

CMB in (relative) tensions

CMB power spectra

CMB in (relative) tensions

6 parameters

2 for the primordial matter spectrum

$$\mathcal{P}_{\mathcal{R}}(k) = \mathbf{A}_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}-1}$$

- H_0 (in practice sound horizon - 1 expansion rate
- 2 parameters for densities $\Omega_b h^2$ $\Omega_c h^2$
- reionization

hypothesis (released in the extensions to ΛCDM)

- flat Universe $\Omega_k = 0$
- No running $dn_s/d\ln k = 0$ standard neutrinos with low mass
- $\mathcal{P}_t(k) = A_t \left(\frac{k}{k_0}\right)^{n_t} = 0$ - No tensor
- 3 neutrinos $N_{\rm eff} = 3.046$

$$\sum m_{\nu} = 0.06 \ eV$$

 $\theta_{\rm s}$)

ACDM results

with spectra

[Planck 2018 results. VI]

polarization spectra are generally highly consistent with TT spectra

ACDM results with time

	WMAP	Planck 2013	Planck 2015	Planck 2018
$\Omega_b h^2$	0.02264 ± 0.00050	0.02205 ± 0.00028	0.02225 ± 0.00016	0.02236 ± 0.00015
$\Omega_{c}h^{2}$	0.1138 ± 0.0045	0.1199 ± 0.0027	0.1198 ± 0.0015	0.1202 ± 0.0014
H ₀	70.0 ± 2.2	67.3 ± 1.2	67.27 ± 0.66	67.27 ± 0.60
ns	0.972 ± 0.013	0.960 ± 0.007	0.964 ± 0.005	0.965 ± 0.004
10 ⁹ As	2.189 ± 0.090	2.196 ± 0.060	2.207 ± 0.074	2.101 ± 0.033
τ	0.089 ± 0.014	0.089 ± 0.014	0.079 ± 0.017	0.054 ± 0.007
Ω_{Λ}	0.721 ± 0.025	0.685 ± 0.018	0.684 ± 0.009	0.685 ± 0.007
Ω_{m}	0.279 ± 0.023	0.315 ± 0.018	0.316 ± 0.009	0.315 ± 0.007

• Very stable with time

• Precision cosmology (below 1% error bar for most of them)

ACDM results

Planck 2015-2018

2018 *Planck* TT, TE, EE+2018 lowE

[Planck 2018 results. VI]

"A total systematic uncertainty of round 0.5σ may be more realistic, and values should not be overinterpreted beyond this level."

[Planck 2018 results. VI]

2018, No polar efficiency correction

Extensions

[Planck 2018 results. VI]

Table 5. Constraints on standard cosmological parameters from *Planck* TT,TE,EE+lowE+lensing when the base- Λ CDM model is extended by varying additional parameters. The constraint on τ is also stable but not shown for brevity; however, we include H_0 (in km s⁻¹Mpc⁻¹) as a derived parameter (which is very poorly constrained from *Planck* alone in the Λ CDM+ w_0 extension). Here α_{-1} is a matter isocurvature amplitude parameter, following PCP15. All limits are 68 % in this table. The results assume standard BBN except when varying Y_P independently (which requires non-standard BBN). Varying A_L is not a physical model (see Sect. 6.2).

