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Impose the degeneracy conditions

[Langlois, Noui]
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5 free functions

EFT of DE [Langlois, Mancarella, Noui, Vernizzi]

Expand around FRW in the unitary gauge

The shift N i and the spatial metric hij appear in the Lagrangian in combinations that behave as
three-dimensional tensors under time-dependent spatial di↵eomorphisms. One such combination
is the “velocity” of the spatial metric, expressed by the extrinsic curvature tensor Kij . Another
one is the 3-dimensional Ricci scalar R.

The time derivative of the lapse is usually not included in the initial action because the presence
of Ṅ generically leads to an additional propagating degree of freedom. However, there are special
cases where the action depends on Ṅ without leading to an extra degree of freedom.1 For instance,
starting from an action whose ADM form in the unitary gauge does not contain any Ṅ and making
a conformal transformation of the metric that depends on the scalar field gradient leads to an action
with an Ṅ dependence. In that case, the presence of Ṅ terms is not problematic because there is
a degeneracy in the kinetic terms, which prevents the existence of a ghost-like degree of freedom
(see [7] and [15]).

In the present work, we consider systematically Lagrangians quadratic in linear perturbations
that contain time (and space) derivatives of �N , such as to include all possible terms containing
at most two (space or time) derivatives.2 The corresponding quadratic action, in an expansion
around the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric ds

2 = �dt
2 + a

2(t)dx2,
can be written in the form
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where H ⌘ ȧ/a is the Hubble rate and �2R stands for the second order term in the perturbative
expansion of R. Although the spatially di↵-invariant combination denoting the “velocity” of the
lapse is Ṅ �N

i
@iN , the action above contains only �Ṅ , to which the full combination reduces at

linear order.
The above quadratic action extends the one derived in [4] and written in terms of the dimen-

sionless time-dependent functions ↵A (introduced in [16] and [17]) in [7], with the addition of
four new functions of time: the parameter ↵L, and the three parameters �A that characterize the
terms containing (time or space) derivatives of �N . These parameters can be given the following
interpretation:

• ↵L corresponds to a detuning of the extrinsic curvature terms. When ↵L = 0 one recovers the
combination KijK

ij �K
2, which is part of the four dimensional Ricci scalar (via the Gauss-

Codazzi identity). This detuning appears in theories that already in their original formulation
assume a preferred time slicing, such as Horava gravity [18] and its extensions [19–22].

• �1 is analogous to the kinetic braiding ↵B for the additional degree of freedom present in
higher-order theories.

• �2, similarly, is the analogue of the kineticity ↵K.

• �3 is associated to the gradient energy of the additional degree of freedom. This comes from
the acceleration of the unit vector normal to the uniform scalar field hypersurfaces, which in
unitary gauge is given by ai = @iN/N .

1When higher time derivative terms can be treated perturbatively below some energy scale, the extra degree of
freedom is not excited. Here we consider higher time derivatives at the same level as the other terms.

2For instance, since R contains two spatial derivatives, we do not include a term such as R �Ṅ , which depends
on three derivatives.
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Gravitational wave constraints

Speed of gravity = Speed of light

L = (G�XA1)KijK
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observations across the electromagnetic spectrum further
confirmed the discovery [3].

Each of these events provides complementary informa-
tion about the BNS merger. The GW signal serves to
weight the NS, which are in the range 0.86 � 2.26M�,
and to measure the luminosity distance, d

L
= 40+8

�14Mpc.
The EM counterparts uniquely identify the host galaxy,
NGC4993. Taking the lowest limit d

L
= 26Mpc and a

conservative 10s delay between the GW and sGRB the
bound on the speed of GWs is [2]

�3 · 10�15  cg/c � 1  7 · 10�16
. (1)

This is many orders of magnitude more stringent than
previous direct bounds [28] and applies to cg > c unlike
bounds from absence of gravitational Cherenkov radia-
tion [29]. For simplicity, we will use a symmetric bound
|cg/c � 1|  5 · 10�16 in the rest of the letter. Hereafter
we use natural units with c = 1.

GW propagation in scalar-tensor gravity. Ef-
fects on the propagation of GWs are a hallmark of
scalar-tensor theories of gravity. The evolution of lin-
ear, transverse-traceless perturbations over a cosmologi-
cal background

ḧij + (3 + ↵
M
)Hḣij + (1 + ↵

T
)k2hij = 0 , (2)

is fully characterized by two functions of time: the tensor
speed excess, ↵

T
, which modifies the propagation speed

of GWs c
2
g
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and hence the causal structure
for this type of signal; and the running of the e↵ective
Planck mass, ↵

M
⌘ d log(M2

⇤ )/d log(a), which modu-
lates the friction term caused by the universe’s expan-
sion. These functions depend on the theory parameters
and the cosmological dynamics of the scalar field. The
explicit expressions are given for Horndeski in [30], for
beyond Horndeski GLPV in [31] and for DHOST theo-
ries in [32]. The constraint on cg (1) has fundamental
implications for DE scenarios and can by itself rule out
otherwise viable models, as we will see explicitly now for
the Covariant Galileon.

The fate of covariant Galileon. Galileon gravity
is an interesting example of a dark energy model that can
be thoroughly tested by GW observations. It arises from
a scalar field with non-linear derivative self-interactions
satisfying the Galilean symmetry � ! �+C+bµx

µ in flat
space-time [13]. Its covariant generalization [14, 34] is a
simple instance of Horndeski’s theory [16], whose action
reads [35]
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The covariant Galileon corresponds to
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so that all the coe�cients of the second-derivative terms
are proportional to X. Here g is the determinant of the
metric gµ⌫ , R is the Ricci scalar, Gµ⌫ is the Einstein ten-
sor, X ⌘ �@µ�@µ�/2, �;µ⌫ = rµr⌫�, 2� = rµrµ

�

and Lm denotes the Lagrangian of some matter field  m.
The mass scale M

3 ⌘ MPlH
2
0 ensures that the ci coef-

ficients remain dimensionless (MPl is the Planck mass).
We will refer to three models depending on the highest
power of � present in the action (3): cubic (c4 = c5 = 0),
quartic (c5 = 0) and quintic (all terms).
The covariant Galileon is most interesting as a cosmo-

logical model where the Galileon field causes the uni-
verse to self-accelerate (without the need of a cosmo-
logical constant). As a consequence of shift-symmetry
� ! �+C, a tracker solution exists where the time evo-
lution of the field and the Hubble rate obey the relation
⇠ ⌘ H(t)�̇(t)/H2

0 = constant [36]. Under this solution,
which has to be reached before DE domination [37], the
functions of the modified GW equation (2) read

↵
T
=

1

M2
⇤E

4

"
2c4⇠

4 + c5⇠
5

 
1 +

Ḣ
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where E = H(t)/H0.
Self-accelerating Galileon models are all consistent

(if massive neutrinos are included) with cosmic mi-
crowave background (CMB) and baryon acoustic oscilla-
tions (BAO), together with the locally measured value of
H0 (avoiding the tension in ⇤CDM) [33, 38]. The inclu-
sion of cross-correlations between CMB temperature and
galaxies, which probes the Integrated Sachs Wolfe (ISW)
e↵ect, trims a significant portion of the parameter space
(including all cubic models), but leaves a region that is
still viable [33], (↵

M
(z = 0) & 0.21). All the cosmolog-

ically viable models have an impact of GW propagation
[39], as shown in Fig. 1.
Stringent bounds are derived from the constraint on cg

(1). Translated to ↵
T
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Gravitational wave constraints

No decay of GW in DE
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What about:

1 - Screening

2 - Self-acceleration

What is left?
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This realises the self-accelerating solution as in covariant galileon models. We notice that for � = 0,
⇠M = ⇠dS thus it is possible to find the scaling solution in the entire history of the universe. In fact,
it was shown that the covariant galileon model can be extended to beyond Horndeski theory and the
background solution remains the same although the perturbations behave di↵erently [63].

Fig. 1 confirms these analytic solutions by numerically solving Eqs. (16) and (17). The left panel shows
�̇H with three di↵erent initial conditions. For this choice of parameters, the solutions are attracted to the
MD scaling solution first. Then the solutions approach the dS scaling solution realising self-acceleration.
In the right panel of Fig. 1 we plot H(t) for the same choice of parameters together with HM (t) and
HdS . As it can be clearly seen, H(t) follows HM (t) at early times and then approaches HdS when t ⇠ 1

(this corresponds to the dimension-full time t ⇠ M
1/2
P ⇤�3/2

3 ).

Figure 1: The evolution of �̇(t)H(t) and H(t). The scalar field solution is attracted to the matter
scaling solution first, and then to the de Sitter scaling solution. We show the evolutions with three
di↵erent initial conditions. We choose the following parameters: c2 = 3, c3 = 5, c4 = 1,� = �5.3 for this
illustration.

Given the background solution, we can evaluate the coe�cients in the equations for quasi-static
perturbations Eqs. (18), (19) and (20), and find the solutions on this cosmological background. As an
illustration, in Fig. 2, we show the comoving distance r(z) =

R z
0 dz

0
/H(z0) in the left panel, and the

evolution of density perturbations divided by the scale factor, (1 + z)�(z), in the right panel. As a
comparison we show the ⇤CDM result with ⌦m = 0.3. Note that we choose the time today t0 to roughly
match H(z) with H⇤CDM (z) at high redshifts. In this example, the density perturbation is enhanced
compared with ⇤CDM. This is due to the enhanced e↵ective Newton constant µ� > 1. In this example,
the damping term ⌫� remains small and does not play a significant role.

The left panel of Fig. 3 shows the evolution of the Newtonian potential �(z) and the lensing potential
(�(z) +  (z))/2. These potentials are normalised to be one at early times. In this example, both
potentials grow at late times. The growth of the lensing potential is a common feature of the galileon
model and this is in fact the origin of strong observational constraints, as the increase of the lensing
potential leads to the opposite sign for the Integrated Sach-Wolfe (ISW) e↵ect compared with ⇤CDM.
This signals that the self-acceleration solutions in this theory could be also strongly constrained by the
ISW-galaxy cross correlation. However, in order to determine whether this rules out the model, we need
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c2, c3, c4 ⇠ O(1)
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Figure 4: The left panel shows the evolution of ⌥i while the right panel shows GGW /GN � 1. The blue
dotted line on the right panel indicates the upper bound from the Hulse-Taylor binary. The parameters
are the same as Fig. 1.

A Explicit form of the coe�cients

In this Appendix we provide the explicit expression for the coe�cients used in the background, linear
and non-linear equations.

A.1 Background equations

A ⌘ G (3� 9B1)� 6'̇2
GX , (38)

B ⌘ � 3

'̇

⇥
2'̈B1

�
2'̇2

GX +G (3B1 � 1)
�
+ '̇

4
G3X

⇤
, (39)

C ⌘ '̇
2
G2X +

G2

2
(3B1 + 1) +

3'̈B1

'̇2

⇥
'̈B1

�
G (1� 3B1)� 2'̇2

GX
�
� '̇

4
G3X

⇤
, (40)

D ⌘ 18'̈G

'̇2

�
2'̇2

B1X � 3B2
1 +B1

�
� 48'̇2

'̈G
2
X

G
� 3

⇥
'̇
2 (3G3X � 8'̈GXX) + 4'̈GX (6B1 + 1)

⇤
(41)

E ⌘ 6'̇GX

G

�
G2 � 4'̈

�
4'̈GXB1 + '̇

2
G3X

��
+

36'̈2
GB1

'̇3

�
2'̇2

B1X � 3B2
1 +B1

�
(42)

+
6

'̇

⇥
�4'̈2

B1
�
GX (6B1 + 1)� 2'̇2

GXX
�
+ '̇

2
G2X + 3G2B1 + 2'̇2

'̈
�
'̇
2
G3XX �G3X (3B1 + 1)

�⇤
,

F ⌘ 3G2

2'̇2G

⇥
2'̈

�
2'̇2

GXB1 +G
�
B1 (3B1 � 1)� 2'̇2

B1X
��

+ '̇
4
G3X

⇤
+

'̈

'̇4G

h
�3'̇4

�
4'̈GXB1 + '̇

2
G3X

�2
+ 18'̈2

G
2
B

2
1

�
2'̇2

B1X � 3B2
1 +B1

�i

+
'̈

'̇2

⇥
�12'̈2

B
2
1

�
GX (6B1 + 1)� 2'̇2

GXX
�
� 4'̇4

G2XX + 2'̇2
G2X (1� 3B1)

�3'̇2
'̈B1

�
G3X (9B1 + 4)� 4'̇2

G3XX
�⇤

. (43)
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c2, c3, c4 ⇠ O(1)
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Consistency relations in LCDM

Chapter 5

Consistency Relations of Large Scale
Structure

During inflation vacuum fluctuations are stretched by the exponential expansion of space. In

single-field models, once the modes are outside the horizon, they remain frozen and in the

region of space much smaller than their wavelength they are indistinguishable from a rescaling

of coordinates. Once inflation is over, the modes start to enter back into the Hubble radius

and became observable. It is therefore interesting to ask whether the long mode can be seen

locally as change of coordinates even when it is inside the horizon. The relevant quantity

to answer this question, as we saw in Chapter 3, is the sound horizon, because it sets the

length scale above which the interactions cannot propagate within a Hubble time. Before

the decoupling of photons the sound horizon is almost the same as the Hubble scale, but

after that it practically shrinks to zero. All modes that enter the Hubble horizon after the

decoupling and that we can observe nowadays are indeed just a coordinate redefinition on

scales su�ciently small compared to their wavelength.

