The H₀ debate (from a CMB prospective)

Silvia Galli

IAP

Paris 18/11/2019

Strong tension between early and late universe probes of H₀.

Overview

1. Measurements

- a. CMB measurements and indirect
- b. BAO results
- c. SnIa
- d. Tip of the Red giants
- e. Quasar results
- f. Tip of the Red giants
- 2. Systematics?
- 3. Physical interpretations:
 - a. Late versus Early solutions.
 - b. Neutrino, Early dark energy.

CMB

The Planck satellite

3rd generation full sky satellites (COBE, WMAP) Launched in 2009, operated till 2013. 2 Instruments, 9 frequencies.

 22 radiometers at 30, 44, 70 Ghz.

HFI:

- 50 bolometers (32 polarized) at 100, 143, 217, 353, 545, 857 Ghz.
- 30-353 Ghz polarized.
- 1st release 2013: Nominal mission, 15.5 months, Temperature only (large scale polarization from WMAP).
- 2nd release 2015: Full mission, 29 months for HFI, 48 months for LFI, Temperature + Polarization, large scale pol. from LFI.
 Intermediate results 2016: low-l polarization from HFI
- 3nd release 2018: Full mission, improved polarization, low/high-l from HFI. Better control of systematics specially in pol., still systematics limited.

2018 Power spectra

TT, TE, EE: different likelihoods at low-I (<30) and high-I (>30).

6 ACDM parameters

• Initial conditions A_s, n_s:

- Acoustic scale of sound horizon $\boldsymbol{\theta}$
- Reionization τ
- Dark Matter density $\Omega_c h^2$
- Baryon density $\Omega_{b}h^{2}$

Assumptions:

- Adiabatic initial conditions
- Neff=3.046

- 1 massive neutrino 0.06eV.
- Tanh reionization ($\Delta z=0.5$)

Baseline ACDM results 2018

(Temperature+polarization+CMB lensing)

	Mean	σ	[%]
$\Omega_b h^2$ Baryon density	0.02237	0.00015	0.7
$\Omega_c h^2$ DM density	0.1200	0.0012	1
100θ Acoustic scale	1.04092	0.00031	0.03
au Reion. Optical depth	0.0544	0.0073	13
<pre>In(A_s 10¹⁰) Power Spectrum amplitude</pre>	3.044	0.014	0.7
n _s Scalar spectral index	0.9649	0.0042	0.4
H ₀ Hubble	67.36	0.54	0.8
$\Omega_{\rm m}$ Matter density	0.3153	0.0073	2.3
O ₈ Matter perturbation amplitude	0.8111	0.0060	0.7

Robust against changes of likelihood, $<0.5\sigma$.

- Most of parameters determined at (sub-) percent level!
- Best determined parameter is the angular scale of sound horizon θ to 0.03%.
- τ lower and tighter due to HFI data at large scales.
- n_s is 8σ away from scale invariance (even in extended models, always >3σ)
- Best (indirect) 0.8% determination of the Hubble constant to date.

Indirect measurement of the Hubble constant from the CMB

Calculate the **physical dimension of sound horizon** assumes model for sound speed and expansion of the universe before recombination (after measuring ω_m and ω_b)

Model dependent!

Take away message stable across releases

Changes across releases compatible with statistical fluctuations.

ΛCDM is a good fit to the data No evidence of preference for classical extensions of ΛCDM

Just a few (2-3 σ) curiosities.

