
CLASS
the Cosmological Linear Anisotropy Solving System1

Julien Lesgourgues
TTK, RWTH Aachen University

IHP, Paris, 18.11.2019

1code developed by Julien Lesgourgues & Thomas Tram plus many others...

15-16.07.2019 J. Lesgourgues CLASS Basics 1/36

class at IHP: plan

1 Goals
2 coding spirit and basic rules
3 Where to find for information and tutorials
4 Input/output options specific to Large Scale Structure
5 Developpement related to LSS calculation performance

15-16.07.2019 J. Lesgourgues CLASS Basics 2/36

Goals

Project started on request of Planck science team, in order to have a tool independent
from CAMB, and check for possible Boltzmann-code-induced bias in parameter
extraction. The class-CAMB comparison has triggered progress in the accuracy of
both codes. Agreement established at 10−4 (0.01%) level for CMB observables, using
highest-precision settings in both codes. But the class projected expanded and went
much further than the initial Planck purposes.

class aims at being:

general (more models, more output/observables)

modern (structured, modular, flexible, wrap-able: wrapper for python, C++,
automatic precision test code)

user friendly (documented, structured, easy to understand) and hence easier to
modify (coding additional models/observables)

accurate and fast (current master branch comparable to CAMB; ongoing
developements: strong prospects for speed up, see last part of the talk)

15-16.07.2019 J. Lesgourgues CLASS Basics 3/36

Goals: with class you can get:

The CMB anisotropy spectra:

101 102 10310 8

10 6

10 4

10 2

100

(
+

1)
C

XY l
/2

[×
10

10
]

r = 0.1

TT(s)
EE(s)
TT(t)
EE(t)
BB(t)
BB(lensing)

15-16.07.2019 J. Lesgourgues CLASS Basics 4/36

Goals: with class you can get:

The matter power spectrum with NL corrections from Halofit – or HMcode with ≥ 2.8:

10-4 10-3 10-2 10-1 100

k (h/Mpc)

10-1

100

101

102

103

104

105
P
(k

)
(h

/M
p
c)

3
Matter power spectrum: linear, HALOFIT

z=0: linear

z=0: nonlinear

z=2: linear

z=2: nonlinear

15-16.07.2019 J. Lesgourgues CLASS Basics 5/36

Goals: with class you can get:

The transfer functions at a given time/redshift (e.g. initial conditions for N-body):

10-4 10-3 10-2 10-1 100 101

k (h/Mpc)

10-4

10-3

10-2

10-1

100

101

102

103

104

−
δ(
k
,t
)/
R

(k
,τ
in
i)

density transfer functions at z=100

δγ

δb

δcdm

δur

15-16.07.2019 J. Lesgourgues CLASS Basics 6/36

Goals: with class you can get:

The matter density (number count) Cl’s, or the lensing Cl’s (with arbitrary
selection/window functions):

101 102

l

10-13

10-12

10-11

10-10

10-9

10-8

10-7
[`

(`
+

1)
]2
C
φ
φ

l
/2
π

lensing potential spectrum (gaussians bins, ∆z=0.1)

linear: z=0.1

linear: z=0.3

linear: z=0.5

halofit: z=0.1

halofit: z=0.3

halofit: z=0.5

15-16.07.2019 J. Lesgourgues CLASS Basics 7/36

Goals: with class you can get:

The background evolution in a given cosmological model:

100 101 102 103 104

conformal time [Mpc]

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

1012

d
e
n
si

ti
e
s

[M
p
c2

]

ργ

ρb

ρcdm

ρν

ρΛ

10 1 100 101

z

10 1

100

101

Di
st

an
ce

×
H

0

lum. dist.
comov. dist.
ang.diam.dist.

15-16.07.2019 J. Lesgourgues CLASS Basics 8/36

Goals: with class you can get:

The thermal history in a given cosmological model:

100 101 102 103 104

z

10-4

10-3

10-2

10-1

100

xe

102 103 104

[Mpc]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

vi
sib

ilit
y

g
[M

pc
1]

15-16.07.2019 J. Lesgourgues CLASS Basics 9/36

Goals: with class you can get:

The time evolution of perturbations for individual Fourier modes:

10-1 100 101 102 103 104

tau [Mpc]

10-2

10-1

100

101

102

103

104

105
k=1 h/Mpc, normalised to R(k,auini) =1

|δγ |
|δb |
|δν |
|δcdm|

15-16.07.2019 J. Lesgourgues CLASS Basics 10/36

Goals: with class you can get:

... and several other quantities, for instance:

characteristic redshifts, physical and comoving scales, angles;

primordial spectrum for given inflationary potential;

decomposition of CMB Cl’s in intrinsic, Sachs-Wolfe, Doppler, ISW, etc.;

decomposition of galaxy number count Cl’s in density, RSD, lensing, etc.;

≥ 3.0 : CMB spectral distorsions [arXiv:1910.04619]

...

