Modified gravity and dark energy in higher-order scalar-tensor theories

Marco Crisostomi

In collaboration with:

Christos Charmousis, Ruth Gregory, Kazuya Koyama, David

Langlois, Matt Lewandowski, Karim Noui, Dani Steer, Niko

Stergioulas, Gianmassimo Tasinato, Filippo Vernizzi

DHOST

$$L = K + G_3 \Box \phi + G.R + A_1 \phi_{\mu\nu} \phi^{\mu\nu} + A_2 (\Box \phi)^2 + A_3 (\Box \phi) \phi^{\mu} \phi_{\mu\nu} \phi^{\nu} + A_4 \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu} + A_5 (\phi^{\mu} \phi_{\mu\nu} \phi^{\nu})^2$$
[Langlois, Noui]
[MC, Koyama, Tasinato]

Impose the degeneracy conditions

$$L = K + G_3 \Box \phi + G \cdot R + A_1 [\phi_{\mu\nu}\phi^{\mu\nu} - (\Box \phi)^2] + A_3 (\Box \phi)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu}$$
$$+ f(G, A_1, A_3) \phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + g(G, A_1, A_3)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2$$

5 free functions

DHOST

$$L = K + G_3 \Box \phi + G.R + A_1 [\phi_{\mu\nu}\phi^{\mu\nu} - (\Box \phi)^2] + A_3 (\Box \phi)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu}$$
$$+ f(G, A_1, A_3) \phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + g(G, A_1, A_3)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2$$

5 free functions

EFT of DE

[Langlois, Mancarella, Noui, Vernizzi]

Expand around FRW in the unitary gauge

$$S^{\text{quad}} = \int d^3x \, dt \, a^3 \frac{M^2}{2} \left\{ \delta K_{ij} \delta K^{ij} - \left(1 + \frac{2}{3} \alpha_{\text{L}} \right) \delta K^2 + \left(1 + \alpha_{\text{T}} \right) \left(R \frac{\delta \sqrt{h}}{a^3} + \delta_2 R \right) + H^2 \alpha_{\text{K}} \delta N^2 + 4 H \alpha_{\text{B}} \delta K \delta N + \left(1 + \alpha_{\text{H}} \right) R \delta N + 4 \beta_1 \delta K \delta \dot{N} + \beta_2 \delta \dot{N}^2 + \frac{\beta_3}{a^2} (\partial_i \delta N)^2 \right\}$$

Non-linear perturbations:

Gravitational wave constraints

$$L = K + G_3 \Box \phi + G.R + A_1 [\phi_{\mu\nu}\phi^{\mu\nu} + (\Box \phi)^2] + A_3 (\Box \phi)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu} + f(G, A_1, A_3)\phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + g(G, A_1, A_3)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2$$

Speed of gravity = Speed of light

GW170817

$$\ddot{h}_{ij} + (3 + \alpha_M)H\dot{h}_{ij} + (1 + \chi_T)k^2h_{ij} = 0 \qquad \alpha_V = -\alpha_H$$

$$L = (G - X) K_{ij} K^{ij} + G^{(3)} R + \dots$$

Gravitational wave constraints

$$L = K + G_3 \Box \phi + G.R + A_1 [\phi_{\mu\nu}\phi^{\mu\nu} (\Box \phi)^2] + A_3 (\Box \phi)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu} + f(G, A_1, A_3) \phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + g(G, A_1, A_3)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2$$

No decay of GW in DE

[Creminelli, Lewandowski, Tambalo, Vernizzi]

$$\alpha_H + 2\beta_1 = 0$$

$$A_3 = g = 0$$

What is left?

$$L = K + G_3 \Box \phi + G.R + \frac{3G_X^2}{2G} \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu}$$

$$\alpha_K \alpha_B \alpha_M \beta_1$$

What about:

- 1 Screening
- 2 Self-acceleration

Screening

$$L = K + G_3 \Box \phi + G.R + \frac{3G_X^2}{2G} \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu}$$

[MC, Koyama] [MC, Lewandowski, Vernizzi]

$$\alpha_K \quad \alpha_B \qquad \alpha_M \qquad \beta_1$$

gravitational potentials for a spherically symmetric matter source

$$\Phi' = \frac{G_*(1+\varepsilon_{\Phi})m}{r^2} , \qquad \Psi' = \frac{G_*(1+\varepsilon_{\Psi})m}{r^2}$$