No extension of LCDM where H₀ is high from Planck data alone

Parameter(s)	$\Omega_{ m b}h^2$	$\Omega_{ m c} h^2$	$100\theta_{\rm MC}$	H_0	n _s	$\ln(10^{10}A_{\rm s})$
Base ACDM	0.02237 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.54	0.9649 ± 0.0042	3.044 ± 0.014
r	0.02237 ± 0.00014	0.1199 ± 0.0012	1.04092 ± 0.00031	67.40 ± 0.54	0.9659 ± 0.0041	3.044 ± 0.014
$dn_s/d\ln k$	0.02240 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.53	0.9641 ± 0.0044	3.047 ± 0.015
$dn_s/d\ln k, r$	0.02243 ± 0.00015	0.1199 ± 0.0012	1.04093 ± 0.00030	67.44 ± 0.54	0.9647 ± 0.0044	3.049 ± 0.015
$d^2 n_s/d \ln k^2$, $dn_s/d \ln k$.	0.02237 ± 0.00016	0.1202 ± 0.0012	1.04090 ± 0.00030	67.28 ± 0.56	0.9625 ± 0.0048	3.049 ± 0.015
V_{eff}	0.02224 ± 0.00022	0.1179 ± 0.0028	1.04116 ± 0.00043	66.3 ± 1.4	0.9589 ± 0.0084	3.036 ± 0.017
$V_{\rm eff}, dn_{\rm s}/d\ln k$	0.02216 ± 0.00022	0.1157 ± 0.0032	1.04144 ± 0.00048	65.2 ± 1.6	0.950 ± 0.011	3.034 ± 0.017
Σm_{ν}	0.02236 ± 0.00015	0.1201 ± 0.0013	1.04088 ± 0.00032	$67.1^{+1.2}_{-0.67}$	0.9647 ± 0.0043	3.046 ± 0.015
$\Sigma m_{\nu}, N_{\rm eff}$	0.02221 ± 0.00022	$0.1179^{+0.0027}_{-0.0030}$	1.04116 ± 0.00044	$65.9^{+1.8}_{-1.6}$	0.9582 ± 0.0086	3.037 ± 0.017
$n_{\nu \text{sterile}}^{\text{eff}}, N_{\text{eff}} \dots \dots$	$0.02242^{+0.00014}_{-0.00016}$	$0.1200^{+0.0032}_{-0.0020}$	$1.04074^{+0.00033}_{-0.00029}$	$67.11_{-0.79}^{+0.63}$	$0.9652^{+0.0045}_{-0.0056}$	$3.050^{+0.014}_{-0.016}$
x_{-1}	0.02238 ± 0.00015	0.1201 ± 0.0015	1.04087 ± 0.00043	67.30 ± 0.67	0.9645 ± 0.0061	3.045 ± 0.014
<i>w</i> ₀	0.02243 ± 0.00015	0.1193 ± 0.0012	1.04099 ± 0.00031		0.9666 ± 0.0041	3.038 ± 0.014
Ω_K	0.02249 ± 0.00016	0.1185 ± 0.0015	1.04107 ± 0.00032	$63.6^{+2.1}_{-2.3}$	0.9688 ± 0.0047	$3.030^{+0.017}_{-0.015}$
$Y_{\rm P}$	0.02230 ± 0.00020	0.1201 ± 0.0012	1.04067 ± 0.00055	67.19 ± 0.63	0.9621 ± 0.0070	3.042 ± 0.016
$Y_{\rm P}, N_{\rm eff}$	0.02224 ± 0.00022	$0.1171^{+0.0042}_{-0.0049}$	1.0415 ± 0.0012	$66.0^{+1.7}_{-1.9}$	0.9589 ± 0.0085	3.036 ± 0.018
A_L	0.02251 ± 0.00017	0.1182 ± 0.0015	1.04110 ± 0.00032	68.16 ± 0.70	0.9696 ± 0.0048	$3.029^{+0.018}_{-0.016}$

BAO

Indirect measurement of the Hubble constant from the BAO

Baryon acoustic oscillation scale imprint in galaxy distribution.

BAO only measures angular dimension of sound horizon at baryon drag at different redshifts.

Need CALIBRATION: calculate r_s assuming a model. In LCDM, this means that BAO depends on ω_m , H_{0_r} and ω_b Need measurements at different z to break degeneracy ω_m - H_{0_r} and need ω_b to calculate r_s

BBN calculations of the baryon density

Planck collaboration 2018

BAO and H₀

- BAO measure a combination of Ω_m and $H_0 r_d$, with the degeneracy evolving with z (Galaxy BAO z~0.1-0.6, Ly α BAO z~2.3)
- To break $H_0 r_d$ (to "calibrate" the BAO), r_d from CMB or deuterium+BBN.

Supernovae+Cepheids

The Hubble Constant in 3 Steps: Present Data

Local anchors

Independent Geometric Source	σ	H ₀
NGC 4258 H ₂ 0 Masers: Humphreys et al 2013, Riess et al 2016 Reid et al. (2019)	2.6% 1.5%	72.3 ~72.0
LMC 20 Late Detached Eclipsing Binaries:Pietzrynski et al. 2019+70 HST LMC CepheidsRiess et al (2019)	1.3%	74.2
Milky Way 10 HST FGS Short P Parallaxes: Benedict et al. 2007 also Hipparcos (Van leeuwen et al 2007)	2.2%	76.2
Milky Way 8 HST WFC3 SS Long P Parallaxes: Riess et al. 2018	3.3%	75.7
Milky Way 50 Gaia+HST, Long P Parallaxes: Riess et al. 2018	3.3%	73.7