15-16.07.2019 J. Lesgourgues CLASS Basics 11/36

Goals: with class you can get:

... if you use class as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various ways, and make all kinds of
computations or nice plots:

101 102 103

Multipole
0.85

0.90

0.95

1.00

C
TT

/C
TT

(N
ef

f=
3.

04
6)

Neff = 0.5
Neff = 1
Neff = 1.5
Neff = 2

10 3 10 2 10 1 100

k [h 1Mpc]

1.00

1.05

1.10

1.15

1.20

P(
k)

/P
(k

)[N
ef

f=
3.

04
6] Neff = 0.5

Neff = 1
Neff = 1.5
Neff = 2

15-16.07.2019 J. Lesgourgues CLASS Basics 12/36

Goals: with class you can get:

... if you use class as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various ways, and make all kinds of
computations or nice plots:

15-16.07.2019 J. Lesgourgues CLASS Basics 13/36

Goals: with class you can get:

... all this for a wide range of cosmological models: all those implemented in the
public CAMB code, plus several other ingredients, especially in the sectors of:

primordial perturbations (internal inflationary perturbation module with given
V (φ), takes arbitrary BSI spectra, correlated isocurvature modes),

neutrinos (chemical potentials, arbitrary phase-space distributions, flavor
mixing...),

Dark Matter (warm, annihilating, decaying, ≥ 2.9 : interacting...),

Dark Energy (fluid with flexible w(a) + sound speed, quintessence with given
V (φ))

also Modified Gravity if you try the recently released HiCLASS branch (Bellini,
Sawicki, Zumalacarregui, http://www.hiclass-code.net)

multi-gauge (synchronous, newtonian, ≥ 2.8 : N-body...)

extension to second-order perturbation theory: SONG (Fidler, Pettinari, Tram,
https://github.com/coccoinomane/song)

interfacing with particle physics modules and codes for exotic energy injection
available in ExoCLASS branch of
http://github.com/lesgourg/class_public.git (Stöcker, Poulin)

Class sz (B. Bolliet), MultiClass (group of L. Verde), ...

15-16.07.2019 J. Lesgourgues CLASS Basics 14/36

http://www.hiclass-code.net
https://github.com/coccoinomane/song
http://github.com/lesgourg/class_public.git

Goals: with class you can get:

... and movies of perturbations in 2D slices of early universe with our Real space
graphical interface (≥ 2.7); here is a snapshot:

15-16.07.2019 J. Lesgourgues CLASS Basics 15/36

class coding spirit and basic rules

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

15-16.07.2019 J. Lesgourgues CLASS Basics 16/36

class coding spirit and basic rules

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

15-16.07.2019 J. Lesgourgues CLASS Basics 16/36

class coding spirit and basic rules

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

15-16.07.2019 J. Lesgourgues CLASS Basics 16/36

class coding spirit and basic rules

Accessible and self-contained

Plain C (for performance and readability) but mimicking features of C++ (see later).
No external libraries for a quick installation (but parallelisation requires OpenMP).
Lots of comments in the code.
Automatic doxygen documentation (Credits Deanna C. Hooper)

Structured and flexible

Sequence of ten modules with distinct physical tasks, no duplicate equations.

15-16.07.2019 J. Lesgourgues CLASS Basics 17/36

class coding spirit and basic rules

Accessible and self-contained

Plain C (for performance and readability) but mimicking features of C++ (see later).
No external libraries for a quick installation (but parallelisation requires OpenMP).
Lots of comments in the code.
Automatic doxygen documentation (Credits Deanna C. Hooper)

Structured and flexible

Sequence of ten modules with distinct physical tasks, no duplicate equations.