CASSINI
$$-0.2 \times 10^{-5} < \varepsilon_{\Psi} - \varepsilon_{\Phi} < 5.5 \times 10^{-5}$$
 \longrightarrow $0 \le \beta_1 \lesssim 10^{-5}$

Region
$$(\alpha_M, \alpha_B, \beta_1)$$
 \longrightarrow $\varepsilon_{\Phi} = \varepsilon_{\Psi}$ Vainshtein \checkmark

Hulse-Taylor
$$-2.5 \times 10^{-3} \le \varepsilon_{\Phi} \le 7.5 \times 10^{-3}$$
 \longrightarrow $0 \le \beta_1 \lesssim 10^{-2}$

Screening?

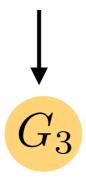
$$L = K + G_3 \Box \phi + G.R + \frac{3G_X^2}{2G} \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu}$$

[MC, Koyama] [MC, Lewandowski, Vernizzi]

$$\alpha_K$$
 α_B α_M β_1

[Creminelli, Tambalo, Vernizzi, Yingcharoenrat]

Combination
$$(\alpha_M, \alpha_B, \beta_1) \lesssim 10^{-2}$$



$$0 \le \beta_1 \lesssim 10^{-2}$$

Self-acceleration

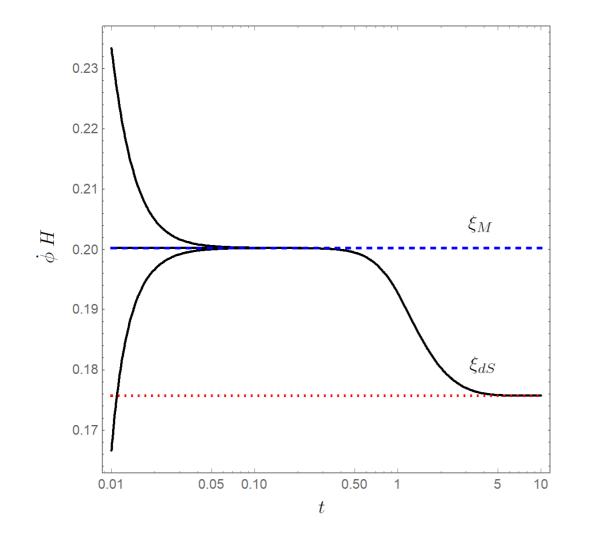
$$L = K + G_3 \Box \phi + G.R + \frac{3G_X^2}{2G} \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu}$$

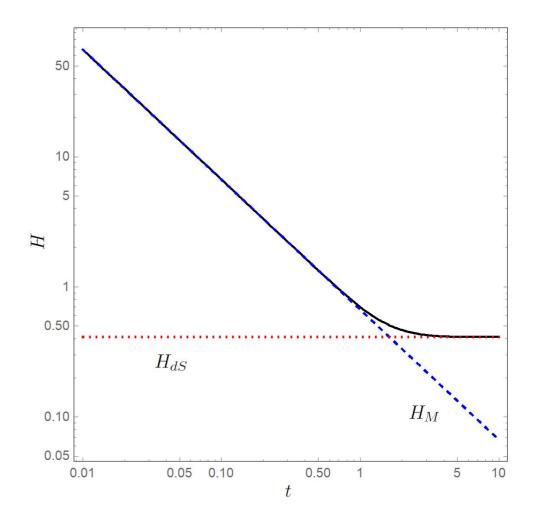
[MC, Koyama]

[MC, Koyama, Langlois, Noui, Steer]

Background effect

$$K = c_2 X$$
, $G_3 = \frac{c_3}{\Lambda^3} X$, $G = \frac{M_P^2}{2} + \frac{c_4}{\Lambda^6} X^2$ $c_2, c_3, c_4 \sim \mathcal{O}(1)$





Self-acceleration

[MC, Koyama]