Supernovae+Tip of the red Giants

Tip of the red giants branch

- Measure of the position of the brightest
 luminosity of Red Giants before helium
 flash (when helium core starts fusion),
 which is used as a standard candle.
- Used instead of cepheids to calibrate SnIA in second rung of the ladder.
- Brightness calibrated by measuring TRGB in the LMC, whose distance is determined from detached eclipsing binaries.
- CCHP program uses Carnegie Supernova Project I (CSP-I) sample containing about 100 well- observed SNe Ia, independent of Sh0ES program.
- In agreement both with Planck (1.2 σ) and SnIA+cepheids (1.7 σ).

Time dealys of multiply imaged quasars

Time delays of multiply imaged quasars

Courtesy: Martin Millon

- Multiple images of quasars arrive at different times due to different paths and different travelled potential.
- Time differences depend on distances and thus on H0

$$\Delta t_{ij} = rac{D_{\Delta t}}{c} \left[rac{(oldsymbol{ heta}_i - oldsymbol{eta})^2}{2} - \psi(oldsymbol{ heta}_i) - rac{(oldsymbol{ heta}_j - oldsymbol{eta})^2}{2} + \psi(oldsymbol{ heta}_j)
ight] ~~ D_{\Delta t} \equiv ig(1 + z_{
m d}ig) rac{D_{
m d} D_{
m s}}{D_{
m ds}} + rac{D_{
m d}}{D_{
m ds}} + rac}{D_{
m d}} + rac{D_{
m d}}{D_{
m ds}}$$

 Need to measure the time-delay between two images, measure and model the potential and the line of sight effects.

Results in ACDM

Wong+ 2019

Model dependent measurement

Model	$H_0 \ ({\rm km \ s^{-1} \ Mpc^{-1}})$	$\Omega_{ m m}$	Ω_{Λ} or Ω_{DE}	$\Omega_{\mathbf{k}}$	$w ext{ or } w_0$	w_a
UΛCDM	$73.3^{+1.7}_{-1.8}$	$0.30^{+0.13}_{-0.13}$	$0.70^{+0.13}_{-0.13}$	$\equiv 0$	$\equiv -1$	$\equiv 0$
UoΛCDM	$74.4^{+2.1}_{-2.3}$	$0.24_{-0.13}^{+0.16}$	$0.51\substack{+0.21 \\ -0.18}$	$0.26\substack{+0.17 \\ -0.25}$	$\equiv -1$	$\equiv 0$
UwCDM	$81.6^{+4.9}_{-5.3}$	$0.31\substack{+0.11 \\ -0.10}$	$0.69\substack{+0.10 \\ -0.11}$	$\equiv 0$	$-1.90^{+0.56}_{-0.41}$	$\equiv 0$
Uw_0w_aCDM	$81.3^{+5.1}_{-5.4}$	$0.31\substack{+0.11 \\ -0.11}$	$0.69\substack{+0.11 \\ -0.11}$	$\equiv 0$	$-1.86^{+0.63}_{-0.45}$	$-0.05^{+1.45}_{-1.37}$

Reported values are medians, with errors corresponding to the 16th and 84th percentiles.

Lens name	α (J2000)	δ (J2000)	$z_{ m d}$	$z_{ m s}$
$B1608 + 656^{a}$	16:09:13.96	+65:32:29.0	0.6304^{a}	1.394^{b}
$\rm RXJ1131{-}1231^{c}$	11:31:51.6	-12:31:57.0	0.295^{c}	0.654^d
$\operatorname{HE}0435{-}1223^{e}$	04:38:14.9	-12:17:14.4	$0.4546^{f,g}$	1.693^h
SDSS 1206+4332 i	12:06:29.65	+43:32:17.6	0.745^{j}	1.789^i
$\rm WFI2033{-}4723^k$	20:33:41.9	-47:23:43.4	0.6575^{l}	1.662^h
PG 1115 $+080^{m}$	11:18:16.899	+7:45:58.502	0.311^n	1.722^{m}

 $Z_{source} \sim 0.6-1.7$ $Z_{lens} \sim 0.2-0.7$

Strong tension between early and late universe probes of H₀.

So what's wrong?

- Statistical fluctuation starts to be unlikely
- Systematics in distance ladder and time delays? And/or in CMB and BAO?
- Extension of LCDM?

Systematics in direct measurements?