15-16.07.2019 J. Lesgourgues CLASS Basics 17/36

class coding spirit and basic rules

Plethoric accumulation of extended models/observables/features without making the
code slower or less readable

Relies on homogeneous style and strict rules (e.g. anything related to given feature is
inside an: if (has_feature == _TRUE_){...})

No hard-coding

All indices allocated dynamically (according to strict and homogeneous rules for
more readability)
→ see tutorials, e.g. New York lectures, “CLASS Coding”, pages 8-11

All arrays allocated dynamically

Essentially no number found in the codes except factors in physical equations

No hard-coded precision parameters, all precision-related numbers/flags
gathered in single structure precision

Not a single global variable: all variables passed as arguments of functions (for
readability and parallelisation)

Sampling steps inferred dynamically by the code for each model

Time for switching approximations on/off inferred dynamically by the code for
each model

15-16.07.2019 J. Lesgourgues CLASS Basics 18/36

class coding spirit and basic rules

Plethoric accumulation of extended models/observables/features without making the
code slower or less readable

Relies on homogeneous style and strict rules (e.g. anything related to given feature is
inside an: if (has_feature == _TRUE_){...})

No hard-coding

All indices allocated dynamically (according to strict and homogeneous rules for
more readability)
→ see tutorials, e.g. New York lectures, “CLASS Coding”, pages 8-11

All arrays allocated dynamically

Essentially no number found in the codes except factors in physical equations

No hard-coded precision parameters, all precision-related numbers/flags
gathered in single structure precision

Not a single global variable: all variables passed as arguments of functions (for
readability and parallelisation)

Sampling steps inferred dynamically by the code for each model

Time for switching approximations on/off inferred dynamically by the code for
each model

15-16.07.2019 J. Lesgourgues CLASS Basics 18/36

class coding spirit and basic rules

Rigorous error management

In principle, no segmentation faults when executing public class.
When class fails, it returns an error message with a tree-like information (like e.g.
python)
→ see tutorials, e.g. New York lectures, “CLASS Coding”, pages 15-23

Version history

All previous versions can be downloaded and compared on GitHub, changes
documented in class-code.net

Always aim at developing without breaking compatibility with older versions.
Own changes can often be merged in newer version with git merge.

15-16.07.2019 J. Lesgourgues CLASS Basics 19/36

class coding spirit and basic rules

Rigorous error management

In principle, no segmentation faults when executing public class.
When class fails, it returns an error message with a tree-like information (like e.g.
python)
→ see tutorials, e.g. New York lectures, “CLASS Coding”, pages 15-23

Version history

All previous versions can be downloaded and compared on GitHub, changes
documented in class-code.net

Always aim at developing without breaking compatibility with older versions.
Own changes can often be merged in newer version with git merge.

15-16.07.2019 J. Lesgourgues CLASS Basics 19/36

class coding spirit and basic rules: the 10 class modules

Executing class means going once through the sequence of modules:

1. input.c # parse/make sense of input parameters

(advanced logic)

2. background.c. # homogeneous cosmology

3. thermodynamics.c. # ionisation history , scattering rate

4. perturbations.c. # linear Fourier perturbations

5. primordial.c. # primordial spectrum , inflation

6. nonlinear.c # recipes for non -linear corrections

to 2-point statistics

7. transfer.c. # from Fourier to multipole space

8. spectra.c. # 2-point statistics (power spectra)

9. lensing.c # CMB lensing

10. output.c # print out (not used from python)

Plain C (for performances and readability purposes) mimicking C++ and
object-oriented programming:

In C++: 10 ”classes”, each with a constructor/destructor and a few functions
callable from outside.

In class: each module (files *.c and *.h) is associated to one structure (with
all its input/output data), one initialisation function, one freeing function, and a
few functions callable from outside.

main executable only consists in calling the 10 initialisation and ten freeing
functions!

15-16.07.2019 J. Lesgourgues CLASS Basics 20/36

class coding spirit and basic rules: class/ directory

In your class directory (e.g. class public-2.7.2/), you should see:

source/ # the 10 modules of class:

ALL THE PHYSICS

tools/ # auxiliary pieces of code (numerical methods):

ALL THE MATH (no external C library)

main/ # main class function: short , just calls 10 modules

test/ # other main functions for testing part of the code

output/ # output files (when running from terminal)

include/ # header files (*.h) containing declarations

doc/ # pdf version of the manual

python/ # python wrapper of class

cpp/ # C++ wrapper of class

notebooks/ # example of jupyter notebooks

scripts/ # same as plain python scripts

RealSpaceInterface/ # graphical interface

plus a few other directories containing ancillary data (bbn/) or interfaced codes
(hyrec/, external Pk/)

15-16.07.2019 J. Lesgourgues CLASS Basics 21/36

Where to find information and tutorials?