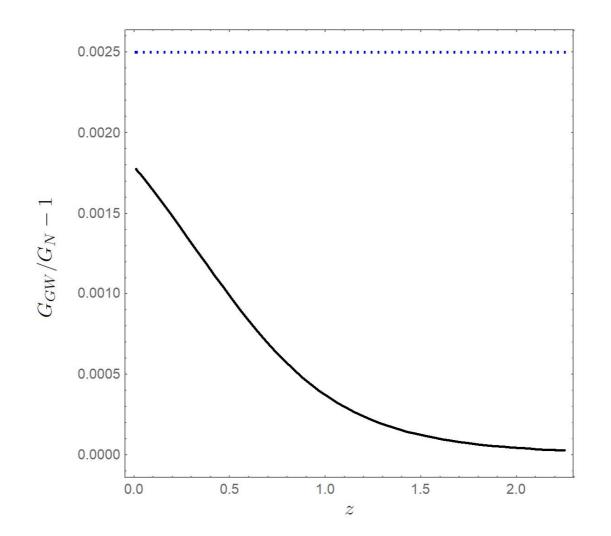
[MC, Koyama, Langlois, Noui, Steer]

$$L = K + G_3 \Box \phi + G.R + \frac{3G_X^2}{2G} \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu}$$

Background effect

$$K = c_2 X$$
, $G_3 = \frac{c_3}{\Lambda^3} X$, $G = \frac{M_P^2}{2} + \frac{c_4}{\Lambda^6} X^2$

$$c_2, c_3, c_4 \sim \mathcal{O}(1)$$



Signatures in LSS

Consistency relations in LCDM

[Kehagias, Riotto]

[Peloso, Pietroni]

[Creminelli, Norena, Simonovic, Vernizzi]

$$\langle \Phi_{\vec{q}}(\eta) \delta_{\vec{k}_1}(\eta_1) \cdots \delta_{\vec{k}_n}(\eta_n) \rangle_{q \to 0}' = P_{\Phi}(q) \sum_{q} \mathcal{O}_a \langle \delta_{\vec{k}_1}(\eta_1) \cdots \delta_{\vec{k}_n}(\eta_n) \rangle'$$

Consistency relations are broken in DHOST

[MC, Lewandowski, Vernizzi]

$$\delta^{(2)}(\vec{k},t) = \int_{\vec{k}_1,\vec{k}_2}^{\vec{k}} F_2(\vec{k}_1,\vec{k}_2;t) \, \delta^{(1)}(\vec{k}_1,t) \delta^{(1)}(\vec{k}_2,t) \qquad F_2(\vec{k}_1,\vec{k}_2;t) = \underbrace{A_{\alpha}(t)\alpha_s(\vec{k}_1,\vec{k}_2)}_{\text{1 + DHOST}} + \underbrace{A_{\gamma}(t)\gamma(\vec{k}_1,\vec{k}_2)}_{\text{Always modified}}$$

$$\lim_{q \to 0} \frac{B(q, k_2, k_3)}{P_{11}(q)P_{11}(k)} \approx -2A_{\alpha} \left(\frac{1}{2} \frac{\vec{q} \cdot \vec{k}}{q^2} - \frac{1}{2} \frac{\vec{q} \cdot \vec{k}}{q^2} \right) = 0$$

Because of translation invariance!