- H_0 reanalysis of the Riess (2011/2016) data:
 - Zhang et al. 2017 (arXiv:1706.07573v1): Riess 2011 data,global fit, impact of systematics from cepheids (outliers, anchors, period) and SNIA. Applied on R11, finds $H_0 = 72.5 \pm 3.1(stat) \pm 0.77(sys) \text{ km/s/Mpc}$
 - Follin & Knox 2017 (arXiv:1707.01175) (modelling of cepheid photometry. $H_0=73.3 \pm 1.7$ (stat) km/s/Mpc)
 - Cardona et al. 2017 (arxiv:1611.06088): Bayesian hyper-parameters for outlier rejection. $H_0 = 73.75 \pm 2.11 \text{ km/s/Mpc}$
 - Feeney et al. 2017 (arXiv:1707.00007): Bayesian hierarchical model, impact of non-gaussian likelihoods. $H_0 = 72.72 \pm 1.67 \text{ km/s/Mpc}$
 - Dhawan et al 1707.00715.pdf. Use of NIR observations of a subsample of the Riess 2016 supernovae (9/19 for the intermediate calibration rung, 27/300 SN in the Hubble flow). $H_0=72.8 \pm 1.6$ (stat.) ± 2.7 (syst.) km/s/Mpc.

H₀ consistently high!

Consistency between CMB experiments: the role of cosmic variance and multipole range

Planck vs WMAP

Planck vs SPT-SZ

67

71

 H_0

75

Planck in patch

Planck X SPT

SPT in patch

Hou et al. 2017

Ayden et al. 2017

 143×143

in patch

 150×143

 150×150

Systematics in the CMB ? Consistency between different experiments

	Planck 2018	H ₀ =67.4±0.5		
	Riess+ 2019	H ₀ =74.0±1.4		
VMAP and S	PT give somewh	at larger values of H ₀	Se SI	ee also PTPol (TE,EE)
• WMAP9	* H ₀ =70±2.2 [Km	/s/Mpc] (Hinshaw et al. 2013)	H	₀ =71.2 ± 2.12 (Henning+17)
• SPT-SZ*	H ₀ =75.0 ± 3.5 (Story et al. 2012)	A	CTPol (TT,TE,EE) _ =67.3 ± 3.6 (Louis+17)

- Are these consistent with the low H₀ Planck measurement? When adding BAO, yes!
 - Combining WMAP ACT and SPT with BAO to decrease errors low H₀
 - WMAP9+BAO (BOSSDR11+6dFGS+Lyman α)+high-z Sne

 $H_0 = 68.1 \pm 0.7$ (2.5 σ tension) (Aubourg+ 2015)

• WMAP9+ACT+SPT + BAO (BOSS DR11+6dFGS)

 $H_0 = 69.3 \pm 0.7$ (1.9s tension) (Bennet+ 2014)

• Planck, WMAP and SPT are consistent with each other.

*NB: these were obtained using slightly different assumptions for neutrino mass and optical depth w.r.t. Planck, see also Calabrese+16

Whatever it is, it's not a giant void!

Peculiar velocities. If we live in a large void and peculiar velocities are not properly taken into account when measuring redshifts, the local measurements of H₀ might be biased (e.g. Keenan 2013, Romano+ 2016). However, simulations show it would need to be a very atypical void (e.g. Marra+ 2013, Wojtak+ 2013, Odderskov+ 2016, Wu+ 2017), sample variance at the level of ~0.3km/s/Mpc. Supernovae at different redshifts do not show any deviation.

Early and late time solutions

1. Change in late time universe

- (late-time dynamics of dark matter and/or dark energy, e.g. dynamical dark energy, decaying DM (Poulin+ 2018, Vattis+ 2019) interacting dark matter-dark energy etc..) => highly constrained by BAO, Supernovae and other probes.
- Modified gravity changes to Cepheid period-luminosity relation (Desmond et al. 1907.03778)=> but might be constrained by time delays.

See also e.g. Bernal +2016, Lemos+ 2018, Aylor 2018

2. Change in the early time physics. BAO and CMB measure angles, assuming calculation of sound horizon r_s one can infer the distances and thus $H_0 =>$ changing r_s can change inferred H_0 , but hard because usually these models impact other observables as well.

BAO and CMB measure
angles

$$P_{s}$$
 Need to
calculate
 r_{s} or inferdistance
 $D_{A}(z = 1100) = \int_{0}^{z} dz'/H(z')$
Need to
 $c_{s} c_{s} dt/a = \int_{0}^{a_{d}} c_{s} \frac{da}{a^{2}H(a)}$