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the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons

=) 15 TB/night for 10 years

- Covers 18,000 square degrees (40% of the sky)

- Tens of billions of objects, each one observed ⇠ 1000 times

2

LSST

In numbers: 
* 10-year survey, starting 2022 

* 1,000 images/night = 15 TB/night 

* >4,000 well measured SNe Ia

(see M. Gangler talk tomorrow)
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Final 10yr Data Release
Images: 5.5 million x 3.2 Gpx
Catalog: 15PB, 37 billion objects

Raw Data
Sequential 30s image, 20TB/night

Prompt Data Product
Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase
Images, Object and Source catalogs from DIA
Orbit catalog for ~6 million Solar System bodies

Annual Data Release
Accessible via the LSST Science Platform & 
LSST Data Access Centers.
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Final 10yr Data Release
Images: 5.5 million x 3.2 Gpx
Catalog: 15PB, 37 billion objects

Raw Data
Sequential 30s image, 20TB/night

Prompt Data Product
Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase
Images, Object and Source catalogs from DIA
Orbit catalog for ~6 million Solar System bodies

Annual Data Release
Accessible via the LSST Science Platform & 
LSST Data Access Centers.

Now

60s

24h

Year

End

• Source record that triggered the alert 

• Other measured source properties 

• Time series features 

• Crossmatches to nearby LSST detected object 

• 12 months of source history 

• Science and template cutouts (30x30 pixels)

Alert Package

Observation

Template

Difference

Credits: E. Bellm

LSST



A. Möller CNRS/LPC Clermont Dark Energy Colloquium Paris 2019

Final 10yr Data Release
Images: 5.5 million x 3.2 Gpx
Catalog: 15PB, 37 billion objects

Raw Data
Sequential 30s image, 20TB/night

Prompt Data Product
Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase
Images, Object and Source catalogs from DIA
Orbit catalog for ~6 million Solar System bodies

Annual Data Release
Accessible via the LSST Science Platform & 
LSST Data Access Centers.

Now

60s

24h

Year

End

• Source record that triggered the alert 

• Other measured source properties 

• Time series features 

• Crossmatches to nearby LSST detected object 

• 12 months of source history 

• Science and template cutouts (30x30 pixels)

Alert Package

Observation

Template

Difference

Credits: E. Bellm

10,000 alerts / 30 s
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• Collect alerts

• Preprocess them

• Add value: 


• crossmatches

• classification / ranking


• Distribute 

Alert 
Package

Alert 
stream

Brokers

Broker 
alerts

Enabling science
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FINK
IN2P3 initiative to propose a broker to 
serve the need of LSST-France as well 
as the different french multi-messenger 
astronomy actors.

Technology & infrastructure: J. Peloton (LAL) 
Science & ML: E. Ishida, A. Möller (LPC) 
+ 28 signatories

Alert 
Package

Alert 
stream

Brokers

Broker 
alerts

Enabling science

LUPM

APC CPPM

Geneva

LAL

LPNH
E

LPSC

LPC
LAP
P

IAPCC-IN2P3

...
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Enabling science

Our added values (+ std broker) 

●Science: Supernovae, microlensing, 
anomaly detection, and 
multimessenger astronomy: GRB 
alerts, gamma ray, neutrinos, 
gravitational wave events, …. 

●Methods: Adaptive learning, 
Bayesian NN. 

●Technology: big data, cloud.
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& SNIa cosmology

Alert 
Package

Alert 
stream

FINK

Broker 
alerts

Enabling science

FINK

This talk “Hubble Diagram SNIa cosmology”  for other measurements 
e.g peculiar velocities see R. Graziani talk tomorrow
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• Added value:  
• Catalogue crossmatches with possible host-galaxies  
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• Added value:  
• Catalogue crossmatches with possible host-galaxies  
• early/complete light-curve classification

& SNIa cosmologyFINK
Möller+ 2019

Alert 
Package

Alert 
stream

FINK

Broker 
alerts

Enabling science

Deep learning SN 
classification framework

- Recurrent Neural Networks

- Bayesian NNs


Inputs:

- Flux + errors

- time

- Optional (host-z)


arXiv:1901.06384
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& SNIa cosmologyFINK
Alert 

Package

Alert 
stream

FINK

Broker 
alerts

Enabling science

Accuracy at peak brightness 
Ia vs. Non Ia

fluxes+time       87.6 ± 0.1  
+host-galaxy z  94.2 ± 0.1 

Möller+ 2019
arXiv:1901.06384
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& SNIa cosmologyFINK
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Enabling science