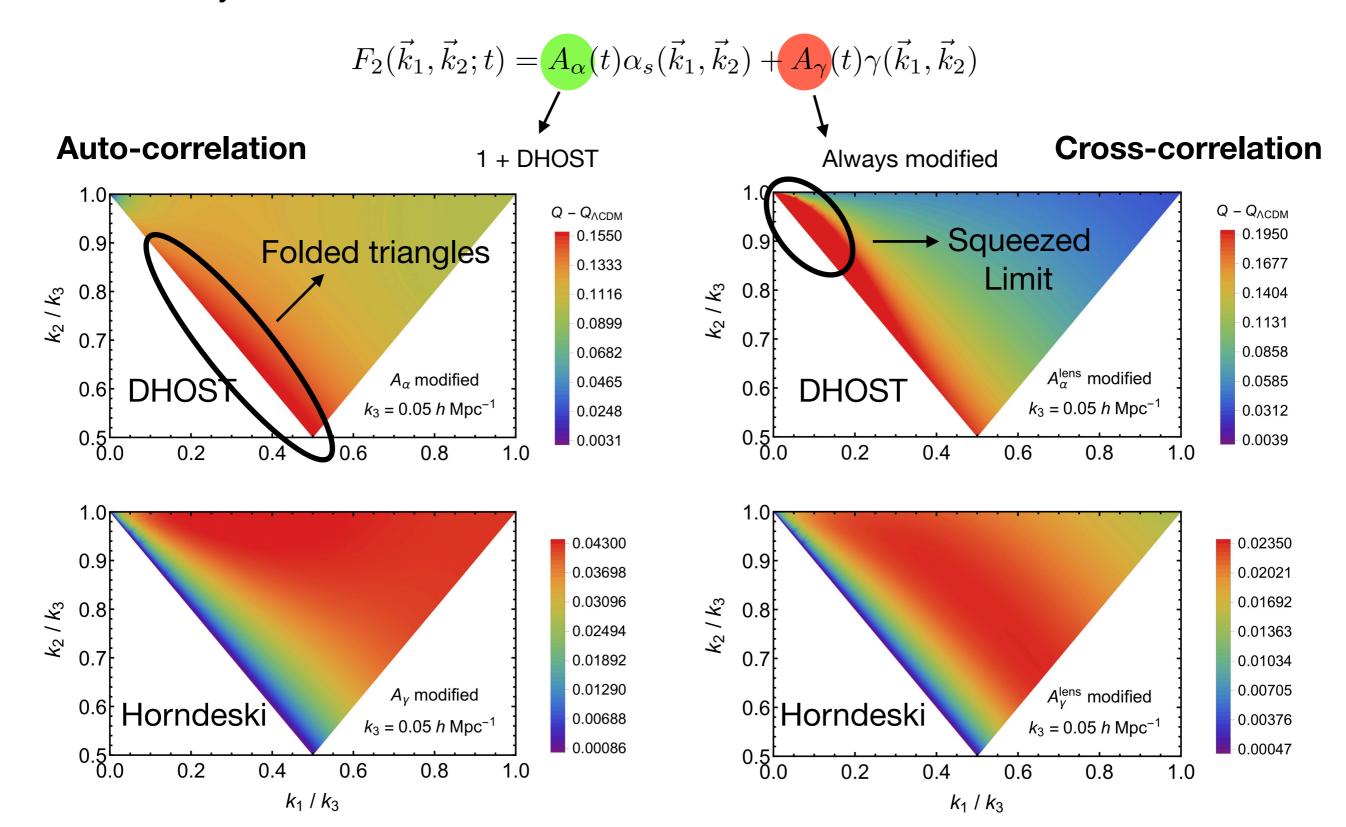
$$\lim_{q \to 0} \frac{B^{\text{mml}}(q, k_2, k_3)}{P_{11}(q)P_{11}(k)} \approx \left(L_{\text{lens}} A_{\alpha} - A_{\alpha}^{\text{lens}}\right) \frac{\vec{q} \cdot \vec{k}}{q^2}$$

Enhanced for different tracers

Signatures in LSS

Consistency relations are broken in DHOST

[MC, Lewandowski, Vernizzi]



Stealth Black Holes

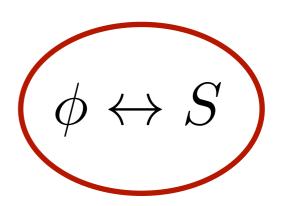
[Charmousis, MC, Gregory, Stergioulas]

$$L = K + G_3 \Box \phi + G.R + A_1 [\phi_{\mu\nu}\phi^{\mu\nu} (\Box \phi)^2] + A_3 (\Box \phi)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu}$$
$$+ f(G, A_1, A_3) \phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + g(G, A_1, A_3)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2$$

$$X \equiv \phi_{\mu}\phi^{\mu} = \mathrm{const.}$$
 Relation between ϕ and the geodesic $x^{\mu}(\lambda)$

$$\phi^{\mu} \leftrightarrow \frac{dx^{\mu}}{d\lambda} \qquad \qquad \longrightarrow \frac{d^2x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\rho\sigma} \frac{dx^{\rho}}{d\lambda} \frac{dx^{\sigma}}{d\lambda} = 0$$

$$\frac{\partial S}{\partial x^{\mu}} = p_{\mu} = g_{\mu\nu} \frac{dx^{\nu}}{d\lambda}$$



