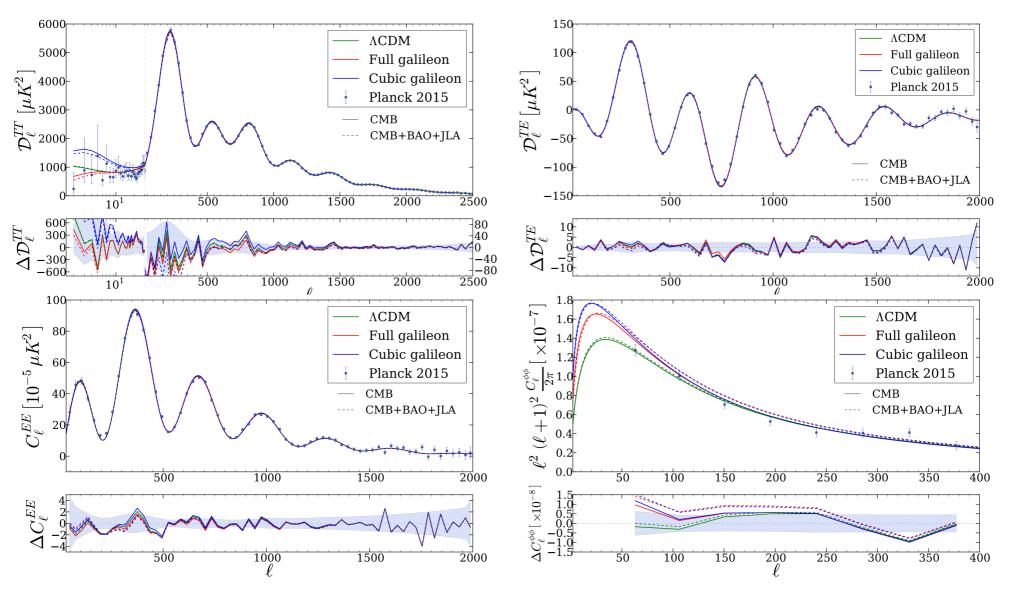


Fit to JLA data only :





#### Fit to CMB+BAO+JLA data :





Fit to CMB+BAO+JLA data :

