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Introduction

Several “CosmoBoxes” on the market :

• CosmoMC

• MontePython

• CosmoSIS

• Cobaya

• ...

...but none entirely satisfying for my needs



Introduction

My “needs”:

● Juggling with many cosmological models
(and as many Boltzmann solvers)

● Non trivial exploration of parameter space
(priors, constraints…)

● A (relatively) big cluster to exploit



(pick your favorite)

T. Tait

Dark Matter



T. Baker



Introduction

My “needs”:

● Juggling with many cosmological models
(and as many Boltzmann solvers)

● Non trivial exploration of parameter space
(priors, constraints…)

● A (relatively) big cluster to exploit



Introducing : NAME/ACRONYM PENDING



Introducing : NAME/ACRONYM PENDING

JAM ? (= Just A (simple) MCMC tool)

JUSTICE ? (= JUst a Simple Toolbox for InferenCE)

…



Introducing : JAM

● Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)

● Human-readable/tweakable, well-commented (I hope !)
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Introducing : JAM

● Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)

● Human-readable/tweakable, well-commented (I hope !)

● Working with any CLASS variant, no modification required

● Growing number of likelihoods/datasets implemented
(easy to add new ones)

● MCMC algorithm : Affine-Invariant Ensemble sampling



Ensemble sampling

Collection of 
“walkers” 

initialized at 
random 
positions
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“Walkers” 
quickly spread 

throughout 
parameter 

space, using 
each other’s 
position to 

propose jumps



Ensemble sampling

...and end up 
sitting in the 
“interesting” 

region of 
parameter 

space 



Ensemble sampling

A single 
snapshot of 

walkers 
positions

=
A representative 

sample of the 
posterior 

distribution
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● Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)

● Human-readable/tweakable, well-commented (I hope !)

● Working with any CLASS variant, no modification required

● Growing number of likelihoods/datasets implemented
(easy to add new ones)

● MCMC algorithm : Affine-Invariant Ensemble sampling

● Intuitive visualization scripts to assess convergence
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● Contour plot scripts (interfaced with getdist)



Contour plots
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JAM parsing features

+ can put priors on any derived parameter



Introducing : JAM

● Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)

● Human-readable/tweakable, well-commented (I hope !)

● Working with any CLASS variant, no modification required

● Growing number of likelihoods/datasets implemented
(easy to add new ones)

● MCMC algorithm : Affine-Invariant Ensemble sampling

● Intuitive visualization scripts to assess convergence

● Contour plot scripts (interfaced with getdist)

● Convenient custom parser :“constraint” and “deriv” features

● Robust minimizer combining simulated annealing
& ensemble sampling (SAVES ?)



Minimizing with JAM
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Minimizing with JAM

+ resampling 
+ evidence computing



Identifying prior effects with JAM



Effects of priors
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Ilić et al, in prep



Effects of priors
Ilić et al, in prep



Effects of priors
Ilić et al, in prep

Frequentist approach : 
Computation of the 
“profile likelihood”

=
1D grid on given parameter,

minimize likelihood wrt
all other parameters
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Identifying prior effects with JAM



Thank you
for your attention !
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