In Chapter 3 we showed how one can add a long mode to a short-scale solution of the

Einstein’s equations just by performing a change of coordinates and generate in this way a

new solution. We saw that this is possible both in inflation and in the late universe. Of

course, if we want to use this trick to make contact with observations, we have to find a

way to reformulate this statement on terms of correlation functions. In Chapter 4 we studied

how the construction of the adiabatic modes allows us to derive consistency relations for

single-field inflation. In this Chapter, we will turn to the late universe and show that for

the correlation functions of the matter density contrast � similar identities exist. These are

consistency relations of LSS.

Schematically, the consistency relations of LSS have the following form

h�~q(⌘)�~k1(⌘1) · · · �~kn(⌘n)i
0
q!0 = P�(q)

X

a

Oah�~k1(⌘1) · · · �~kn(⌘n)i
0 , (5.1)

where Oa are di↵erential operators that contain derivatives with respect to ~ki and ⌘i, and

correspond to the various terms in the change of coordinates. P�(q) is the power spectrum
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5

The symmetry eq. (23) allows us to easily determine
otherwise complicated coe�cients in the non-linear equa-
tions in terms of the coe�cients in the linear equations.
For instance, we see immediately why Horndeski theories
do not generate terms proportional to X↵s : there are no
time-derivatives in the field equations and thus no terms
containing �̇ and �̈ in eq. (15). In Sec. IV we will return
to this symmetry and discuss its consequences on the full
second-order solution for � and the consistency relations.

III. FLUID EQUATIONS

The equations governing the matter sector in the non-
relativistic limit are the fluid equations

�̇ + a
�1

@i

�
(1 + �)vi

�
= 0 ,

v̇
i +Hv

i + a
�1

v
j
@jv

i + a
�1

@i� = 0 ,

(31)

where vi is the matter velocity. In writing these equations
we have assumed that matter is minimally coupled to the
gravitational metric. Therefore, we work in the so-called
Jordan frame.

Combining these two equations, we have, to second
order in the fields,

�̈+2H �̇�a
�2

@
2� = �a

�2
@i

�
@t(a�v

i)� v
j
@jv

i
�
, (32)

and so we see that we need @
2� in terms of � from Sec. II

to complete the system of equations.

A. Perturbative solutions

1. Linear solutions

Using eq. (9) for @2�(1), the linear equation for �(1) is

�̈
(1) + ⌫̄��̇

(1)
� µ̄��

(1) = 0 , (33)

where for future convenience, we have defined

⌫̄� ⌘
2H � ⌫�

1� ��

, µ̄� ⌘
µ�

1� ��

. (34)

The linear equation eq. (33) has two solutions, one grow-
ing, D+(t), and one decaying, D�(t). We focus on
the growing mode solution, which will be used in the
quadratic terms of the second-order equation, so we write
the solution for �(1) as eq. (11). Looking at eq. (31), this
means that the linear solution for the velocity can be
written

v
(1)i = �a

@i�̇
(1)

@2
= �aHf

@i�
(1)

@2
. (35)

where f is the linear growth rate defined in eq. (12).

2. Second-order solution

Since we are interested in the second-order solution �
(2)

in this work, we can use the linear solutions �(1) and v
(1)i

in the quadratic terms in eq. (32). Then, combining this
with the expression for @2�(2) from eq. (15), we have the
equation for the second-order field

�̈
(2) + ⌫̄��̇

(2)
� µ̄��

(2) = �
�
↵X↵s + �

�
�X� , (36)

where

�
�
↵ =

1

1� ��

⇣
3f2

H
2 +Hḟ + f(2H2 + Ḣ) + �

�

↵

⌘
,

�
�
� = �

1

1� ��

�
f
2
H

2
� �

�

�

�
. (37)

This means that the solution is

�
(2)(t) =

Z t

0

dt1Ḡ(t, t1)
�
�
�
↵X↵s + �

�
�X�

�
t1

(38)

where Ḡ(t, t1) is the Green’s function, defined in eq. (B3).
Here, and in the rest of the paper, the subscript t1 means
that all time arguments inside of the brackets which are
not explicitly shown are evaluated at t1.
In Fourier space, eq. (38) is

�
(2)(~k, t) =

Z ~k

~k1,~k2

F2(~k1,~k2; t) �
(1)(~k1, t)�

(1)(~k2, t) , (39)

where

F2(~k1,~k2; t) = A↵(t)↵s(~k1,~k2) +A�(t)�(~k1,~k2) , (40)

and

A↵(t) =

Z t

0

dt1Ḡ(t, t1)�
�
↵(t1)

D+(t1)2

D+(t)2
,

A�(t) =

Z t

0

dt1Ḡ(t, t1)�
�
�(t1)

D+(t1)2

D+(t)2
.

(41)

It is possible to further simplify the coe�cient A↵(t),
as we show in App. B 2. The result is

A↵(t) = 1 +

Z t

0

dt1Ḡ(t, t1)K2(t1)
D+(t1)2

D+(t)2
, (42)

where

K2 =
⌫�L�v + ��(3HfL�v + L̇�v)

1� ��

, (43)

and

L�v ⌘ Hf � L⇡ (44)

is defined analogously to eq. (35) for the relative velocity

�v
i
⌘ v

i
� v

i
⇡ . (45)
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The symmetry eq. (23) allows us to easily determine
otherwise complicated coe�cients in the non-linear equa-
tions in terms of the coe�cients in the linear equations.
For instance, we see immediately why Horndeski theories
do not generate terms proportional to X↵s : there are no
time-derivatives in the field equations and thus no terms
containing �̇ and �̈ in eq. (15). In Sec. IV we will return
to this symmetry and discuss its consequences on the full
second-order solution for � and the consistency relations.

III. FLUID EQUATIONS

The equations governing the matter sector in the non-
relativistic limit are the fluid equations

�̇ + a
�1

@i

�
(1 + �)vi

�
= 0 ,

v̇
i +Hv

i + a
�1

v
j
@jv

i + a
�1

@i� = 0 ,

(31)

where vi is the matter velocity. In writing these equations
we have assumed that matter is minimally coupled to the
gravitational metric. Therefore, we work in the so-called
Jordan frame.

Combining these two equations, we have, to second
order in the fields,

�̈+2H �̇�a
�2

@
2� = �a

�2
@i

�
@t(a�v

i)� v
j
@jv

i
�
, (32)

and so we see that we need @
2� in terms of � from Sec. II

to complete the system of equations.

A. Perturbative solutions

1. Linear solutions

Using eq. (9) for @2�(1), the linear equation for �(1) is

�̈
(1) + ⌫̄��̇

(1)
� µ̄��

(1) = 0 , (33)

where for future convenience, we have defined

⌫̄� ⌘
2H � ⌫�

1� ��

, µ̄� ⌘
µ�

1� ��

. (34)

The linear equation eq. (33) has two solutions, one grow-
ing, D+(t), and one decaying, D�(t). We focus on
the growing mode solution, which will be used in the
quadratic terms of the second-order equation, so we write
the solution for �(1) as eq. (11). Looking at eq. (31), this
means that the linear solution for the velocity can be
written

v
(1)i = �a

@i�̇
(1)

@2
= �aHf

@i�
(1)

@2
. (35)

where f is the linear growth rate defined in eq. (12).

2. Second-order solution

Since we are interested in the second-order solution �
(2)

in this work, we can use the linear solutions �(1) and v
(1)i

in the quadratic terms in eq. (32). Then, combining this
with the expression for @2�(2) from eq. (15), we have the
equation for the second-order field

�̈
(2) + ⌫̄��̇

(2)
� µ̄��

(2) = �
�
↵X↵s + �

�
�X� , (36)

where

�
�
↵ =

1

1� ��

⇣
3f2

H
2 +Hḟ + f(2H2 + Ḣ) + �

�

↵

⌘
,

�
�
� = �

1

1� ��

�
f
2
H

2
� �

�

�

�
. (37)

This means that the solution is

�
(2)(t) =

Z t

0

dt1Ḡ(t, t1)
�
�
�
↵X↵s + �

�
�X�

�
t1

(38)

where Ḡ(t, t1) is the Green’s function, defined in eq. (B3).
Here, and in the rest of the paper, the subscript t1 means
that all time arguments inside of the brackets which are
not explicitly shown are evaluated at t1.
In Fourier space, eq. (38) is

�
(2)(~k, t) =

Z ~k

~k1,~k2

F2(~k1,~k2; t) �
(1)(~k1, t)�

(1)(~k2, t) , (39)

where

F2(~k1,~k2; t) = A↵(t)↵s(~k1,~k2) +A�(t)�(~k1,~k2) , (40)

and

A↵(t) =

Z t

0

dt1Ḡ(t, t1)�
�
↵(t1)

D+(t1)2

D+(t)2
,

A�(t) =

Z t

0

dt1Ḡ(t, t1)�
�
�(t1)

D+(t1)2

D+(t)2
.

(41)

It is possible to further simplify the coe�cient A↵(t),
as we show in App. B 2. The result is

A↵(t) = 1 +

Z t

0

dt1Ḡ(t, t1)K2(t1)
D+(t1)2

D+(t)2
, (42)

where

K2 =
⌫�L�v + ��(3HfL�v + L̇�v)

1� ��

, (43)

and

L�v ⌘ Hf � L⇡ (44)

is defined analogously to eq. (35) for the relative velocity

�v
i
⌘ v

i
� v

i
⇡ . (45)
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For generic time-dependent coe�cients, it is not possible
to simultaneously solve eq. (66) and eq. (67), unless, for
example, eq. (66) becomes trivial by having Hf = µ⇡ +
Hf⌫⇡, which is simply the condition that L�v = 0, i.e.
that the relative velocity in eq. (45) vanishes.

The origin of this e↵ect, absent in Horndeski theories,
lies on the kinetic coupling between matter and the scalar
field, also called kinetic matter mixing. As discussed in
[53], in theories beyond Horndeski matter is kinetically
mixed with the scalar field. The e↵ect of a time de-
pendent boost generates a long-wavelength mode of ⇡

a↵ecting this mixing. Since the velocity of ⇡, v
i
⇡ and

that of the fluid v
i are generally di↵erent, one cannot si-

multaneously remove the kinetic matter mixing and the
convective motion of the fluid by a single boost.

Because the consistency relation can be violated, we
find that the dipole term eq. (59) can also be changed
from the standard, single-velocity case, which general-
izes the analysis of [38] which restricted to GLPV theo-
ries. Although the consistency relations are violated, the
symmetries (23) and (53) allow us to universally deter-
mine the dipole eq. (59) in terms of the coe�cients of the
linear equations ⌫� and ��, as shown in Sec. III B. The
deviation is proportional to the relative velocity L�v, as
expected.

The current situation is similar to the case of multiple
fluids, like dark matter and baryons, which have a non-
zero relative velocity [54, 55]. However, in the current
case, there is no real isocurvature mode: the equations
simply have less symmetry.

V. BISPECTRA

Here we explore the observational consequences of
what was discussed in the previous sections on the tree-
level bispectra of the cosmic fields. We start correlating
the same field, i.e. the density contrast.

A. Auto-correlation

We can use the perturbative calculations of Sec. III to
compute the equal-time bispectrum of �, B(k1, k2, k3),
defined by

h�(~k1)�(~k2)�(~k3)i = (2⇡)3�D(~k1 + ~k2 + ~k3)B(k1, k2, k3) .
(68)

Expanding � = �
(1) + �

(2) + . . ., using the explicit so-
lution for �

(2) in eq. (39) and assuming Gaussian initial
conditions, we have, at tree level,

B(k1, k2, k3) = 2F2(~k1,~k2)P11(k1)P11(k2) + (2 perms.) ,
(69)

where P11(k) is the linear power spectrum of �, defined
by

h�
(1)(~k)�(1)(~k0)i = (2⇡)3�D(~k + ~k

0)P11(k) . (70)

In Fig. 2, we plot the relative di↵erence between the
amplitude of the reduced bispectrum, defined as

Q(k1, k2, k3) ⌘
B(k1, k2, k3)

P11(k1)P11(k2) + (2 perms.)
, (71)

and the one of the reduced bispectrum in ⇤CDM. Fol-
lowing [56], we plot this as a function of the shape of

the triangle formed by (~k1,~k2,~k3) with the condition
k1  k2  k3, for two values of k3, i.e. k3 = 0.01hMpc�1

and k3 = 0.05hMpc�1. To show the e↵ect of DHOST
theories, in the upper panels we plot this di↵erence in
the case where A↵ is modified by 10% from its ⇤CDM
value while A� is unmodified. For comparison with more
general modifications one can have in both Horndeski and
DHOST theories, in the lower panels we consider the case
where A� is modified by 10% from its ⇤CDM value while
A↵ = 1.
Changing either A↵ or A� modifies the reduced bispec-

trum for equilateral triangles (upper-right corner of each
plot). However, as first noticed in [38] a change in A�

does not produce any modifications for folded triangles
k1 + k2 = k3 (i.e. along the diagonal going from (0, 1)
to (0.5, 0.5)). Therefore, modifications of the bispectrum
for folded triangles are unique signatures of DHOST the-
ories.
There are no enhanced modifications in the squeezed

limit (upper-left corner of each plot). Indeed, the leading
contribution to the bispectrum vanishes in this limit for
all cases. This can be seen by defining ~q ⌘ �~k1, ~k ⌘

~k2 � ~q/2 and expanding eq. (68), assuming q ⌧ k. The

term of the bispectrum proportional to F2(~k2,~k3) can be
neglected and the bispectrum gives, up to corrections of
order O((q/k)0),5

lim
q!0

B(q, k2, k3)

P11(q)P11(k)
⇡ �2A↵

 
1

2

~q · ~k

q2
�

1

2

~q · ~k

q2

!
=0 .