[Charmousis, MC, Gregory, Stergioulas]

$$S = -Et + \chi \varphi + S_r(r) + S_\theta(\theta)$$

$$S_r = \pm \int \frac{\sqrt{R}}{\Delta_r} dr, \qquad S_\theta = \pm \int \frac{\sqrt{\Theta}}{\Delta_\theta} d\theta$$

$$S_r = \pm \int \frac{\sqrt{R}}{\Delta_r} dr, \qquad S_\theta = \pm \int \frac{\sqrt{\Theta}}{\Delta_\theta} d\theta \qquad \qquad \begin{cases} \Delta_r = \left(1 - \frac{r^2}{\ell^2}\right) (r^2 + a^2) - 2Mr \\ \Delta_\theta = 1 + \frac{a^2}{\ell^2} \cos^2 \theta \end{cases}$$

$$\Theta = a^2 m^2 \sin^2 \theta \left(\Delta_{\theta} - \eta^2 \right) ,$$

$$R = m^2 (r^2 + a^2) \left(\eta^2 (r^2 + a^2) - \Delta_r \right)$$

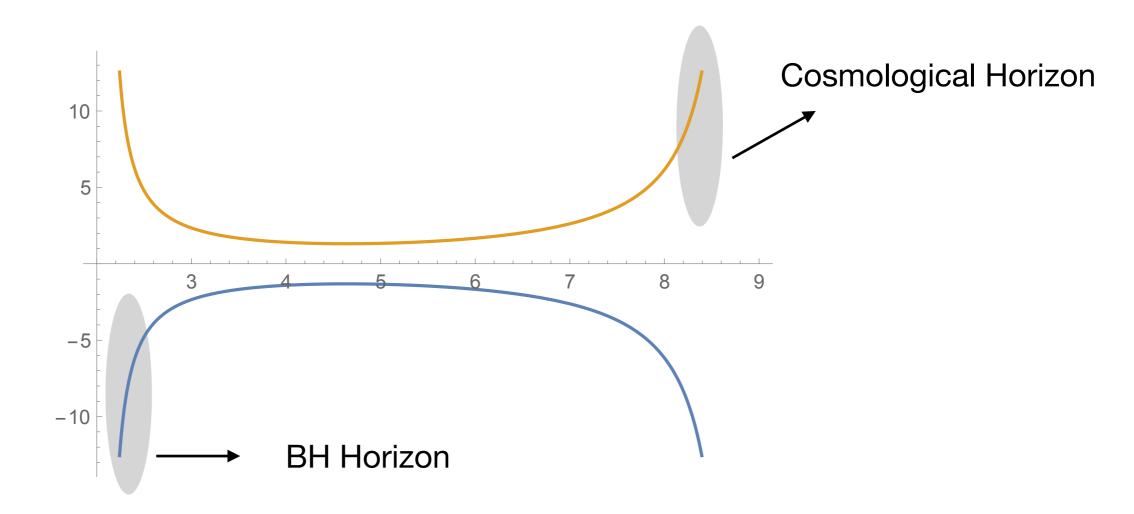
$$\eta = \eta_c \longrightarrow R(r_0) = 0$$

[Charmousis, MC, Gregory, Stergioulas]