Parameter(s)	$\Omega_{ m b}h^2$	$\Omega_{ m c} h^2$	$100\theta_{\rm MC}$	H_0	n _s	$\ln(10^{10}A_{\rm s})$
Base ACDM	0.02237 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.54	0.9649 ± 0.0042	3.044 ± 0.014
<i>r</i>	0.02237 ± 0.00014	0.1199 ± 0.0012	1.04092 ± 0.00031	67.40 ± 0.54	0.9659 ± 0.0041	3.044 ± 0.014
$dn_s/d\ln k$	0.02240 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.53	0.9641 ± 0.0044	3.047 ± 0.015
$dn_s/d\ln k, r \ldots \ldots$	0.02243 ± 0.00015	0.1199 ± 0.0012	1.04093 ± 0.00030	67.44 ± 0.54	0.9647 ± 0.0044	3.049 ± 0.015
$d^2n_s/d\ln k^2$, $dn_s/d\ln k$.	0.02237 ± 0.00016	0.1202 ± 0.0012	1.04090 ± 0.00030	67.28 ± 0.56	0.9625 ± 0.0048	3.049 ± 0.015
N_{eff}	0.02224 ± 0.00022	0.1179 ± 0.0028	1.04116 ± 0.00043	66.3 ± 1.4	0.9589 ± 0.0084	3.036 ± 0.017
$N_{\rm eff}, {\rm d}n_{\rm s}/{\rm d}\ln k$	0.02216 ± 0.00022	0.1157 ± 0.0032	1.04144 ± 0.00048	65.2 ± 1.6	0.950 ± 0.011	3.034 ± 0.017
Σm_{ν}	0.02236 ± 0.00015	0.1201 ± 0.0013	1.04088 ± 0.00032	$67.1^{+1.2}_{-0.67}$	0.9647 ± 0.0043	3.046 ± 0.015
$\Sigma m_{\nu}, N_{\rm eff}$	0.02223 ± 0.00023	0.1180 ± 0.0029	1.04113 ± 0.00044	$66.0^{+1.8}_{-1.6}$	0.9587 ± 0.0086	3.038 ± 0.017
$m_{\nu, \text{ sterile}}^{\text{eff}}, N_{\text{eff}} \dots \dots$	$0.02242^{+0.00014}_{-0.00016}$	$0.1200^{+0.0032}_{-0.0020}$	$1.04074^{+0.00033}_{-0.00029}$	$67.11_{-0.79}^{+0.63}$	$0.9652^{+0.0045}_{-0.0056}$	$3.050^{+0.014}_{-0.016}$
α_{-1}	0.02238 ± 0.00015	0.1201 ± 0.0015	1.04087 ± 0.00043	67.30 ± 0.67	0.9645 ± 0.0061	3.045 ± 0.014
$w_0 \ldots \ldots \ldots \ldots \ldots$	0.02243 ± 0.00015	0.1193 ± 0.0012	1.04099 ± 0.00031	• • •	0.9666 ± 0.0041	3.038 ± 0.014
Ω_K	0.02249 ± 0.00016	0.1185 ± 0.0015	1.04107 ± 0.00032	$63.6^{+2.1}_{-2.3}$	0.9688 ± 0.0047	$3.030^{+0.017}_{-0.015}$
$Y_{\rm P}$	0.02230 ± 0.00020	0.1201 ± 0.0012	1.04067 ± 0.00055	67.19 ± 0.63	0.9621 ± 0.0070	3.042 ± 0.016
$Y_{\rm P}, N_{\rm eff}$	0.02224 ± 0.00022	$0.1171^{+0.0042}_{-0.0049}$	1.0415 ± 0.0012	$66.0^{+1.7}_{-1.9}$	0.9589 ± 0.0085	3.036 ± 0.018
$A_{\rm L}$	0.02251 ± 0.00017	0.1182 ± 0.0015	1.04110 ± 0.00032	68.16 ± 0.70	0.9696 ± 0.0048	$3.029^{+0.018}_{-0.016}$

ACDM impressively stable when opening one extension at a time

Extensions

[Planck 2018 results. VI]

Table 5. Constraints on standard cosmological parameters from *Planck* TT,TE,EE+lowE+lensing when the base-ACDM model is extended by varying additional parameters. The constraint on τ is also stable but not shown for brevity; however, we include H_0 (in km s⁻¹Mpc⁻¹) as a derived parameter (which is very poorly constrained from *Planck* alone in the ACDM+ w_0 extension). Here α_{-1} is a matter isocurvature amplitude parameter, following PCP15. All limits are 68 % in this table. The results assume standard BBN except when varying Y_P independently (which requires non-standard BBN). Varying A_L is not a physical model (see Sect. 6.2).