(72)

Therefore, there is no k/q enhancement in the squeezed
limit q ! 0. This would seem to suggest that the con-
sistency relations are satisfied [23–25, 51]. However, the
vanishing of the right-hand side of eq. (72) is not a con-
sequence of the consistency relations but simply of the
symmetry of the bispectrum under exchange of the two
arguments k2 and k3 (and translation invariance, i.e. that
~k1 + ~k2 + ~k3 = 0). Therefore, the violation of the consis-
tency relation has no e↵ect on the bispectrum computed
from the auto-correlation. In order to see some e↵ect in
the 3-point function, we must correlate di↵erent tracers
[32], as we do in the next subsection.

5 We are assuming that the long mode is longer than the BAO
scale of the baryon acoustic peak [57].

Because of translation invariance!
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and an analogous expression for Alens

� .
Using the expressions above, the matter-matter-

lensing bispectrum reads

B
mml(k1, k2, k3) = 2P11(k1)P11(k2)F

lens

2
(~k1,~k2) (80)

+ 2LlensP11(k1)P11(k3)F2(~k1,~k3)

+ 2LlensP11(k2)P11(k3)F2(~k2,~k3) .

In Fig. 3 we plot the relative di↵erence between the
amplitude of the reduced cross-correlation bispectrum,

Q
mml(k1, k2, k3) ⌘

B
mml(k1, k2, k3)

P11(k1)P11(k2) + (2 perms.)
, (81)

and the one of the reduced cross-correlation bispec-
trum in ⇤CDM as a function of the shape, for k3 =
0.01hMpc�1 and k3 = 0.05hMpc�1. For simplicity, we
set Llens = 1 and A↵ and A� to their ⇤CDM values, and
focus on the e↵ect of modifications of Alens

↵ and A
lens

� . To
show the e↵ect of DHOST theories, in the upper panels
we plot this di↵erence in the case where Alens

↵ is modified
by 10% from its ⇤CDM value while A

lens

� is unmodified.

In the lower panels we consider the case where A
lens

� is
(negatively) modified by 10% from its ⇤CDM value while
A

lens

↵ = 1, as predicted by Horndeski theories.
As in the case of the auto-correlation bispectrum, only

by changing Alens

↵ can one a↵ect the bispectrum for folded
triangles. Moreover, contrarily to the auto-correlation
case, changing A

lens

↵ also generates an enhanced signal
in the squeezed limit. In particular, in this limit with
~q = �~k1 and ~k = ~k2 � ~q/2, one has, up to corrections of
order O((q/k)0),

lim
q!0

B
mml(q, k2, k3)

P11(q)P11(k)
⇡

�
LlensA↵ �A

lens

↵

� ~q · ~k
q2

. (82)

The k/q enhancement on the right-hand side shows that
the consistency relation does not hold in beyond Horn-
deski theories, similarly to what happens in the presence
of a violation of the equivalence principle due to a fifth-
force [32]. One can check, instead, using the definition
of Llens, L'a , and A

lens

↵ , respectively eqs. (76), (14) and
(79), that for Horndeski theories the right-hand side of
this equation vanishes, as expected by the consistency
relations.

Additionally, when the consistency relations are bro-
ken, di↵erent tracers of the dark-matter distribution can
in general have di↵erent squeezed limits. This means that
when correlating di↵erent tracers, one expects an e↵ect
of the form eq. (82), proportional to the di↵erence in the
bias coe�cients of the two tracers.

VI. OTHER OBSERVATIONAL
CONSEQUENCES

The breaking of the consistency relations in DHOST
theories has observational consequences on cosmological
observables involving higher-order kernels in perturba-
tion theory, which we briefly discuss in this section.

A. n-point functions

Let us discuss the observational consequences associ-
ated with squeezed configurations of n-point functions.
One can convince oneself that, by symmetry, any (n+1)-
point correlation function of all the same fields where
only one leg with momentum q is made soft will be pro-
portional to the sum of the short momenta,

Pn
i=1

~ki,
which vanishes at leading order in q by momentum con-
servation. Thus, as for the (auto-correlation) bispectrum
there are no obvious consequences in the single soft-mode
squeezed limit of any (n+ 1)-point correlation function.
As a next possibility, one can consider a higher number

of soft modes. The simplest example is the trispectrum,
defined by

h�(~k1)�(~k2)�(~k3)�(~k4)i = (2⇡)3�D(~k1 + ~k2 + ~k3 + ~k4)

⇥ T (~k1,~k2,~k3,~k4) . (83)

In particular, let us focus on the double-soft limit
T (~q1, ~q2,~k1,~k2), where two of the modes, ~q1 and ~q2, are

made much smaller than the other two, ~k1 and ~k2.
In the standard case (⇤CDM or Horndeski theories),

the consistency relations ensure that the trispectrum van-
ishes at leading order in q1,2/k1,2 in the double-squeezed
limit. This is straightforward to verify in perturbation
theory. Following the discussion of Sec. 2.1 of [26], the
double-soft limit of the trispectrum in perturbation the-
ory is given by the sum of three contributions. The first
is obtained when the density perturbations of the short
modes are both taken at second order, i.e.,

T1122 = 4P11(q1)P11(q2)P11(|~k1 + ~q1|)F2(�~q1,
~k1 + ~q1)

⇥ F2(�~q2,
~k2 + ~q2) + (~k1 $ ~k2) . (84)

Another one is obtained when one of the short-mode den-
sity perturbation is taken at third order. Defining the
third-order kernel F3 analogously to F2 as

�
(3)(~k) =

Z ~k

~k1,~k2,~k3

F3(~k1,~k2,~k3)�
(1)(~k1)�

(1)(~k2)�
(1)(~k3) ,

(85)
(from the definition F3 is symmetric under permutations

of {~k1,~k2,~k3}), this reads

T1113 = 6P11(q1)P11(q2)P11(k1)F3(�~q1,�~q2,�
~k1) .

(86)
The last contribution is obtained by taking the other
short mode at third order, i.e. exchanging ~k1 $ ~k2

in eq. (86). In the standard case F2(�~q1,
~k1 + ~q1) ⇡

�~q1 · ~k1/(2q21), and F3(�~q1,�~q2,�
~k1) ⇡ (~q1 · ~k1)(~q2 ·

~k1)/(6q21q
2

2
), so that once one considers the permutations,

there is a cancellation between these three contributions.
This is no longer true in DHOST theories. If we define

the (time-dependent) coe�cient of F3 in the squeezed

limit as B↵ from F3(�~q1,�~q2,�
~k1) ⇡ B↵(~q1 · ~k1)(~q2 ·

Enhanced for different tracers
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The symmetry eq. (23) allows us to easily determine
otherwise complicated coe�cients in the non-linear equa-
tions in terms of the coe�cients in the linear equations.
For instance, we see immediately why Horndeski theories
do not generate terms proportional to X↵s : there are no
time-derivatives in the field equations and thus no terms
containing �̇ and �̈ in eq. (15). In Sec. IV we will return
to this symmetry and discuss its consequences on the full
second-order solution for � and the consistency relations.

III. FLUID EQUATIONS

The equations governing the matter sector in the non-
relativistic limit are the fluid equations

�̇ + a
�1

@i

�
(1 + �)vi

�
= 0 ,

v̇
i +Hv

i + a
�1

v
j
@jv

i + a
�1

@i� = 0 ,

(31)

where vi is the matter velocity. In writing these equations
we have assumed that matter is minimally coupled to the
gravitational metric. Therefore, we work in the so-called
Jordan frame.

Combining these two equations, we have, to second
order in the fields,

�̈+2H �̇�a
�2

@
2� = �a

�2
@i

�
@t(a�v

i)� v
j
@jv

i
�
, (32)

and so we see that we need @
2� in terms of � from Sec. II

to complete the system of equations.

A. Perturbative solutions

1. Linear solutions

Using eq. (9) for @2�(1), the linear equation for �(1) is

�̈
(1) + ⌫̄��̇

(1)
� µ̄��

(1) = 0 , (33)

where for future convenience, we have defined

⌫̄� ⌘
2H � ⌫�

1� ��

, µ̄� ⌘
µ�

1� ��

. (34)

The linear equation eq. (33) has two solutions, one grow-
ing, D+(t), and one decaying, D�(t). We focus on
the growing mode solution, which will be used in the
quadratic terms of the second-order equation, so we write
the solution for �(1) as eq. (11). Looking at eq. (31), this
means that the linear solution for the velocity can be
written

v
(1)i = �a

@i�̇
(1)

@2
= �aHf

@i�
(1)

@2
. (35)

where f is the linear growth rate defined in eq. (12).

2. Second-order solution

Since we are interested in the second-order solution �
(2)

in this work, we can use the linear solutions �(1) and v
(1)i

in the quadratic terms in eq. (32). Then, combining this
with the expression for @2�(2) from eq. (15), we have the
equation for the second-order field

�̈
(2) + ⌫̄��̇

(2)
� µ̄��

(2) = �
�
↵X↵s + �

�
�X� , (36)

where

�
�
↵ =

1

1� ��

⇣
3f2

H
2 +Hḟ + f(2H2 + Ḣ) + �

�

↵

⌘
,

�
�
� = �

1

1� ��

�
f
2
H

2
� �

�

�

�
. (37)

This means that the solution is

�
(2)(t) =

Z t

0

dt1Ḡ(t, t1)
�
�
�
↵X↵s + �

�
�X�

�
t1

(38)

where Ḡ(t, t1) is the Green’s function, defined in eq. (B3).
Here, and in the rest of the paper, the subscript t1 means
that all time arguments inside of the brackets which are
not explicitly shown are evaluated at t1.
In Fourier space, eq. (38) is

�
(2)(~k, t) =

Z ~k

~k1,~k2

F2(~k1,~k2; t) �
(1)(~k1, t)�

(1)(~k2, t) , (39)

where

F2(~k1,~k2; t) = A↵(t)↵s(~k1,~k2) +A�(t)�(~k1,~k2) , (40)

and

A↵(t) =

Z t

0

dt1Ḡ(t, t1)�
�
↵(t1)

D+(t1)2

D+(t)2
,

A�(t) =

Z t

0

dt1Ḡ(t, t1)�
�
�(t1)

D+(t1)2

D+(t)2
.

(41)

It is possible to further simplify the coe�cient A↵(t),
as we show in App. B 2. The result is

A↵(t) = 1 +

Z t

0

dt1Ḡ(t, t1)K2(t1)
D+(t1)2

D+(t)2
, (42)

where

K2 =
⌫�L�v + ��(3HfL�v + L̇�v)

1� ��

, (43)

and

L�v ⌘ Hf � L⇡ (44)

is defined analogously to eq. (35) for the relative velocity

�v
i
⌘ v

i
� v

i
⇡ . (45)
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FIG. 2. Shape of the di↵erence of the reduced bispectrum and the one in ⇤CDM, Q(k1, k2, k3) �Q⇤CDM(k1, k2, k3), for two
10% modifications away from ⇤CDM at z = 0 (which has (A↵, A�) = (1,�0.284), see Fig. 1), i.e. for (A↵, A�) = (1.1,�0.284)
(upper panels) and (A↵, A�) = (1,�0.256) (lower panels). Only modifying A↵ produces a signal for folded triangles (i.e. along
the diagonal going from (0, 1) to (0.5, 0.5)). As expected, the bispectrum is not enhanced in the squeezed limit (upper-left
corner of each plot).

B. Cross-correlation with the lensing potential

To see an enhanced e↵ect in the squeezed limit, we
need to consider correlations with di↵erent tracers, so
that the bispectrum is no longer symmetric under the
exchange of ~k2 and ~k3. As a simplifying, calculable
example, we consider the 3-point correlation function
h�(~k1)�(~k2)�lens(~k3)i, where �lens is the “lensing density,”
defined as

�lens ⌘ (3⌦mH
2)�1

a
�2

@
2 (�+ ) , (73)

where ⌦m ⌘ ⇢̄m/(3H2
M

2). Here (� +  )/2 is the so-
called lensing potential, which enters measurements of
weak lensing convergence and shear (see for instance
[58]). It is not directly an observable, but lensing ob-
servables are built from projecting this quantity along
the line of sight with some window function.

We want to compute the tree-level matter-matter-
lensing bispectrum, defined by

h�(~k1)�(~k2)�lens(~k3)i = (2⇡)3�D(~k1 + ~k2 + ~k3)

⇥B
mml(k1, k2, k3) .