$$S = -Et + \chi \varphi + S_r(r) + S_\theta(\theta)$$

$$S_r = \pm \int \frac{\sqrt{R}}{\Delta_r} dr$$

$$R = m^{2}(r^{2} + a^{2}) \left(\eta^{2}(r^{2} + a^{2}) - \Delta_{r} \right)$$

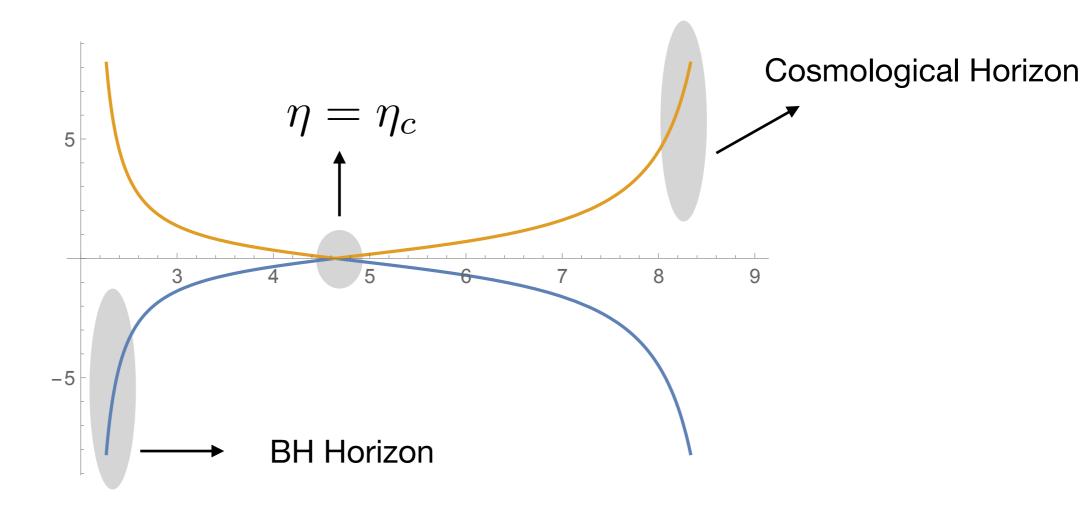


[Charmousis, MC, Gregory, Stergioulas]

$$S = -Et + \chi \varphi + S_r(r) + S_\theta(\theta)$$

$$S_r = \pm \int \frac{\sqrt{R}}{\Delta_r} dr$$

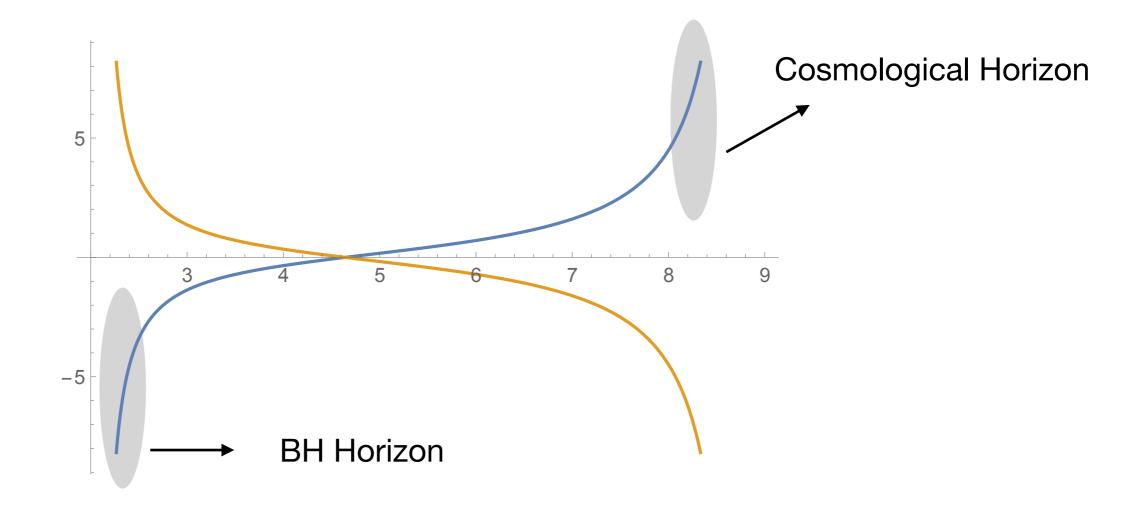
$$R = m^{2}(r^{2} + a^{2}) \left(\eta^{2}(r^{2} + a^{2}) - \Delta_{r} \right)$$



[Charmousis, MC, Gregory, Stergioulas]

$$S = -E t + \chi \varphi + S_r(r) + S_\theta(\theta)$$

$$S_r = \pm \int \frac{\sqrt{R}}{\Delta_r} dr \qquad R = m^2(r^2 + a^2) \left(\eta^2(r^2 + a^2) - \Delta_r \right)$$