1 Basic information and links:

in explanatory.ini (but don’t use this one in your runs, create your own:

15-16.07.2019 J. Lesgourgues CLASS Basics 22/36

Where to find information and tutorials?

1 Basic information and links:

in the historical class webpage http://class-code.net:
link to installation wiki page

summary of new features in each release

link to slides from CLASS-dedicated courses in which some are

basic (see next page)

link to online html documentation in which the first subsection

are basic (see in 2 pages)

15-16.07.2019 J. Lesgourgues CLASS Basics 23/36

http://class-code.net

Where to find information and tutorials?

1 Basic information and links:

in the CLASS courses slides and videos (linked from

http://class-code.net or from https://lesgourg.github.io)

15-16.07.2019 J. Lesgourgues CLASS Basics 24/36

http://class-code.net
https://lesgourg.github.io

Where to find information and tutorials?

1 Basic information and links:

in the CLASS courses slides and videos (linked from

http://class-code.net or from https://lesgourg.github.io)
Most up to date:
[CCA, Simons Foundation, New York, 15-16 July 2019]

see CLASS Basic, CLASS Usage. Includes videos.

15-16.07.2019 J. Lesgourgues CLASS Basics 25/36

http://class-code.net
https://lesgourg.github.io

Where to find information and tutorials?

1 Basic information and links:

in the online html documentation (linked from class-code.net or

from github.com/lesgourg/class_public → Wiki or from the copy in

your directory class/doc/manual/html/index.html or in the PDF

class/doc/manual/CLASS_MANUAL.pdf), first three sections:

CLASS

Where to find information and documentation?

CLASS overview → updated version of the CLASS I 2011 paper

15-16.07.2019 J. Lesgourgues CLASS Basics 26/36

class-code.net
github.com/lesgourg/class_public
Wiki

Where to find information and tutorials?

1 More advanced:

link to slides from CLASS-dedicated courses: New York’s CLASS

Coding slides, all Tokyo slides

full automatically-generated documentation (including dependence trees)

on the online html documentation, in the last sections: Data

Structures, Files.

15-16.07.2019 J. Lesgourgues CLASS Basics 27/36

Where to find information and tutorials?

1 More advanced:

link to slides from CLASS-dedicated courses: New York’s CLASS

Coding slides, all Tokyo slides

full automatically-generated documentation (including dependence trees)

on the online html documentation, in the last sections: Data

Structures, Files.

same information in your class/doc/manual/CLASS_MANUAL.pdf

15-16.07.2019 J. Lesgourgues CLASS Basics 28/36

Input/output specific to Large Scale Structure

Parameters for PL(k, z) and/or PNL(k, z) and/or σ(R, z) (check details in
explanatory.ini)

output = ... , mPk , ...

P_k_max_h/Mpc = 1.

#P_k_max_1/Mpc = 0.7

z_pk = 0., 1.2, 3.5

non linear = Halofit # or none or HMcode (>=2.8)

for HMcode baryonic feedback model:

feedback model = emu_dmonly # or many other options (>=2.8)

If Ων 6= 0 (massive neutrinos) the code will automatically compute two versions of
each P (k, z) and σ(R, z): total matter (_m) for weak lensing and baryon+CDM (_cb)
for galaxy correlation.
From python notebook or script: extract information with functions defined in
python/cclassy.pyx:

pk(), pk_cb (), pk_lin (), pk_lin_cb (),

get_pk (), get_pk_cb (), get_pk_lin (), get_pk_lin_cb (),

get_pk_array (), get_pk_cb_array (),

get_pk_and_k_and_z (),

sigma(), sigma_cb (),

sigma8 (), sigma8_cb ()

15-16.07.2019 J. Lesgourgues CLASS Basics 29/36

Input/output specific to Large Scale Structure

Parameters for PL(k, z) and/or PNL(k, z) and/or σ(R, z) (check details in
explanatory.ini)

output = ... , mPk , ...

P_k_max_h/Mpc = 1.

#P_k_max_1/Mpc = 0.7

z_pk = 0., 1.2, 3.5

non linear = Halofit # or none or HMcode (>=2.8)

for HMcode baryonic feedback model:

feedback model = emu_dmonly # or many other options (>=2.8)

If Ων 6= 0 (massive neutrinos) the code will automatically compute two versions of
each P (k, z) and σ(R, z): total matter (_m) for weak lensing and baryon+CDM (_cb)
for galaxy correlation.