(74)

As usual, we expand �lens into first- and second-order

parts. From eq. (13) we have

�
(1)

lens
(~k) = Llens�

(1)(~k) , (75)

where

Llens ⌘ (3⌦mH
2)�1 (L� + L ) . (76)

Next, we need �lens at second order. Plugging �
(2) and

a
�2

@
2
'
(2),NL

a , using eq. (39) and eq. (16), into the second-
order Poisson equation eq. (15), and using this equation
in eq. (73) above, we obtain

�
(2)

lens
(~k) =

Z ~k

~k1,~k2

F
lens

2
(~k1,~k2) �

(1)(~k1)�
(1)(~k2) , (77)

where

F
lens

2
(~k1,~k2) = A

lens

↵ ↵s(~k1,~k2) +A
lens

� �(~k1,~k2) , (78)

with

A
lens

↵ = (3⌦mH
2)�1


�
�

↵s
+ �

 

↵s
+ (µ� + µ )A↵ (79)

+
(⌫� + ⌫ )@t(A↵D

2

+
) + (�� + � )@2

t (A↵D
2

+
)

D
2
+

�
,
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FIG. 3. Shape of the di↵erence of the reduced cross-correlation bispectrum and the one in ⇤CDM, Q
mml(k1, k2, k3) �

Q
mml

⇤CDM(k1, k2, k3), for two 10% modifications away from the ⇤CDM values (Alens

↵ , A
lens

� ) = (1,�0.284), i.e. for (Alens

↵ , A
lens

� ) =
(1.1,�0.284) (upper panels) and (Alens

↵ , A
lens

� ) = (1,�0.256) (lower panels), while setting Llens = 1 and (A↵, A�) to their ⇤CDM
values. Only changing A

lens

↵ produces a signal for folded triangles. Moreover, as discussed in the text, for LlensA↵ � A
lens

↵ 6= 0
(upper panels) the signal is maximized in the squeezed limit (upper-left corner; since the bispectrum diverges in the squeezed
limit, for presentation purposes we stop plotting it when Q

mml �Q
mml

⇤CDM > 0.195).

~k1)/(6q21q
2

2
) , we obtain, for the trispectrum in the

double-squeezed limit (setting ~k2 ⇡ �~k1),

lim
q1,2!0

T (~q1, ~q2,~k1,~k2)

P (q1)P (q2)P (k1)
⇡ �4(A2

↵ �B↵)
~q1 ·

~k1

2q2
1

~q2 ·
~k1

2q2
2

,

(87)
which shows that the consistency relation is violated in
this case. One can show by an explicit computation that
in DHOST theories B↵ 6= A

2

↵ but we postpone its pre-
sentation to future work.

B. Loops

The cancellation between T1122 and T1113 discussed
above is also crucial in loop diagrams.6 For instance,
the 1-loop power spectrum receives two contributions,

6 For example, the leading IR part of the 1-loop power spectrum
can be obtained from the double-soft four-point function by glu-
ing together the two soft legs.

P1-loop = P22 + P13, where

P22(k) ⌘ 2

Z
d
3
~q

(2⇡)3
[F2(~q,~k � ~q)]2P11(q)P11(|~k � ~q|) ,

P13(k) ⌘ 6

Z
d
3
~q

(2⇡)3
F3(~q,�~q,~k)P11(q)P11(k) . (88)

In the standard case, the IR parts of these integrals,
coming from the small momenta q ⌧ k, cancel when
summing P22 + P13 [50, 59–61] as a consequence of the
equivalence principle [25]. This was also shown to hap-
pen in ⇤CDM and quintessence theories with exact time
dependence [62].
This cancellation does not hold anymore when the con-

sistency relations are violated [26]. Indeed, as expected
from the above discussion, in DHOST theories we have

P1-loop(k)

P11(k)
⇡ 4(A2

↵ �B↵)

Z

q.k

d
3
~q

(2⇡)3

✓
~q · ~k

2q2

◆2

P11(q) .

(89)
Here the IR divergences come from the ~q ! 0 limit in
P13, and from the ~q ! 0 and ~q ! ~k limits in P22. This
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FIG. 2. Shape of the di↵erence of the reduced bispectrum and the one in ⇤CDM, Q(k1, k2, k3) �Q⇤CDM(k1, k2, k3), for two
10% modifications away from ⇤CDM at z = 0 (which has (A↵, A�) = (1,�0.284), see Fig. 1), i.e. for (A↵, A�) = (1.1,�0.284)
(upper panels) and (A↵, A�) = (1,�0.256) (lower panels). Only modifying A↵ produces a signal for folded triangles (i.e. along
the diagonal going from (0, 1) to (0.5, 0.5)). As expected, the bispectrum is not enhanced in the squeezed limit (upper-left
corner of each plot).

B. Cross-correlation with the lensing potential

To see an enhanced e↵ect in the squeezed limit, we
need to consider correlations with di↵erent tracers, so
that the bispectrum is no longer symmetric under the
exchange of ~k2 and ~k3. As a simplifying, calculable
example, we consider the 3-point correlation function
h�(~k1)�(~k2)�lens(~k3)i, where �lens is the “lensing density,”
defined as

�lens ⌘ (3⌦mH
2)�1
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@
2 (�+ ) , (73)

where ⌦m ⌘ ⇢̄m/(3H2
M

2). Here (� +  )/2 is the so-
called lensing potential, which enters measurements of
weak lensing convergence and shear (see for instance
[58]). It is not directly an observable, but lensing ob-
servables are built from projecting this quantity along
the line of sight with some window function.

We want to compute the tree-level matter-matter-
lensing bispectrum, defined by

h�(~k1)�(~k2)�lens(~k3)i = (2⇡)3�D(~k1 + ~k2 + ~k3)

⇥B
mml(k1, k2, k3) .

(74)

As usual, we expand �lens into first- and second-order

parts. From eq. (13) we have

�
(1)

lens
(~k) = Llens�

(1)(~k) , (75)

where

Llens ⌘ (3⌦mH
2)�1 (L� + L ) . (76)

Next, we need �lens at second order. Plugging �
(2) and

a
�2

@
2
'
(2),NL

a , using eq. (39) and eq. (16), into the second-
order Poisson equation eq. (15), and using this equation
in eq. (73) above, we obtain
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(2)

lens
(~k) =

Z ~k

~k1,~k2

F
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2
(~k1,~k2) �
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where
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FIG. 2. Shape of the di↵erence of the reduced bispectrum and the one in ⇤CDM, Q(k1, k2, k3) �Q⇤CDM(k1, k2, k3), for two
10% modifications away from ⇤CDM at z = 0 (which has (A↵, A�) = (1,�0.284), see Fig. 1), i.e. for (A↵, A�) = (1.1,�0.284)
(upper panels) and (A↵, A�) = (1,�0.256) (lower panels). Only modifying A↵ produces a signal for folded triangles (i.e. along
the diagonal going from (0, 1) to (0.5, 0.5)). As expected, the bispectrum is not enhanced in the squeezed limit (upper-left
corner of each plot).
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that the bispectrum is no longer symmetric under the
exchange of ~k2 and ~k3. As a simplifying, calculable
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called lensing potential, which enters measurements of
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[58]). It is not directly an observable, but lensing ob-
servables are built from projecting this quantity along
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the diagonal going from (0, 1) to (0.5, 0.5)). As expected, the bispectrum is not enhanced in the squeezed limit (upper-left
corner of each plot).
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To see an enhanced e↵ect in the squeezed limit, we
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lensing bispectrum, defined by
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(74)

As usual, we expand �lens into first- and second-order

parts. From eq. (13) we have
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(X = �µ�µ = const.). Extrapolating from this fact, it is
possible to draw a nice parallel between the scalar field
� and the geodesic xµ(�) of a test particle moving in
the external field of the black hole. Indeed, starting by
assuming the correspondence

�µ
$

dxµ

d�
, (3)

(where � is an a�ne parameter) the condition r
µX = 0

simply translates in the geodesic equation

d2xµ

d�2
+ �µ

⇢�
dx⇢

d�

dx�

d�
= 0 . (4)

Solving the geodesic equation for a given spacetime there-
fore amounts to finding the candidate stealth solution for
the scalar field. Moreover this provides a nice physical
interpretation of the constants appearing in the solution.

Clearly, one also needs to make sure that the equations
of motion (eom) are satisfied for the stealth solution and
the scalar field that we obtain in this way. We therefore
impose the condition X = const. and assume that the
metric is an Einstein space, i.e. Rµ⌫ = ⇤gµ⌫ where ⇤
is an e↵ective cosmological constant to be fixed via the
field equations. These hypotheses greatly simplify the
eom that become

[A3 (E3 � ⇤X)� 2G3X2�� 2 (G2X + 4⇤GX)]�µ�⌫

+(G2 + 2⇤G) gµ⌫ = 0 (5)

for the metric and

A3 (E4 + 2Rµ⌫⇢��
⌫��µ�⇢

� 3⇤X2�)

�2G3X (E3 � ⇤X)� 2 (G2X + 4⇤GX)2� = 0 (6)

for the scalar field, where we have defined as usual

E3 ⌘ (2�)2 � (�µ⌫)
2 ,

E4 ⌘ (2�)3 � 32� (�µ⌫)
2 + 2 (�µ⌫)

3 . (7)

The e↵ective cosmological constant ⇤ is di↵erent from
the bare cosmological constant ⇤̄ which is included in
the constant piece of the G2 function. Satisfying these
equations will translate in imposing certain conditions
between the constants appearing in the scalar field solu-
tion and/or the free functions of the theory evaluated at
X = const.

In the rest of this paper we focus on the case of Kerr-
(A)dS space-time and the various limits of vanishing cos-
mological constant and/or angular momentum, namely
{Kerr, Schwarzschild-(A)dS, Schwarzschild} metrics. Of
course, one can apply the same technique to di↵erent
Einstein’s space black hole solutions.

Stealth Kerr-(A)dS black holes. Written in the
{t, r, ✓,'} coordinates of Boyer and Lindquist [19], the
Kerr-(A)dS geometry reads,

ds2 = �
�r

⌅2⇢2
⇥
dt� a sin2✓d'

⇤2
+ ⇢2

✓
dr2

�r
+

d✓2

�✓

◆

+
�✓sin

2✓

⌅2⇢2
⇥
a dt�

�
r2 + a2

�
d'

⇤2
, (8)

where

⌅ ⌘ 1 +
1

3
⇤a2 , ⇢2 ⌘ r2 + a2cos2✓ ,

�r ⌘

✓
1�

1

3
⇤r2

◆�
r2 + a2

�
� 2Mr ,

�✓ ⌘ 1 +
1

3
⇤a2cos2✓ , (9)

and M is the black hole mass, a the angular momentum
per unit mass and ⇤ the e↵ective cosmological constant.

In order to solve the geodesic equation for such a metric
(see e.g. [20]), it is useful to re-write it in the form of
Hamilton’s equations as

dxµ

d�
=

@H

@pµ
,

dpµ
d�

= �
@H

@xµ
, (10)

where pµ is the momentum and

H =
1

2
gµ⌫pµp⌫ (11)

the Hamiltonian of the test particle. Indeed, one can
easily check that the first equation reduces to

pµ =
dxµ

d�
, (12)

and the second, when combined with the first, gives the
geodesic equation in its well known form (4). The ad-
vantage of this formalism resides in the determination
of the constants of the motion. The components gµ⌫ of
the metric (8) are independent of t and ', and so is the
Hamiltonian (11); as a consequence the second equation
in (10) guarantees that pt and p' are two constants of
the motion. Far from the black hole, these constants be-
come respectively the energy and the projection of the
angular momentum along the rotation axis of the black
hole. We can therefore rename them as pt = �E and
p' = Lz. A third constant of motion is the particle’s
rest mass m = (�gµ⌫pµp⌫)1/2. Finally, a fourth one was
discovered by Carter in 1968 [21] and is

Q = �✓ p
2
✓ +m2a2cos2✓ (13)

� ⌅2

"
(aE � Lz)

2
�

sin2✓

�✓

✓
aE �

Lz

sin2✓

◆2
#
.

Applying the Hamilton-Jacobi method to solve the
equations (10), we replace the momentum pµ with the
gradient of the Hamilton principal function S

pµ =
@S

@xµ
, (14)

and the Hamilton-Jacobi equation reads

�
@S

@�
= H =

1

2
gµ⌫

@S

@xµ

@S

@xµ
. (15)
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(X = �µ�µ = const.). Extrapolating from this fact, it is
possible to draw a nice parallel between the scalar field
� and the geodesic xµ(�) of a test particle moving in
the external field of the black hole. Indeed, starting by
assuming the correspondence

�µ
$

dxµ

d�
, (3)

(where � is an a�ne parameter) the condition r
µX = 0

simply translates in the geodesic equation

d2xµ

d�2
+ �µ

⇢�
dx⇢

d�

dx�

d�
= 0 . (4)

Solving the geodesic equation for a given spacetime there-
fore amounts to finding the candidate stealth solution for
the scalar field. Moreover this provides a nice physical
interpretation of the constants appearing in the solution.