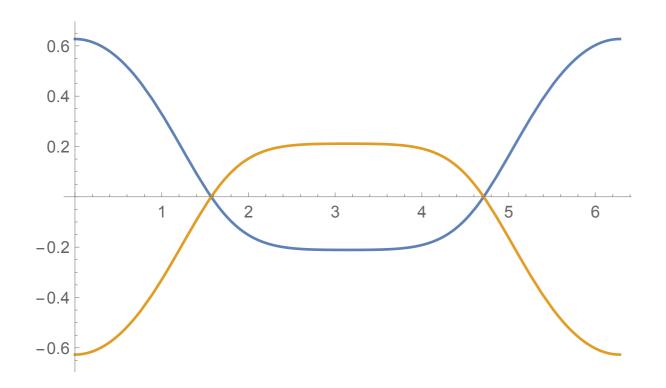


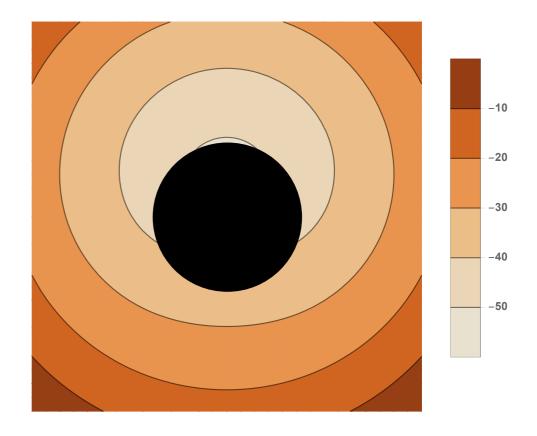
[Charmousis, MC, Gregory, Stergioulas]

$$S = -Et + \chi \varphi + S_r(r) + S_\theta(\theta)$$

$$S_{\theta} = \pm \int \frac{\sqrt{\Theta}}{\Delta_{\theta}} d\theta$$

$$\Theta = a^2 m^2 \sin^2 \theta \left(\Delta_\theta - \eta^2 \right)$$





[Charmousis, MC, Langlois, Noui]

$$S = -Et + \chi \varphi + S_r(r) + S_\theta(\theta)$$

Carter 1968

Perturbations

GR:

$$\psi(r,\theta)e^{-i\omega t+im\varphi}$$

$$\mathcal{O}(\boldsymbol{\omega},m)\boldsymbol{\psi}=0$$

$$\mathscr{O}(\boldsymbol{\omega}, m) = \mathscr{O}_r(\boldsymbol{\omega}, m) + \mathscr{O}_{\boldsymbol{\theta}}(\boldsymbol{\omega}, m) \longrightarrow \boldsymbol{\psi}(r, \boldsymbol{\theta}) = \psi_r(r) \psi_{\boldsymbol{\theta}}(\boldsymbol{\theta})$$

DHOST:

$$\mathscr{O}(\boldsymbol{\omega},m)\boldsymbol{\psi} = \boldsymbol{\mathcal{T}}$$

$$\int \delta G_{\mu\nu} = \delta T_{\mu\nu} \equiv \frac{1}{2} \Xi \overline{\phi}_{\mu} \overline{\phi}_{\nu} \delta X$$

$$\overline{\nabla}_{\mu} \left(\Xi \overline{\phi}^{\mu} \delta X \right) = 0$$

[Charmousis, MC, Langlois, Noui]

$$S = -E t + \chi \varphi + S_r(r) + S_\theta(\theta)$$

Carter 1968

Perturbations

DHOST:

$$\overline{\nabla}_{\mu} \left(\Xi \, \overline{\phi}^{\, \mu} \, \delta X \right) = 0$$

$$\chi = \sum_{m} \int d\omega \, \chi_{m,\omega}(r,\theta) e^{-i\omega t + im\varphi}$$

$$\chi_{m,\omega}(r,\theta) = \frac{C_{m,\omega}(\theta)}{\sqrt{R(r)}} \exp\left[i\varepsilon\left(-\omega I(r) - \omega\sin^2\theta J(r) + mK(r)\right)\right]$$

$$I(r) \equiv -\int dr \frac{(r^2 + a^2)^2}{\Delta(r)\sqrt{R(r)}}$$
 $J(r) \equiv \int dr \frac{a^2}{\sqrt{R(r)}},$
 $K(r) \equiv -\int dr \frac{2Mar}{\Delta(r)\sqrt{R(r)}}$

Conclusions

$$L = K + G_3 \Box \phi + G.R + A_1 [\phi_{\mu\nu}\phi^{\mu\nu} (\Box \phi)^2] + A_3 (\Box \phi)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu} + f(G, A_1, A_3) \phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu} + g(G, A_1, A_3)(\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2$$

- 3 free functions (α_K α_B α_M β_1)
- Screening is OK (hopefully)
- Self-acceleration is OK

Thanks!

- Distinctive signatures in LSS
- QNM & Ringdown