Parameter(s)	$\Omega_{ m b}h^2$	$\Omega_{ m c} h^2$	$100\theta_{\rm MC}$	H_0	n _s	$\ln(10^{10}A_{\rm s})$
Base ACDM	0.02237 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.54	0.9649 ± 0.0042	3.044 ± 0.014
<i>r</i>	0.02237 ± 0.00014	0.1199 ± 0.0012	1.04092 ± 0.00031	67.40 ± 0.54	0.9659 ± 0.0041	3.044 ± 0.014
$dn_s/d\ln k \dots$	0.02240 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.53	0.9641 ± 0.0044	3.047 ± 0.015
$dn_s/d\ln k, r \ldots \ldots$	0.02243 ± 0.00015	0.1199 ± 0.0012	1.04093 ± 0.00030	67.44 ± 0.54	0.9647 ± 0.0044	3.049 ± 0.015
$d^2n_s/d\ln k^2$, $dn_s/d\ln k$.	0.02237 ± 0.00016	0.1202 ± 0.0012	1.04090 ± 0.00030	67.28 ± 0.56	0.9625 ± 0.0048	3.049 ± 0.015
$N_{\rm eff}$	0.02224 ± 0.00022	0.1179 ± 0.0028	1.04116 ± 0.00043	66.3 ± 1.4	0.9589 ± 0.0084	3.036 ± 0.017
$N_{\rm eff}, \mathrm{d}n_{\rm s}/\mathrm{d}\ln k$	0.02216 ± 0.00022	0.1157 ± 0.0032	1.04144 ± 0.00048	65.2 ± 1.6	0.950 ± 0.011	3.034 ± 0.017
Σm_{ν}	0.02236 ± 0.00015	0.1201 ± 0.0013	1.04088 ± 0.00032	$67.1^{+1.2}_{-0.67}$	0.9647 ± 0.0043	3.046 ± 0.015
$\Sigma m_{\nu}, N_{\rm eff}$	0.02223 ± 0.00023	0.1180 ± 0.0029	1.04113 ± 0.00044	$66.0^{+1.8}_{-1.6}$	0.9587 ± 0.0086	3.038 ± 0.017
$m_{\nu, \text{ sterile}}^{\text{eff}}, N_{\text{eff}} \dots \dots$	$0.02242^{+0.00014}_{-0.00016}$	$0.1200^{+0.0032}_{-0.0020}$	$1.04074^{+0.00033}_{-0.00029}$	$67.11_{-0.79}^{+0.63}$	$0.9652^{+0.0045}_{-0.0056}$	$3.050^{+0.014}_{-0.016}$
α_{-1}	0.02238 ± 0.00015	0.1201 ± 0.0015	1.04087 ± 0.00043	67.30 ± 0.67	0.9645 ± 0.0061	3.045 ± 0.014
w_0	0.02243 ± 0.00015	0.1193 ± 0.0012	1.04099 ± 0.00031	•••	0.9666 ± 0.0041	3.038 ± 0.014
Ω_K	0.02249 ± 0.00016	0.1185 ± 0.0015	1.04107 ± 0.00032	$63.6^{+2.1}_{-2.3}$	0.9688 ± 0.0047	$3.030^{+0.017}_{-0.015}$
$Y_{\rm P}$	0.02230 ± 0.00020	0.1201 ± 0.0012	1.04067 ± 0.00055	67.19 ± 0.63	0.9621 ± 0.0070	3.042 ± 0.016
$Y_{\rm P}, N_{\rm eff}$	0.02224 ± 0.00022	$0.1171^{+0.0042}_{-0.0049}$	1.0415 ± 0.0012	$66.0^{+1.7}_{-1.9}$	0.9589 ± 0.0085	3.036 ± 0.018
$A_{\rm L}$	0.02251 ± 0.00017	0.1182 ± 0.0015	1.04110 ± 0.00032	68.16 ± 0.70	0.9696 ± 0.0048	$3.029^{+0.018}_{-0.016}$

ACDM impressively stable when opening one extension at a time

Hubble constant

[Wong et al. 2019]

Hubble constant

[Freedman et al. 2019] cf. talk on GAIA companion parallaxes (L. Breuval)

M. Tristram

amplitude of the fluctuation σ_8

[Planck 2015 results. XIII] [Planck 2018 results. VI]

ark

tension with WL and SZ cluster count

amplitude of the fluctuation σ_8 consistency with SZ

M. Tristram

the A_L parameter

• weak lensing enters the prediction of the CMB spectrum through a convolution of the unlensed spectrum with the lensing potential power spectrum C_ℓ^Ψ

smooth out the acoustic peaks

- The A_L parameter is a fudge factor defined as:
 - $A_L = 0$: weak lensing ignored
 - $A_L = 1$: standard ΛCDM
- PLANCK lensing measurements

 $C^{\Psi}_{\ell} \to A_L C^{\Psi}_{\ell}$

[Lewis&Challinor, Phys. Rept. 429 1 (2006)] [Calabrese et al, PRD 77 123531 (2008)]

 $A_{L} = 1.011 \pm 0.028$ (Planck $\phi\phi$)

 Measuring A_L ≠ 1 indicates either a problem in the model (e.g. modification of the gravity) or remaining systematics in the data

the A_L parameter results

[Planck 2018 results. VI] [Couchot et al. 2017a]

the three likelihoods share the same data but different foreground ^{[Cou} modelling. Reveal the impact of the uncertainties related to foregrounds.