Clearly, one also needs to make sure that the equations
of motion (eom) are satisfied for the stealth solution and
the scalar field that we obtain in this way. We therefore
impose the condition X = const. and assume that the
metric is an Einstein space, i.e. Rµ⌫ = ⇤gµ⌫ where ⇤
is an e↵ective cosmological constant to be fixed via the
field equations. These hypotheses greatly simplify the
eom that become

[A3 (E3 � ⇤X)� 2G3X2�� 2 (G2X + 4⇤GX)]�µ�⌫

+(G2 + 2⇤G) gµ⌫ = 0 (5)

for the metric and
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� 3⇤X2�)
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for the scalar field, where we have defined as usual

E3 ⌘ (2�)2 � (�µ⌫)
2 ,

E4 ⌘ (2�)3 � 32� (�µ⌫)
2 + 2 (�µ⌫)

3 . (7)

The e↵ective cosmological constant ⇤ is di↵erent from
the bare cosmological constant ⇤̄ which is included in
the constant piece of the G2 function. Satisfying these
equations will translate in imposing certain conditions
between the constants appearing in the scalar field solu-
tion and/or the free functions of the theory evaluated at
X = const.

In the rest of this paper we focus on the case of Kerr-
(A)dS space-time and the various limits of vanishing cos-
mological constant and/or angular momentum, namely
{Kerr, Schwarzschild-(A)dS, Schwarzschild} metrics. Of
course, one can apply the same technique to di↵erent
Einstein’s space black hole solutions.

Stealth Kerr-(A)dS black holes. Written in the
{t, r, ✓,'} coordinates of Boyer and Lindquist [19], the
Kerr-(A)dS geometry reads,

ds2 = �
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and M is the black hole mass, a the angular momentum
per unit mass and ⇤ the e↵ective cosmological constant.

In order to solve the geodesic equation for such a metric
(see e.g. [20]), it is useful to re-write it in the form of
Hamilton’s equations as

dxµ

d�
=

@H

@pµ
,

dpµ
d�

= �
@H

@xµ
, (10)

where pµ is the momentum and

H =
1

2
gµ⌫pµp⌫ (11)

the Hamiltonian of the test particle. Indeed, one can
easily check that the first equation reduces to

pµ =
dxµ

d�
, (12)

and the second, when combined with the first, gives the
geodesic equation in its well known form (4). The ad-
vantage of this formalism resides in the determination
of the constants of the motion. The components gµ⌫ of
the metric (8) are independent of t and ', and so is the
Hamiltonian (11); as a consequence the second equation
in (10) guarantees that pt and p' are two constants of
the motion. Far from the black hole, these constants be-
come respectively the energy and the projection of the
angular momentum along the rotation axis of the black
hole. We can therefore rename them as pt = �E and
p' = Lz. A third constant of motion is the particle’s
rest mass m = (�gµ⌫pµp⌫)1/2. Finally, a fourth one was
discovered by Carter in 1968 [21] and is
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Applying the Hamilton-Jacobi method to solve the
equations (10), we replace the momentum pµ with the
gradient of the Hamilton principal function S

pµ =
@S

@xµ
, (14)

and the Hamilton-Jacobi equation reads

�
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= H =
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2
gµ⌫

@S

@xµ
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(X = �µ�µ = const.). Extrapolating from this fact, it is
possible to draw a nice parallel between the scalar field
� and the geodesic xµ(�) of a test particle moving in
the external field of the black hole. Indeed, starting by
assuming the correspondence

�µ
$

dxµ

d�
, (3)

(where � is an a�ne parameter) the condition r
µX = 0

simply translates in the geodesic equation

d2xµ

d�2
+ �µ

⇢�
dx⇢

d�

dx�

d�
= 0 . (4)

Solving the geodesic equation for a given spacetime there-
fore amounts to finding the candidate stealth solution for
the scalar field. Moreover this provides a nice physical
interpretation of the constants appearing in the solution.

Clearly, one also needs to make sure that the equations
of motion (eom) are satisfied for the stealth solution and
the scalar field that we obtain in this way. We therefore
impose the condition X = const. and assume that the
metric is an Einstein space, i.e. Rµ⌫ = ⇤gµ⌫ where ⇤
is an e↵ective cosmological constant to be fixed via the
field equations. These hypotheses greatly simplify the
eom that become

[A3 (E3 � ⇤X)� 2G3X2�� 2 (G2X + 4⇤GX)]�µ�⌫

+(G2 + 2⇤G) gµ⌫ = 0 (5)

for the metric and
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�2G3X (E3 � ⇤X)� 2 (G2X + 4⇤GX)2� = 0 (6)

for the scalar field, where we have defined as usual

E3 ⌘ (2�)2 � (�µ⌫)
2 ,

E4 ⌘ (2�)3 � 32� (�µ⌫)
2 + 2 (�µ⌫)

3 . (7)

The e↵ective cosmological constant ⇤ is di↵erent from
the bare cosmological constant ⇤̄ which is included in
the constant piece of the G2 function. Satisfying these
equations will translate in imposing certain conditions
between the constants appearing in the scalar field solu-
tion and/or the free functions of the theory evaluated at
X = const.

In the rest of this paper we focus on the case of Kerr-
(A)dS space-time and the various limits of vanishing cos-
mological constant and/or angular momentum, namely
{Kerr, Schwarzschild-(A)dS, Schwarzschild} metrics. Of
course, one can apply the same technique to di↵erent
Einstein’s space black hole solutions.

Stealth Kerr-(A)dS black holes. Written in the
{t, r, ✓,'} coordinates of Boyer and Lindquist [19], the
Kerr-(A)dS geometry reads,
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and M is the black hole mass, a the angular momentum
per unit mass and ⇤ the e↵ective cosmological constant.

In order to solve the geodesic equation for such a metric
(see e.g. [20]), it is useful to re-write it in the form of
Hamilton’s equations as

dxµ
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=
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@pµ
,

dpµ
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@H

@xµ
, (10)

where pµ is the momentum and

H =
1

2
gµ⌫pµp⌫ (11)

the Hamiltonian of the test particle. Indeed, one can
easily check that the first equation reduces to

pµ =
dxµ

d�
, (12)

and the second, when combined with the first, gives the
geodesic equation in its well known form (4). The ad-
vantage of this formalism resides in the determination
of the constants of the motion. The components gµ⌫ of
the metric (8) are independent of t and ', and so is the
Hamiltonian (11); as a consequence the second equation
in (10) guarantees that pt and p' are two constants of
the motion. Far from the black hole, these constants be-
come respectively the energy and the projection of the
angular momentum along the rotation axis of the black
hole. We can therefore rename them as pt = �E and
p' = Lz. A third constant of motion is the particle’s
rest mass m = (�gµ⌫pµp⌫)1/2. Finally, a fourth one was
discovered by Carter in 1968 [21] and is
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Applying the Hamilton-Jacobi method to solve the
equations (10), we replace the momentum pµ with the
gradient of the Hamilton principal function S

pµ =
@S

@xµ
, (14)

and the Hamilton-Jacobi equation reads
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= H =
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a non trivial scalar field, they have been widely called
stealth solutions1. They can be mapped via disformal
transformations to stealth solutions of DHOST theories
with unitary speed of gravitational waves [16], and are
free of ghost and gradient instabilities [17]. For spheri-
cally symmetric stealth solutions in DHOST theories see
[18–20].

Known stealth solutions are spherically symmetric and
all feature the same characteristic: a constant kinetic
term, X, for the scalar field that does not deform an
underlying Einstein geometry. We suspect that it is this
feature of a constant magnitude of @� that allows stealth
hair, thus we look for an Einstein manifold, Rµ⌫ = ⇤gµ⌫ ,
admitting such a solution for �. First, the equations of
motion under these assumptions become

⇥
A3(X0) (E3 � ⇤X0)� 2 (KX + 4⇤GX) |X0

⇤
�µ�⌫

+ (K + 2⇤G) |X0
gµ⌫ = 0

(3)

for the metric and

A3(X0) (E4 + 2Rµ⌫⇢��
⌫�
�
µ
�
⇢ � 3⇤X02�)

� 2 (KX + 4⇤GX) |X0
2� = 0

(4)

for the scalar, where for compactness we have defined

E3 ⌘ (2�)2 � (�µ⌫)
2
,

E4 ⌘ (2�)3 � 32� (�µ⌫)
2 + 2 (�µ⌫)

3
.

(5)

Setting aside the problem of finding a solution for � mo-
mentarily, note that in the above, A3, G etc. are all con-
stants, evaluated at some X = X0 = (r�)2. Since �µ

itself is not necessarily a constant vector, to satisfy the
above in general we must choose subspaces of the gen-
eral parameter space for {A3, G,K}. Starting with the
top line of (4), we deduce A3(X0) = 0 (unless spacetime
has very special symmetries as we will see later), hence

(KX + 4⇤GX)|X0 = 0 , (6)

where we emphasise that this is at the specific value of X,
X0. These two constraints now imply that (3) is satisfied,
provided we set ⇤ = �K/(2G)|X0 . In other words, the
cosmological constant appearing in the Einstein manifold
is no longer the bare cosmological constant included in
the constant part of the K function. This is the self-
tuning property of these gravity theories.

To sum up: Given a general Lagrangian (1), we first
look for zeros of A3 that determine the value(s) of X0,
then ask that the derivatives of G and K are related at
X = X0 as required above. The e↵ective cosmological
constant is then fixed by the ratio of K to G.

Having established the conditions under which
Einstein-like metrics can be solutions to modified gravity,

1 These solutions were extended and generalised in di↵erent modi-
fied gravity theories with similar properties, see for example [11–
15].

we now make a key observation that allows us to con-
struct a stealth solution on the Einstein manifold: Given
su�cient symmetry in a spacetime, the geodesic equation
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can be solved using a Hamilton-Jacobi potential S, such
that the gradient of the potential gives the tangent vector
of the geodesic
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Typically, this method is used to simplify the solution of
a particular geodesic (such as the orbit of a planet), how-
ever, the form of the potential can be used over a wider
range of co-ordinate values that in the case of a hypersur-
face orthogonal geodesic congruence becomes e↵ectively
the whole of the spacetime. Thus, given that �µ has con-
stant magnitude, as does the tangent vector of an a�nely
parametrised geodesic, it is natural to make the identifi-
cation

� $ S , (9)

the properties of the geodesic congruence then will ensure
that � has the requisite properties to be a stealth solution
to the extended gravity equations of motion. Moreover,
this provides a nice physical interpretation of the con-
stants appearing in the solution.
We will now illustrate this technique and find a rotat-

ing black hole with stealth hair. Consider the Kerr-(A)dS
geometry [3]
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M is the black hole mass, a the angular momentum pa-
rameter and ` =

p
3/⇤ is the de Sitter radius, related to

the e↵ective cosmological constant (for AdS reverse the
sign of `2).
Applying the Hamilton-Jacobi technique, we note that

the components of the metric (10) are independent of t
and ', thus E = �pt and Lz = p' are two constants
of the motion, identified with the energy and the az-
imuthal angular momentum respectively. A third con-
stant of motion is the magnitude of the tangent vector
g
µ⌫
pµp⌫ = X0 = �m

2, associated with the rest mass of
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a non trivial scalar field, they have been widely called
stealth solutions1. They can be mapped via disformal
transformations to stealth solutions of DHOST theories
with unitary speed of gravitational waves [16], and are
free of ghost and gradient instabilities [17]. For spheri-
cally symmetric stealth solutions in DHOST theories see
[18–20].

Known stealth solutions are spherically symmetric and
all feature the same characteristic: a constant kinetic
term, X, for the scalar field that does not deform an
underlying Einstein geometry. We suspect that it is this
feature of a constant magnitude of @� that allows stealth
hair, thus we look for an Einstein manifold, Rµ⌫ = ⇤gµ⌫ ,
admitting such a solution for �. First, the equations of
motion under these assumptions become
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Setting aside the problem of finding a solution for � mo-
mentarily, note that in the above, A3, G etc. are all con-
stants, evaluated at some X = X0 = (r�)2. Since �µ

itself is not necessarily a constant vector, to satisfy the
above in general we must choose subspaces of the gen-
eral parameter space for {A3, G,K}. Starting with the
top line of (4), we deduce A3(X0) = 0 (unless spacetime
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(KX + 4⇤GX)|X0 = 0 , (6)

where we emphasise that this is at the specific value of X,
X0. These two constraints now imply that (3) is satisfied,
provided we set ⇤ = �K/(2G)|X0 . In other words, the
cosmological constant appearing in the Einstein manifold
is no longer the bare cosmological constant included in
the constant part of the K function. This is the self-
tuning property of these gravity theories.

To sum up: Given a general Lagrangian (1), we first
look for zeros of A3 that determine the value(s) of X0,
then ask that the derivatives of G and K are related at
X = X0 as required above. The e↵ective cosmological
constant is then fixed by the ratio of K to G.

Having established the conditions under which
Einstein-like metrics can be solutions to modified gravity,

1 These solutions were extended and generalised in di↵erent modi-
fied gravity theories with similar properties, see for example [11–
15].
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FIG. 1. Contours of constant � for a = GM = 0.1`,
⌘c = 0.612 in local Kruskal coordinates for the future event

horizons, bU = �e�
b(t�r?)