From python notebook or script: extract information with functions defined in
python/cclassy.pyx:

pk(), pk_cb (), pk_lin (), pk_lin_cb (),

get_pk (), get_pk_cb (), get_pk_lin (), get_pk_lin_cb (),

get_pk_array (), get_pk_cb_array (),

get_pk_and_k_and_z (),

sigma(), sigma_cb (),

sigma8 (), sigma8_cb ()

15-16.07.2019 J. Lesgourgues CLASS Basics 29/36

Input/output specific to Large Scale Structure

Parameters for PL(k, z) and/or PNL(k, z) and/or σ(R, z) (check details in
explanatory.ini)

output = ... , mPk , ...

P_k_max_h/Mpc = 1.

#P_k_max_1/Mpc = 0.7

z_pk = 0., 1.2, 3.5

non linear = Halofit # or none or HMcode (>=2.8)

for HMcode baryonic feedback model:

feedback model = emu_dmonly # or many other options (>=2.8)

If Ων 6= 0 (massive neutrinos) the code will automatically compute two versions of
each P (k, z) and σ(R, z): total matter (_m) for weak lensing and baryon+CDM (_cb)
for galaxy correlation.
From python notebook or script: extract information with functions defined in
python/cclassy.pyx:

pk(), pk_cb (), pk_lin (), pk_lin_cb (),

get_pk (), get_pk_cb (), get_pk_lin (), get_pk_lin_cb (),

get_pk_array (), get_pk_cb_array (),

get_pk_and_k_and_z (),

sigma(), sigma_cb (),

sigma8 (), sigma8_cb ()

15-16.07.2019 J. Lesgourgues CLASS Basics 29/36

Input/output specific to Large Scale Structure

Parameters for CXYl of number count, cosmic shear, or their cross-correlation (check
details in explanatory.ini):

output = ... , nCl , sCl , ...

l_max_lss = 600

selection=gaussian # or tophat , dirac

selection_mean = 0.9, 2, 1.1 # mean redshift in each bin

selection_width = 0.1 #redshift width of each bin (1 or N)

selection_bias = # see definition in CLASSgal paper

selection_magnification_bias = # see def in CLASSgal paper

non_diagonal =4 # depth of cross -correlation between bins

dNdz_selection = # window function W(z), analytic / file

dNdz_evolution = # source evolution , analytic / file

non linear = Halofit # or none or HMcode (>=2.8)

number count contributions = density , rsd , lensing , gr # see

definition in CLASSgal paper , default: density only

15-16.07.2019 J. Lesgourgues CLASS Basics 30/36

Input/output specific to Large Scale Structure

Parameters for CXYl of number count, cosmic shear, or their cross-correlation (check
details in explanatory.ini):

output = ... , nCl , sCl , ...

l_max_lss = 600

selection=gaussian # or tophat , dirac

selection_mean = 0.9, 2, 1.1 # mean redshift in each bin

selection_width = 0.1 #redshift width of each bin (1 or N)

selection_bias = # see definition in CLASSgal paper

selection_magnification_bias = # see def in CLASSgal paper

non_diagonal =4 # depth of cross -correlation between bins

dNdz_selection = # window function W(z), analytic / file

dNdz_evolution = # source evolution , analytic / file

non linear = Halofit # or none or HMcode (>=2.8)

number count contributions = density , rsd , lensing , gr # see

definition in CLASSgal paper , default: density only

15-16.07.2019 J. Lesgourgues CLASS Basics 30/36

Input/output specific to Large Scale Structure

Parameters for CXYl of number count, cosmic shear, or their cross-correlation (check
details in explanatory.ini):

When running in a terminal, the output file header would be (for 3 bins with
non_diagonal = 3):

dimensionless total [l(l+1)/2pi] C_l’s

#

-> for galaxy lensing (lens[i]), these are C_l^phi -phi for

the lensing potential.