> $A_{\rm L} = 1.243 \pm 0.096$ (68 %, TT + lowE [Plik]) $A_{\rm L} = 1.246 \pm 0.095$ (68 %, TT + lowE [CamSpec])

 $A_{\rm L} = 1.160 \pm 0.075$ (68 %, TT + lowE [Hillipop])

TT, TE and EE are barely compatible

the A_L parameter A_L and optical depth

[Planck 2018 results. VI] [Couchot et al. 2017a]

tension on optical depth

 $\tau = 0.1274 \pm 0.0366$ (68 %, TT [Plik]) Planck 2018

 $\tau = 0.0507 \pm 0.0080$ (68 %, EE [lowE])

relation with A_L

low- ℓ : pulls $\tau \searrow$ high- ℓ : amplitude $C_{\ell} \propto A_{\rm s} e^{-2\tau} \rightarrow A_{\rm s} \searrow$ high- ℓ : to preserve lensing information $(C_{\ell}^{\Phi} \propto A_{\rm s} A_{\rm L}) : A_{\rm L} \nearrow$

curvature

[Planck 2018 results. VI]

data	Ω_k
PlanckTT + lowE	$-0.056^{+0.028}_{-0.018}$
PlanckTT,TE,EE + lowE	$-0.044^{+0.018}_{-0.015}$
PlanckTT,TE,EE + lowE + lensing	-0.0106 ± 0.0065
PlanckTT,TE,EE + lowE + lensing + BAO	-0.0007 ± 0.0019

 $H_0 = 63.6 \pm 2.2$

CMB in (relative) tensions

neutrino sector

CMB sensitive to the number of relativistic species at decoupling

- standards neutrinos : $N_{eff} = 3.046$
- confuse situation since WMAP + SPT + ACT...

$$\rho = N_{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}.$$

neutrino sector Σm_ν

 constraints on the sum of neutrino masses is important for the neutrino hierarchy

neutrino sector Σm, and AL

[Couchot et al. 2017b]

• tension on A_L shows up on the neutrino sector

– high value for $A_L \rightarrow artificially$ tighter constraints on Σm_{ν}

M. Tristram

CMB in (relative) tensions

neutrino sector Σm, and reionization

simulations do not include properly systematic effects

lower limit on sum of neutrino masses is **too optimistic**

CMB error bars

Cosmic Variance

driven by the cosmology. Easy to simulate and propagate using a fiducial model (valid given our current level of sensitivity on power spectra and the range allowed for parameters)

Statistical Noise

more complicated to estimate from the data. Current **Planck noise simulations need to be rescaled a posteriori** to match data jack-knives.

Systematic effects

should include foreground models uncertainty + instrumental parameter uncertainties. not only important for potential bias but also for their effect on **increasing the variance**. Very hard but no other way than realistic Monte Carlo. Currently only **300 sims** for Planck **neglecting correlations with foregrounds and CMB**.

CMB tensions

Hubble constant (H₀, up to 5σ)

- hard to change with CMB measurements except changing cosmo
 - number of relativistic species, non-standard thermal history or radiation (light relics)
 - early DE (e.g. [Poulin et al. 2019])
 - non-standard neutrino interactions (e.g. [Kreisch et al. 2019])
- large variations on the local measurements depending on the first ladder

• Amplitude of the fluctuations (S_{8} , σ_{8} less than 2σ)

- reduced by 1σ with new optical depth constraints
- large degeneracy with DE

Internal consistency (A_L, more than 2σ)

- more subtil, depends on the details of foreground models
- relation with τ , Ω_k , Σm_v ...
- no effect on LCDM but important for extensions

conclusions

• CMB results on ΛCDM are robust and stable

- in time
- for various spectra (TT,TE,EE, $\phi\phi$)
- when opening extensions one by one

• Error bars

- given the precision on cosmological parameters, error bars need to be even more accurate
- in particular at low- ℓ : uncertainties are underestimated

Consequences

- need to work on foreground modelling (how to build a realistic stochastic description of the foregrounds ?) ANR BxB (F. Boulanger)
- need to rely on heavy Monte Carlo simulations

next Planck map release (NPIPE) coming soon !