2 ,cV = �e�
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2 , (i being
the absolute values of the surface gravities of each horizon).

the test particle2. Most importantly however, a fourth
constant was discovered by Carter [21] (here generalised
to include ⇤):
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who demonstrated that the geodesic equation was sepa-
rable. We can therefore write
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Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2
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2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.

FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
p
R

across r0 and set

Sr = (H[r � r0]�H[r0 � r])

Z r

r0

|
p
R| dr
�r

(18)

where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward

Carter  1968

3

FIG. 1. Contours of constant � for a = GM = 0.1`,
⌘c = 0.612 in local Kruskal coordinates for the future event

horizons, bU = �e�
b(t�r?)

2 ,cV = �e�
c(t+r?)

2 , (i being
the absolute values of the surface gravities of each horizon).

the test particle2. Most importantly however, a fourth
constant was discovered by Carter [21] (here generalised
to include ⇤):

Q = �✓ p
2
✓ +m

2
a
2cos2✓

� ⌅2

"
(aE � Lz)

2 � sin2✓

�✓

✓
aE � Lz

sin2✓

◆2
#
,

(12)

who demonstrated that the geodesic equation was sepa-
rable. We can therefore write

S = �E t+ Lz'+ Sr(r) + S✓(✓) , (13)

where

Sr = ±
Z p

R

�r
dr , S✓ = ±

Z p
⇥

�✓
d✓ , (14)

with

R = ⌅2
⇥
E
�
r
2 + a

2
�
� aLz

⇤2

� �r

h
Q+ ⌅2 (aE � Lz)

2 +m
2
r
2
i
, (15)

⇥ = �⌅2sin2✓

✓
aE � Lz

sin2✓

◆2

+ �✓

h
Q+ ⌅2 (aE � Lz)

2 �m
2
a
2cos2✓

i
. (16)

Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2

a
2
E

2 = m
2
a
2, and writing ⌅E = ⌘m, we get:

⇥ = a
2
m

2sin2✓
�
�✓ � ⌘

2
�
,

R = m
2(r2 + a

2)
�
⌘
2(r2 + a

2)��r

�
.

(17)

2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.

FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
p
R

across r0 and set

Sr = (H[r � r0]�H[r0 � r])

Z r

r0

|
p
R| dr
�r

(18)

where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward

2

a non trivial scalar field, they have been widely called
stealth solutions1. They can be mapped via disformal
transformations to stealth solutions of DHOST theories
with unitary speed of gravitational waves [16], and are
free of ghost and gradient instabilities [17]. For spheri-
cally symmetric stealth solutions in DHOST theories see
[18–20].

Known stealth solutions are spherically symmetric and
all feature the same characteristic: a constant kinetic
term, X, for the scalar field that does not deform an
underlying Einstein geometry. We suspect that it is this
feature of a constant magnitude of @� that allows stealth
hair, thus we look for an Einstein manifold, Rµ⌫ = ⇤gµ⌫ ,
admitting such a solution for �. First, the equations of
motion under these assumptions become

⇥
A3(X0) (E3 � ⇤X0)� 2 (KX + 4⇤GX) |X0

⇤
�µ�⌫

+ (K + 2⇤G) |X0
gµ⌫ = 0

(3)

for the metric and

A3(X0) (E4 + 2Rµ⌫⇢��
⌫�
�
µ
�
⇢ � 3⇤X02�)

� 2 (KX + 4⇤GX) |X0
2� = 0

(4)

for the scalar, where for compactness we have defined

E3 ⌘ (2�)2 � (�µ⌫)
2
,

E4 ⌘ (2�)3 � 32� (�µ⌫)
2 + 2 (�µ⌫)

3
.

(5)

Setting aside the problem of finding a solution for � mo-
mentarily, note that in the above, A3, G etc. are all con-
stants, evaluated at some X = X0 = (r�)2. Since �µ

itself is not necessarily a constant vector, to satisfy the
above in general we must choose subspaces of the gen-
eral parameter space for {A3, G,K}. Starting with the
top line of (4), we deduce A3(X0) = 0 (unless spacetime
has very special symmetries as we will see later), hence

(KX + 4⇤GX)|X0 = 0 , (6)

where we emphasise that this is at the specific value of X,
X0. These two constraints now imply that (3) is satisfied,
provided we set ⇤ = �K/(2G)|X0 . In other words, the
cosmological constant appearing in the Einstein manifold
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look for zeros of A3 that determine the value(s) of X0,
then ask that the derivatives of G and K are related at
X = X0 as required above. The e↵ective cosmological
constant is then fixed by the ratio of K to G.
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Einstein-like metrics can be solutions to modified gravity,
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15].
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FIG. 1. Contours of constant � for a = GM = 0.1`,
⌘c = 0.612 in local Kruskal coordinates for the future event

horizons, bU = �e�
b(t�r?)

2 ,cV = �e�
c(t+r?)

2 , (i being
the absolute values of the surface gravities of each horizon).

the test particle2. Most importantly however, a fourth
constant was discovered by Carter [21] (here generalised
to include ⇤):
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who demonstrated that the geodesic equation was sepa-
rable. We can therefore write
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Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2
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2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.

FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
p
R

across r0 and set
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where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
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2)/�r is the tor-

toise coordinate, therefore, if we interpret
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the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
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where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r
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event horizons, where r
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Note however, that for ⌘c, R has a quadratic zero at
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where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
p
R

across r0 and set

Sr = (H[r � r0]�H[r0 � r])

Z r
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|
p
R| dr
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(18)

where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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the test particle2. Most importantly however, a fourth
constant was discovered by Carter [21] (here generalised
to include ⇤):
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who demonstrated that the geodesic equation was sepa-
rable. We can therefore write

S = �E t+ Lz'+ Sr(r) + S✓(✓) , (13)

where
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Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2
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2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.

FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
p
R

across r0 and set

Sr = (H[r � r0]�H[r0 � r])
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|
p
R| dr
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(18)

where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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who demonstrated that the geodesic equation was sepa-
rable. We can therefore write

S = �E t+ Lz'+ Sr(r) + S✓(✓) , (13)

where
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Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2
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2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.

FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
p
R

across r0 and set

Sr = (H[r � r0]�H[r0 � r])
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where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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who demonstrated that the geodesic equation was sepa-
rable. We can therefore write
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Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2
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2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.

FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for
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where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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the test particle2. Most importantly however, a fourth
constant was discovered by Carter [21] (here generalised
to include ⇤):
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who demonstrated that the geodesic equation was sepa-
rable. We can therefore write

S = �E t+ Lz'+ Sr(r) + S✓(✓) , (13)

where
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Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2
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2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.
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FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
p
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across r0 and set
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where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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the test particle2. Most importantly however, a fourth
constant was discovered by Carter [21] (here generalised
to include ⇤):
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who demonstrated that the geodesic equation was sepa-
rable. We can therefore write

S = �E t+ Lz'+ Sr(r) + S✓(✓) , (13)

where
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Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2
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2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.

FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
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across r0 and set
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where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward
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M is the mass and a the angular momentum parameter (a≤M)
of the black hole. Kerr’s solution has an inner (r = rI) and an
outer (r = rH ) event horizon, corresponding to the roots of
∆ = 0.

Taking into account the fact that the background solution is
stationary and axisymmetric, one can decompose the pertur-
bations into modes of the form

ψ(r,θ )e−iωt+imϕ , (3)

where m is an integer and ω is the frequency which turns out
to be complex because of the damping of the modes due to
gravitational radiation; ψ is a function (parametrized by ω
and m) of the radial and angular coordinates.

In the case of spherical symmetry, the perturbation equa-
tions, after decomposition into spherical harmonics, reduce to
ordinary differential equations along the radial direction. By
contrast, in the Kerr case one ends up with partial differential
equations that depend on both r and θ . Remarkably, as shown
by Teukoslky [2] upon using the Newman-Penrose formalism
[32], the perturbation equations can be expressed in a separa-
ble form. Indeed, they are of the form

O(ω ,m)ψ = 0, (4)

where the second order differential operator O(ω ,m) can be
written as

O(ω ,m) = Or(ω ,m)+Oθ (ω ,m) , (5)

where Or and Oθ are second order differential operators in-
volving respectively the variables r and θ only. As a con-
sequence ψ can be written as a (sum of) products ψ(r,θ ) =
R(r)S(θ ) where R and S satisfy separately ordinary differen-
tial equations. The details and the explicit equations can be
found in the original Teukolsky paper [2].

The separability property renders the calculation of quasi-
normal modes much more tractable. In this paper, we show
that the equations for the tensor perturbations in DHOST the-
ories that are known to admit a hairy Kerr solution remain
separable. More precisely, these equations are exactly given
by the classical equation (4) where now an effective “source”
term appears and depends on the scalar perturbation, thus
on the hair of the black hole solution. Remarkably, we find
a parametrization of the modified scalar-tensor perturbations
which allow us to compute the source term.

III. DHOST THEORIES AND STEALTH KERR SOLUTION

Let us now consider DHOST theories, which represent the
most general family of covariant scalar-tensor theories propa-
gating a single scalar degree of freedom. We restrict our dis-
cussion to a subclass of DHOST theories which are shift and
reflection symmetric (φ → φ + c, φ →−φ) and whose tensor
perturbations propagate at the speed of light [33–36]. Their
Lagrangian can be written in the form

L = K(X)+G(X)R+A3(X)L3 +A4(X)L4 +A5(X)L5 ,

(6)

where G, K and AI are functions of X ≡ φµφ µ , and the La-
grangians LI are defined by

L3 ≡ φ µφν φµν!φ , L4 ≡ φ µ φµρ φνφνρ , L5 ≡ (φ µ φν φµν)
2 .

In our simplified notation, upper or lower indices on φ corre-
spond to (covariant) derivatives, e.g. φ µ = ∇µφ and φµν =
∇µ∇ν φ . Due to the degeneracy conditions, which guarantee
the presence of a single scalar degree of freedom, A4 and A5

are not free but depend on G and A3 as follows [24]

A4 =−A3 +
1

8G

(

48G2
X + 8A3GX X −A2

3X2
)

, (7)

A5 =
A3

2G
(4GX +A3X) . (8)

Furthermore, without loss of generality, since for our purposes
we can consider the theory in vacuum, we can set G = 1 by
means of an X-dependent conformal transformation [25, 37].

In this subclass of theories, it is possible to construct stealth
rotating black hole solutions, where the geometry is exactly
Kerr (or Kerr-de Sitter if one adds an effective cosmological
constant) and the scalar field φ is non-trivial [23]. These solu-
tions are characterised by a constant value of the kinetic term3

X = X0 = −µ2, and require that the following conditions are
satisfied for the two independent functions A3 and K in the
Lagrangian (6) (while G = 1):

A3(X0) = 0 , K(X0) = 0 , KX (X0) = 0 . (9)

Note that this implies, according to the degeneracy conditions
(7-8), that A4(X0) = 0 and A5(X0) = 0 as well.

The scalar field φ can be obtained by exploiting the analogy
with families of Kerr geodesics [38] and reads

φ(t,r) =−µ t + εµ
∫

√

R(r)

∆(r)
dr , (10)

where

R(r)≡ 2Mr(r2 + a2) , (11)

and ε can take the values ±1, corresponding to the two
branches of the square root4 in (10).

IV. EQUATIONS FOR THE PERTURBATIONS

We now expand the equations of motion for the scalar field
and the metric to first order in perturbations, using

gµν = gµν + δgµν , φ = φ + δφ , (12)

3 Here we take φ µ to be timelike, should a spacelike φ µ be required, substi-
tute µ2 →−µ2 in what follows.

4 Notice that, in absence of an effective cosmological constant (i.e. Kerr and
not Kerr-dS metric), it is impossible to realise the merging of branches that
characterises the solutions in [23] and that provides a finite scalar field at
both the event and cosmological horizons. We leave the study of perturba-
tions around such solutions for future work.
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ories that are known to admit a hairy Kerr solution remain
separable. More precisely, these equations are exactly given
by the classical equation (4) where now an effective “source”
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Furthermore, without loss of generality, since for our purposes
we can consider the theory in vacuum, we can set G = 1 by
means of an X-dependent conformal transformation [25, 37].

In this subclass of theories, it is possible to construct stealth
rotating black hole solutions, where the geometry is exactly
Kerr (or Kerr-de Sitter if one adds an effective cosmological
constant) and the scalar field φ is non-trivial [23]. These solu-
tions are characterised by a constant value of the kinetic term3

X = X0 = −µ2, and require that the following conditions are
satisfied for the two independent functions A3 and K in the
Lagrangian (6) (while G = 1):

A3(X0) = 0 , K(X0) = 0 , KX (X0) = 0 . (9)

Note that this implies, according to the degeneracy conditions
(7-8), that A4(X0) = 0 and A5(X0) = 0 as well.
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with families of Kerr geodesics [38] and reads
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and the metric to first order in perturbations, using

gµν = gµν + δgµν , φ = φ + δφ , (12)

3 Here we take φ µ to be timelike, should a spacelike φ µ be required, substi-
tute µ2 →−µ2 in what follows.

4 Notice that, in absence of an effective cosmological constant (i.e. Kerr and
not Kerr-dS metric), it is impossible to realise the merging of branches that
characterises the solutions in [23] and that provides a finite scalar field at
both the event and cosmological horizons. We leave the study of perturba-
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Furthermore, without loss of generality, since for our purposes
we can consider the theory in vacuum, we can set G = 1 by
means of an X-dependent conformal transformation [25, 37].