Remember the conversion factors:

C_l^dd (deflection) = l(l+1) C_l^phi -phi

C_l^gg (shear/convergence) = 1/4 (l(l+1))^2 C_l^phi -phi

#

1:l 2:dens[1]-dens [1] 3:dens[1]-dens [2]

4:dens[1]-dens [3] 5:dens[2]-dens [2] 6:dens

[2]-dens [3] 7:dens[3]-dens [3] 8:lens[1]-

lens [1] 9:lens[1]-lens [2] 10: lens[1]-lens

[3] 11: lens[2]-lens [2] 12: lens[2]-lens [3]

13: lens[3]-lens [3] 14: dens[1]-lens [1]

15: dens[1]-lens [2] 16: dens[1]-lens [3] 17:

dens[2]-lens [1] 18: dens[2]-lens [2] 19: dens

[2]-lens [3] 20: dens[3]-lens [1] 21: dens[3]-

lens [2] 22: dens[3]-lens [3]

15-16.07.2019 J. Lesgourgues CLASS Basics 31/36

Input/output specific to Large Scale Structure

Parameters for CXYl of number count, cosmic shear, or their cross-correlation (check
details in explanatory.ini):

From python notebook or script: extract information with functions defined in
python/cclassy.pyx:

density_cl ()

→ returns dictionary with keys ’ell’, ’dd’, ’ll’, ’dl’.

E.g. if ≥ 2 bins and nondiagonal ≥ 2; after cls = cosmo.density_cl():

the l values are in cls[’ell’],
the density Cl’s of the first × second bin are in cls[’dd’][1],
the shear Cl’s of the first × first bin are in cls[’ll’][0],
the cross Cl’s of density (1st bin) × lensing (2nd bin) are in cls[’ld’][1].

15-16.07.2019 J. Lesgourgues CLASS Basics 32/36

Input/output specific to Large Scale Structure

Parameters for CXYl of number count, cosmic shear, or their cross-correlation (check
details in explanatory.ini):

Important precision parameters (all such parameters exposed in include/common.h

until 2.7, include/precisions.h from 2.8): llimber/zmean:

class_precision_parameter(

l_switch_limber_for_nc_local_over_z ,double ,100.0) /**<

when to use the Limber approximation for local number

count contributions to cl’s (relative to central

redshift of each bin) */

class_precision_parameter(l_switch_limber_for_nc_los_over_z ,

double ,30.0) /**< when to use the Limber approximation

for number count contributions to cl’s integrated along

the line -of -sight (relative to central redshift of each

bin) */

Set to very high numbers (O(104)) for never using Limber... but then code becomes
very slow.

15-16.07.2019 J. Lesgourgues CLASS Basics 33/36

Developpements related to LSS calculation performance

Two bottlenecks for CMB and LSS calculations:

1 perturbations.c: integration of system of O(20− 50) coupled differential
equations for each k. Not parallelisable beyond k loop.

2 transfers.c: line-of-sight integrals for harmonic transfer functions,

∆X
` (k) =

∫ τ0

ε
dτ SX(τ, k) jl(k(τ0 − τ)) .

Argument has damped oscillations, slowly converging.
LSS → Scales like (number of redshift bins)2

15-16.07.2019 J. Lesgourgues CLASS Basics 34/36

Developpements related to LSS calculation performance

Second bottleneck: Beyond the line-of-sight integral
Nils Schöneberg, Marko Simonović, JL, Matias Zaldarriaga 1807.09540
For LSS observables:

Cαβ,ij` =
∑
n

∫ ∞
0

dt I` (νn, t)

∫ ∞
0

dχW i(χ)W j(χt)cαβn (χ, χt)χ1−νn , (1)

I` (νn, t) = precomputed cosmology-independent hypergeometric functions,
W i(χ) = window functions for number count / lensing C`’s,

cαβn (χ, χt) = FFTlog expansion of PR(k)Tα(k, χ1)Tβ(k, χ2).

Speed up of transfer.c by 2-3 orders of magnitude (not for CMB: source functions
not approximately separable in k and τ).

Since October: Released as separate branch class_matter on
github.com/lesgourg/class_public.

Questions: propagate this into main code, or an alternative scheme?

15-16.07.2019 J. Lesgourgues CLASS Basics 35/36

Developpements related to LSS calculation performance

First bottleneck: CosmicNet
Jasper Albers, Christian Fidler, JL, Nils Schöneberg, Jesus Torrado 1907.05764
Neural networks predict source functions (instead of ODE) with analytical
approximations in the input

{τ, cosmological params., approx.} NNX
7−−−−−−→ SX (ki, τ)

Needs retraining when increasing number of cosmo. parameters, but not all of them!
Retraining doable on 4 cores in half a day.
Future: growth of a network repository ensured by automatic data exchange between
users worldwide (CosmicNet).

15-16.07.2019 J. Lesgourgues CLASS Basics 36/36