In this subclass of theories, it is possible to construct stealth
rotating black hole solutions, where the geometry is exactly
Kerr (or Kerr-de Sitter if one adds an effective cosmological
constant) and the scalar field φ is non-trivial [23]. These solu-
tions are characterised by a constant value of the kinetic term3

X = X0 = −µ2, and require that the following conditions are
satisfied for the two independent functions A3 and K in the
Lagrangian (6) (while G = 1):

A3(X0) = 0 , K(X0) = 0 , KX (X0) = 0 . (9)

Note that this implies, according to the degeneracy conditions
(7-8), that A4(X0) = 0 and A5(X0) = 0 as well.
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and ε can take the values ±1, corresponding to the two
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We now expand the equations of motion for the scalar field
and the metric to first order in perturbations, using

gµν = gµν + δgµν , φ = φ + δφ , (12)

3 Here we take φ µ to be timelike, should a spacelike φ µ be required, substi-
tute µ2 →−µ2 in what follows.

4 Notice that, in absence of an effective cosmological constant (i.e. Kerr and
not Kerr-dS metric), it is impossible to realise the merging of branches that
characterises the solutions in [23] and that provides a finite scalar field at
both the event and cosmological horizons. We leave the study of perturba-
tions around such solutions for future work.
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satisfied for the two independent functions A3 and K in the
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Note that this implies, according to the degeneracy conditions
(7-8), that A4(X0) = 0 and A5(X0) = 0 as well.
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where barred quantities refer to the background whereas δgµν

and δφ are perturbations. Interestingly, the leading order
terms in the expansion of the equations of motion simplify
drastically, and one obtains, after straightforward calculations,
the equations

∇µ

(

Ξφ
µ

δX
)

= 0 , (13)

δGµν = δTµν ≡
1

2
Ξφ µφ νδX , (14)

where δGµν is the linearised Einstein tensor, δTµν is the ef-
fective source term associated with the scalar field and δX is
the first order perturbation of the kinetic term. We have also
introduced the notation

Ξ ≡ A3X(X0)E3 − 2KXX(X0), (15)

with

E3 ≡ (!φ )2 − (φ µν )
2 . (16)

When one replaces the background metric by the Kerr so-
lution (1) and the background scalar field by the expression
(10), the function Ξ becomes

Ξ = 2Mµ2a2 3cos2 θ + 1

ρ6
A3X(X0)− 2KXX(X0) . (17)

At this stage, let us make two comments. First, the equa-
tions for the perturbations do not involve the Lagrangians L4

and L5 in (6). Indeed, since the functions A3,A4 and A5 vanish
on the background, the quadratic expansion of the last three
terms in the Lagrangian (6) is given by

δX [A3X(X0)δL3 +A4X(X0)δL4 +A5X(X0)δL5] , (18)

where δLI is the first order perturbation of Lagrangian LI . The
latter can be easily rewritten as

L3 =
1

2
!φφ µ ∂µX , L4 =

1

4
∂µX∂ µX , L5 =

1

4
(φφ µ ∂µ X)2 ,

hence, we see immediately that δL4 = δL5 = 0 at linear order.
As a consequence, the quadratic Lagrangian (18) reduces to

1

4
A3X(X0)!φ φ

µ
∂µ(δX2). (19)

Second, we see that using the variable δX , which is related
to the original perturbations (12) through the equation

δX = 2φ
µ

∂µ(δφ)−φ
µ

φ
ν
δgµν , (20)

considerably simplifies the dynamics. Indeed, δX is totally
decoupled from the Einstein tensor perturbations and, as we
are going to see in the next section, its equation can be solved
explicitly. As a consequence, the equations for the tensor per-
turbations reduce to the linearized Einstein equations supple-
mented with a source term which depends on δX . Therefore,
the Teukolsky equations (4) for the Newman-Penrose coef-
ficients ψ is exactly the same as in general relativity with a
source term that can be explicitly computed.

V. SOLUTION FOR THE SCALAR KINETIC DENSITY
PERTURBATION δX

We now solve equation (13) for δX . This equation is first
order in δX and therefore can be easily integrated.

First, we write it as follows

∂µ
(√

−gΞφ µ δX
)

= 0 , (21)

where Ξ is given by (17), and the determinant of the metric g
and the non-vanishing components of φ µ are given by

√
−g = ρ2 sinθ , (22)

φ t =
µ

∆ρ2

[

(r2 + a2)2 − a2∆sin2 θ
]

, (23)

φ r = εµ

√
R

ρ2
, φϕ = 2Maµ

r

∆ρ2
. (24)

As φ does not depend on θ (in the Kerr geometry), the com-
ponent φθ = gθθ φθ vanishes. Substituting these expressions
into (21) leads to the very simple form

ε∆∂r(
√

Rχ)+
[

(r2 + a2)2 − a2∆sin2 θ
]

∂t χ + 2Mar∂ϕ χ = 0 ,

where we have introduced the variable χ ≡ ΞδX for simplic-
ity. We decompose the solution into modes

χ = ∑
m

∫

dω χm,ω(r,θ )e
−iωt+imϕ , (25)

and we easily obtain the general solution for each mode

χm,ω (r,θ ) = (26)

Cm,ω (θ )
√

R(r)
exp

[

iε
(

−ωI(r)−ω sin2 θJ(r)+mK(r)
)]

,

where Cm,ω is, at this stage, an arbitrary function of θ
(parametrized by ω and m) and

I(r)≡−
∫

dr
(r2 + a2)2

∆(r)
√

R(r)
, (27)

J(r)≡
∫

dr
a2

√

R(r)
, (28)

K(r)≡−
∫

dr
2Mar

∆(r)
√

R(r)
. (29)

Thus, the components δXm,ω of the perturbation δX are im-
mediately given by δXm,ω = χm,ω/Ξ.

VI. BEHAVIOUR OF THE SOLUTION AT THE
BOUNDARIES

Now, let us study the regularity of this solution. We start an-
alyzing the behavior of the modes (26) when r approches the
horizon rH , where ∆ vanishes. In this limit, one finds a diver-
gence in the integrals I and K. However, the Boyer-Lindquist
coordinates also become singular at the horizon and one must
use, instead, well-behaved coordinates such as the ingoing

3

where barred quantities refer to the background whereas δgµν

and δφ are perturbations. Interestingly, the leading order
terms in the expansion of the equations of motion simplify
drastically, and one obtains, after straightforward calculations,
the equations

∇µ

(

Ξφ
µ

δX
)

= 0 , (13)

δGµν = δTµν ≡
1

2
Ξφ µφ νδX , (14)

where δGµν is the linearised Einstein tensor, δTµν is the ef-
fective source term associated with the scalar field and δX is
the first order perturbation of the kinetic term. We have also
introduced the notation

Ξ ≡ A3X(X0)E3 − 2KXX(X0), (15)

with

E3 ≡ (!φ )2 − (φ µν )
2 . (16)

When one replaces the background metric by the Kerr so-
lution (1) and the background scalar field by the expression
(10), the function Ξ becomes

Ξ = 2Mµ2a2 3cos2 θ + 1

ρ6
A3X(X0)− 2KXX(X0) . (17)

At this stage, let us make two comments. First, the equa-
tions for the perturbations do not involve the Lagrangians L4

and L5 in (6). Indeed, since the functions A3,A4 and A5 vanish
on the background, the quadratic expansion of the last three
terms in the Lagrangian (6) is given by

δX [A3X(X0)δL3 +A4X(X0)δL4 +A5X(X0)δL5] , (18)

where δLI is the first order perturbation of Lagrangian LI . The
latter can be easily rewritten as

L3 =
1

2
!φφ µ ∂µX , L4 =

1

4
∂µX∂ µX , L5 =

1

4
(φφ µ ∂µ X)2 ,

hence, we see immediately that δL4 = δL5 = 0 at linear order.
As a consequence, the quadratic Lagrangian (18) reduces to

1

4
A3X(X0)!φ φ

µ
∂µ(δX2). (19)

Second, we see that using the variable δX , which is related
to the original perturbations (12) through the equation

δX = 2φ
µ

∂µ(δφ)−φ
µ

φ
ν
δgµν , (20)

considerably simplifies the dynamics. Indeed, δX is totally
decoupled from the Einstein tensor perturbations and, as we
are going to see in the next section, its equation can be solved
explicitly. As a consequence, the equations for the tensor per-
turbations reduce to the linearized Einstein equations supple-
mented with a source term which depends on δX . Therefore,
the Teukolsky equations (4) for the Newman-Penrose coef-
ficients ψ is exactly the same as in general relativity with a
source term that can be explicitly computed.

V. SOLUTION FOR THE SCALAR KINETIC DENSITY
PERTURBATION δX

We now solve equation (13) for δX . This equation is first
order in δX and therefore can be easily integrated.

First, we write it as follows

∂µ
(√

−gΞφ µ δX
)

= 0 , (21)

where Ξ is given by (17), and the determinant of the metric g
and the non-vanishing components of φ µ are given by

√
−g = ρ2 sinθ , (22)

φ t =
µ

∆ρ2

[

(r2 + a2)2 − a2∆sin2 θ
]

, (23)

φ r = εµ

√
R

ρ2
, φϕ = 2Maµ

r

∆ρ2
. (24)

As φ does not depend on θ (in the Kerr geometry), the com-
ponent φθ = gθθ φθ vanishes. Substituting these expressions
into (21) leads to the very simple form

ε∆∂r(
√

Rχ)+
[

(r2 + a2)2 − a2∆sin2 θ
]

∂t χ + 2Mar∂ϕ χ = 0 ,

where we have introduced the variable χ ≡ ΞδX for simplic-
ity. We decompose the solution into modes

χ = ∑
m

∫

dω χm,ω(r,θ )e
−iωt+imϕ , (25)

and we easily obtain the general solution for each mode

χm,ω (r,θ ) = (26)

Cm,ω (θ )
√

R(r)
exp

[

iε
(

−ωI(r)−ω sin2 θJ(r)+mK(r)
)]

,

where Cm,ω is, at this stage, an arbitrary function of θ
(parametrized by ω and m) and

I(r)≡−
∫

dr
(r2 + a2)2

∆(r)
√

R(r)
, (27)

J(r)≡
∫

dr
a2

√

R(r)
, (28)

K(r)≡−
∫

dr
2Mar

∆(r)
√

R(r)
. (29)

Thus, the components δXm,ω of the perturbation δX are im-
mediately given by δXm,ω = χm,ω/Ξ.

VI. BEHAVIOUR OF THE SOLUTION AT THE
BOUNDARIES

Now, let us study the regularity of this solution. We start an-
alyzing the behavior of the modes (26) when r approches the
horizon rH , where ∆ vanishes. In this limit, one finds a diver-
gence in the integrals I and K. However, the Boyer-Lindquist
coordinates also become singular at the horizon and one must
use, instead, well-behaved coordinates such as the ingoing
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M is the mass and a the angular momentum parameter (a≤M)
of the black hole. Kerr’s solution has an inner (r = rI) and an
outer (r = rH ) event horizon, corresponding to the roots of
∆ = 0.

Taking into account the fact that the background solution is
stationary and axisymmetric, one can decompose the pertur-
bations into modes of the form

ψ(r,θ )e−iωt+imϕ , (3)

where m is an integer and ω is the frequency which turns out
to be complex because of the damping of the modes due to
gravitational radiation; ψ is a function (parametrized by ω
and m) of the radial and angular coordinates.

In the case of spherical symmetry, the perturbation equa-
tions, after decomposition into spherical harmonics, reduce to
ordinary differential equations along the radial direction. By
contrast, in the Kerr case one ends up with partial differential
equations that depend on both r and θ . Remarkably, as shown
by Teukoslky [2] upon using the Newman-Penrose formalism
[32], the perturbation equations can be expressed in a separa-
ble form. Indeed, they are of the form

O(ω ,m)ψ = 0, (4)

where the second order differential operator O(ω ,m) can be
written as

O(ω ,m) = Or(ω ,m)+Oθ (ω ,m) , (5)

where Or and Oθ are second order differential operators in-
volving respectively the variables r and θ only. As a con-
sequence ψ can be written as a (sum of) products ψ(r,θ ) =
R(r)S(θ ) where R and S satisfy separately ordinary differen-
tial equations. The details and the explicit equations can be
found in the original Teukolsky paper [2].

The separability property renders the calculation of quasi-
normal modes much more tractable. In this paper, we show
that the equations for the tensor perturbations in DHOST the-
ories that are known to admit a hairy Kerr solution remain
separable. More precisely, these equations are exactly given
by the classical equation (4) where now an effective “source”
term appears and depends on the scalar perturbation, thus
on the hair of the black hole solution. Remarkably, we find
a parametrization of the modified scalar-tensor perturbations
which allow us to compute the source term.

III. DHOST THEORIES AND STEALTH KERR SOLUTION

Let us now consider DHOST theories, which represent the
most general family of covariant scalar-tensor theories propa-
gating a single scalar degree of freedom. We restrict our dis-
cussion to a subclass of DHOST theories which are shift and
reflection symmetric (φ → φ + c, φ →−φ) and whose tensor
perturbations propagate at the speed of light [33–36]. Their
Lagrangian can be written in the form

L = K(X)+G(X)R+A3(X)L3 +A4(X)L4 +A5(X)L5 ,

(6)

where G, K and AI are functions of X ≡ φµφ µ , and the La-
grangians LI are defined by

L3 ≡ φ µφν φµν!φ , L4 ≡ φ µ φµρ φνφνρ , L5 ≡ (φ µ φν φµν)
2 .

In our simplified notation, upper or lower indices on φ corre-
spond to (covariant) derivatives, e.g. φ µ = ∇µφ and φµν =
∇µ∇ν φ . Due to the degeneracy conditions, which guarantee
the presence of a single scalar degree of freedom, A4 and A5

are not free but depend on G and A3 as follows [24]

A4 =−A3 +
1

8G

(

48G2
X + 8A3GX X −A2

3X2
)

, (7)

A5 =
A3

2G
(4GX +A3X) . (8)

Furthermore, without loss of generality, since for our purposes
we can consider the theory in vacuum, we can set G = 1 by
means of an X-dependent conformal transformation [25, 37].

In this subclass of theories, it is possible to construct stealth
rotating black hole solutions, where the geometry is exactly
Kerr (or Kerr-de Sitter if one adds an effective cosmological
constant) and the scalar field φ is non-trivial [23]. These solu-
tions are characterised by a constant value of the kinetic term3

X = X0 = −µ2, and require that the following conditions are
satisfied for the two independent functions A3 and K in the
Lagrangian (6) (while G = 1):

A3(X0) = 0 , K(X0) = 0 , KX (X0) = 0 . (9)

Note that this implies, according to the degeneracy conditions
(7-8), that A4(X0) = 0 and A5(X0) = 0 as well.

The scalar field φ can be obtained by exploiting the analogy
with families of Kerr geodesics [38] and reads

φ(t,r) =−µ t + εµ
∫

√

R(r)

∆(r)
dr , (10)

where

R(r)≡ 2Mr(r2 + a2) , (11)

and ε can take the values ±1, corresponding to the two
branches of the square root4 in (10).

IV. EQUATIONS FOR THE PERTURBATIONS

We now expand the equations of motion for the scalar field
and the metric to first order in perturbations, using

gµν = gµν + δgµν , φ = φ + δφ , (12)

3 Here we take φ µ to be timelike, should a spacelike φ µ be required, substi-
tute µ2 →−µ2 in what follows.

4 Notice that, in absence of an effective cosmological constant (i.e. Kerr and
not Kerr-dS metric), it is impossible to realise the merging of branches that
characterises the solutions in [23] and that provides a finite scalar field at
both the event and cosmological horizons. We leave the study of perturba-
tions around such solutions for future work.

 r(r) ✓(✓)
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FIG. 1. Contours of constant � for a = GM = 0.1`,
⌘c = 0.612 in local Kruskal coordinates for the future event

horizons, bU = �e�
b(t�r?)

2 ,cV = �e�
c(t+r?)

2 , (i being
the absolute values of the surface gravities of each horizon).

the test particle2. Most importantly however, a fourth
constant was discovered by Carter [21] (here generalised
to include ⇤):
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2 � sin2✓

�✓

✓
aE � Lz

sin2✓

◆2
#
,

(12)

who demonstrated that the geodesic equation was sepa-
rable. We can therefore write

S = �E t+ Lz'+ Sr(r) + S✓(✓) , (13)

where

Sr = ±
Z p

R

�r
dr , S✓ = ±

Z p
⇥

�✓
d✓ , (14)

with

R = ⌅2
⇥
E
�
r
2 + a

2
�
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h
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, (15)
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◆2
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h
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2 �m
2
a
2cos2✓

i
. (16)

Now let us look for explicit solutions for the scalar field
� = S. This places further constraints on the potential,
as we require �µ to be regular throughout the spacetime.
Checking regularity on the axes requires @S/@✓ ! 0 as
✓ ! 0,⇡, i.e. ⇥ / sin2✓. This in turn requires Lz = 0
and Q+⌅2

a
2
E

2 = m
2
a
2, and writing ⌅E = ⌘m, we get:

⇥ = a
2
m

2sin2✓
�
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2
�
,

R = m
2(r2 + a

2)
�
⌘
2(r2 + a

2)��r

�
.

(17)

2 Note, for illustration we take timelike geodesics, should a space-
like congruence be required, substitute m2 ! �m2 in the deriva-
tion.

FIG. 2. Contours of � at constant v = t + r? in the {r, ✓}
plane near the black hole horizon with the same parameter
values as figure 1, taking m = 100.

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” ⌘, constrained to lie
in ⌘ 2 [⌘c, 1]; the upper limit coming from ⇥ � 0, and
the lower limit from R � 0 in (17).
At first sight, it appears we have four distinct solu-

tions coming from the choice of signs in (14), however,
an interesting restriction occurs when ⌘ = 1 or ⌘c. In
this case ⇥ (or R) vanishes for some value of ✓ (or r),
and the branch choice changes. This is most easily seen
for ⌘ = 1, here ⇥1 = m2a4

`2 sin2✓cos2✓, and the natural
root is cos✓ which changes sign across the hemisphere.
The same phenomenon occurs for R, but this leads to an
important consequence as we now discuss.
Inspection of (14) shows that Sr ⇠ ±m⌘r

? near the
event horizons, where r

? =
R
dr(r2 + a

2)/�r is the tor-

toise coordinate, therefore, if we interpret
p
R as being

the positive root, our scalar field will be divergent at one
or the other horizon (dependent on the branch choice).
Note however, that for ⌘c, R has a quadratic zero at
some r0: R ⇠ R

00(r0)(r � r0)2/2, thus the true root,p
R ⇠ (r � r0), changes sign at r0. This means that for

� to be di↵erentiable, we must change the sign of
p
R

across r0 and set

Sr = (H[r � r0]�H[r0 � r])

Z r

r0

|
p
R| dr
�r

(18)

where H is the Heaviside step function. This now ren-
ders � finite at both future event horizons, and infinitely
di↵erentiable between the horizons as shown in figure 1.
It is worth emphasising this last point: All black hole

solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric, and have scalar fields
that diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when �

interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with fi-
nite stealth scalar hair. This scalar will be manifestly
continuous across each horizon, and be straightforward

Carter  1968
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Perturbations
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where barred quantities refer to the background whereas δgµν

and δφ are perturbations. Interestingly, the leading order
terms in the expansion of the equations of motion simplify
drastically, and one obtains, after straightforward calculations,
the equations

∇µ

(

Ξφ
µ

δX
)

= 0 , (13)

δGµν = δTµν ≡
1

2
Ξφ µφ νδX , (14)

where δGµν is the linearised Einstein tensor, δTµν is the ef-
fective source term associated with the scalar field and δX is
the first order perturbation of the kinetic term. We have also
introduced the notation

Ξ ≡ A3X(X0)E3 − 2KXX(X0), (15)

with

E3 ≡ (!φ )2 − (φ µν )
2 . (16)

When one replaces the background metric by the Kerr so-
lution (1) and the background scalar field by the expression
(10), the function Ξ becomes

Ξ = 2Mµ2a2 3cos2 θ + 1

ρ6
A3X(X0)− 2KXX(X0) . (17)

At this stage, let us make two comments. First, the equa-
tions for the perturbations do not involve the Lagrangians L4

and L5 in (6). Indeed, since the functions A3,A4 and A5 vanish
on the background, the quadratic expansion of the last three
terms in the Lagrangian (6) is given by

δX [A3X(X0)δL3 +A4X(X0)δL4 +A5X(X0)δL5] , (18)

where δLI is the first order perturbation of Lagrangian LI . The
latter can be easily rewritten as

L3 =
1

2
!φφ µ ∂µX , L4 =

1

4
∂µX∂ µX , L5 =

1

4
(φφ µ ∂µ X)2 ,

hence, we see immediately that δL4 = δL5 = 0 at linear order.
As a consequence, the quadratic Lagrangian (18) reduces to

1

4
A3X(X0)!φ φ

µ
∂µ(δX2). (19)

Second, we see that using the variable δX , which is related
to the original perturbations (12) through the equation

δX = 2φ
µ

∂µ(δφ)−φ
µ

φ
ν
δgµν , (20)

considerably simplifies the dynamics. Indeed, δX is totally
decoupled from the Einstein tensor perturbations and, as we
are going to see in the next section, its equation can be solved
explicitly. As a consequence, the equations for the tensor per-
turbations reduce to the linearized Einstein equations supple-
mented with a source term which depends on δX . Therefore,
the Teukolsky equations (4) for the Newman-Penrose coef-
ficients ψ is exactly the same as in general relativity with a
source term that can be explicitly computed.

V. SOLUTION FOR THE SCALAR KINETIC DENSITY
PERTURBATION δX

We now solve equation (13) for δX . This equation is first
order in δX and therefore can be easily integrated.

First, we write it as follows

∂µ
(√

−gΞφ µ δX
)

= 0 , (21)

where Ξ is given by (17), and the determinant of the metric g
and the non-vanishing components of φ µ are given by

√
−g = ρ2 sinθ , (22)

φ t =
µ

∆ρ2

[

(r2 + a2)2 − a2∆sin2 θ
]

, (23)

φ r = εµ

√
R

ρ2
, φϕ = 2Maµ

r

∆ρ2
. (24)

As φ does not depend on θ (in the Kerr geometry), the com-
ponent φθ = gθθ φθ vanishes. Substituting these expressions
into (21) leads to the very simple form

ε∆∂r(
√

Rχ)+
[

(r2 + a2)2 − a2∆sin2 θ
]

∂t χ + 2Mar∂ϕ χ = 0 ,

where we have introduced the variable χ ≡ ΞδX for simplic-
ity. We decompose the solution into modes

χ = ∑
m

∫

dω χm,ω(r,θ )e
−iωt+imϕ , (25)

and we easily obtain the general solution for each mode

χm,ω (r,θ ) = (26)

Cm,ω (θ )
√

R(r)
exp

[

iε
(

−ωI(r)−ω sin2 θJ(r)+mK(r)
)]

,

where Cm,ω is, at this stage, an arbitrary function of θ
(parametrized by ω and m) and

I(r)≡−
∫

dr
(r2 + a2)2

∆(r)
√

R(r)
, (27)

J(r)≡
∫

dr
a2

√

R(r)
, (28)

K(r)≡−
∫

dr
2Mar

∆(r)
√

R(r)
. (29)

Thus, the components δXm,ω of the perturbation δX are im-
mediately given by δXm,ω = χm,ω/Ξ.

VI. BEHAVIOUR OF THE SOLUTION AT THE
BOUNDARIES

Now, let us study the regularity of this solution. We start an-
alyzing the behavior of the modes (26) when r approches the
horizon rH , where ∆ vanishes. In this limit, one finds a diver-
gence in the integrals I and K. However, the Boyer-Lindquist
coordinates also become singular at the horizon and one must
use, instead, well-behaved coordinates such as the ingoing
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explicitly. As a consequence, the equations for the tensor per-
turbations reduce to the linearized Einstein equations supple-
mented with a source term which depends on δX . Therefore,
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source term that can be explicitly computed.
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into (21) leads to the very simple form

ε∆∂r(
√

Rχ)+
[

(r2 + a2)2 − a2∆sin2 θ
]

∂t χ + 2Mar∂ϕ χ = 0 ,

where we have introduced the variable χ ≡ ΞδX for simplic-
ity. We decompose the solution into modes

χ = ∑
m
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dω χm,ω(r,θ )e
−iωt+imϕ , (25)

and we easily obtain the general solution for each mode
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Thus, the components δXm,ω of the perturbation δX are im-
mediately given by δXm,ω = χm,ω/Ξ.

VI. BEHAVIOUR OF THE SOLUTION AT THE
BOUNDARIES

Now, let us study the regularity of this solution. We start an-
alyzing the behavior of the modes (26) when r approches the
horizon rH , where ∆ vanishes. In this limit, one finds a diver-
gence in the integrals I and K. However, the Boyer-Lindquist
coordinates also become singular at the horizon and one must
use, instead, well-behaved coordinates such as the ingoing
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where barred quantities refer to the background whereas δgµν

and δφ are perturbations. Interestingly, the leading order
terms in the expansion of the equations of motion simplify
drastically, and one obtains, after straightforward calculations,
the equations
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δGµν = δTµν ≡
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2
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where δGµν is the linearised Einstein tensor, δTµν is the ef-
fective source term associated with the scalar field and δX is
the first order perturbation of the kinetic term. We have also
introduced the notation
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with

E3 ≡ (!φ )2 − (φ µν )
2 . (16)

When one replaces the background metric by the Kerr so-
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where δLI is the first order perturbation of Lagrangian LI . The
latter can be easily rewritten as

L3 =
1

2
!φφ µ ∂µX , L4 =

1

4
∂µX∂ µX , L5 =

1

4
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alyzing the behavior of the modes (26) when r approches the
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