With accurate early classification we can do a 
“traditional analysis” and get spectroscopic 

follow-up to confirm those promising candidates 
for SNe Ia

DES collaboration 2018 (incl AM)

DES: Cosmological results with spectroscopically confirmed type Ia supernovae 7

Fig. 3.— Constraints on ⌦m-w for the flat wCDM model
(68% and 95% confidence intervals). SN contours are shown
with only statistical uncertainty (white-dashed) and with total
uncertainty (green-shaded). Constraints from CMB (brown) and
DES-SN3YR+CMB combined (red) are also shown.

straints, our best fit w-value (Table 2, row 7) is shifted
by only 0.006, the uncertainty is reduced by ⇠ 20% com-
pared to our primary result, and the evidence ratio be-
tween SN+CMB and BAO is R = 81 showing consistency
among the data sets. If we remove the low-z SN subset
(row 8), the w-uncertainty increases by only ⇠ 8%. Fur-
thermore, we remove the SN sample entirely and find
that the w-uncertainty increases by nearly 50% (row 9).

4.3.3. Flat w0waCDM

Our last test is for w evolution using the w0waCDM
model, where w = w0 + wa(1 � a) and a = (1 + z)�1.
Combining probes from SNe, CMB, and BAO, we find
results (Table 2, row 10) consistent with a cosmological
constant (w0, wa = �1, 0) and a figure of merit (Albrecht
et al. 2006) of 45.5. Removing the SN sample increases
the w0 and wa uncertainties by a factor of 2 and 1.5,
respectively (row 11).

4.4. Comparison to other SN Ia Surveys/Analyses

The DES-SN3YR result has competitive constrain-
ing power given the sample size (�w,tot = 0.059 with
329 total SNe Ia), even after taking into account addi-
tional sources of systematic uncertainty. While our DES-
SN3YR sample is < 1/3 the size of the Pantheon sample
(PS1+SNLS+SDSS+low-z+HST, �w,tot = 0.041), our
low-z subset is 70% the size of Pantheon’s low-z sub-
set, and we included five additional sources of system-
atic uncertainty, our improvements (§ 1) result in a w-
uncertainty that is only ⇥1.4 larger.

5. DISCUSSION AND CONCLUSION

We have presented the first cosmological results
from the DES-SN program: ⌦m = 0.321 ± 0.018
and w = �0.978 ± 0.059 for a flat wCDM model

after combining with CMB constraints. These re-
sults are consistent with a cosmological constant
model and demonstrate the high constraining power
(per SN) of the DES-SN sample. DES-SN3YR data
products used in this analysis are publicly available
at https://des.ncsa.illinois.edu/releases/sn.
These products include filter transmissions, redshifts,
light curves, host masses, light-curve fit parameters,
Hubble Diagram, bias corrections, covariance matrix,
MC chains, and code releases.
We have utilized the spectroscopically confirmed SN Ia

sample from the first three years of DES-SN as well as a
low-redshift sample. This 3-year sample contains ⇠ 10%
of the SNe Ia discovered by DES-SN over the full five
year survey. Many of the techniques established in this
analysis will form the basis of upcoming analyses on the
much larger 5-year photometrically identified sample.
To benefit from the increased statistics in the 5-year

sample it will be critical to reduce systematic uncertain-
ties. We are working to improve calibration with a large
sample of DA White Dwarf observations, including two
HST Calspec standards. Other improvements to system-
atics are discussed in § 7.2 of B18. We are optimistic that
our systematic uncertainties can remain at the level of
our statistical uncertainties for the 5-year analysis. This
progress in understanding systematics will be critical for
making new, exciting measurements of dark energy and
for paving the way towards Stage-IV dark energy exper-
iments like LSST and WFIRST.

Funding for the DES Projects has been provided by
the U.S. Department of Energy, the U.S. National Sci-
ence Foundation, the Ministry of Science and Education
of Spain, the Science and Technology Facilities Coun-
cil of the United Kingdom, the Higher Education Fund-
ing Council for England, the National Center for Super-
computing Applications at the University of Illinois at
Urbana-Champaign, the Kavli Institute of Cosmological
Physics at the University of Chicago, the Center for Cos-
mology and Astro-Particle Physics at the Ohio State Uni-
versity, the Mitchell Institute for Fundamental Physics
and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundação Carlos Chagas Filho
de Amparo à Pesquisa do Estado do Rio de Janeiro,
Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico and the Ministério da Ciência, Tecnologia e In-
ovação, the Deutsche Forschungsgemeinschaft and the
Collaborating Institutions in the Dark Energy Survey.
The Collaborating Institutions are Argonne National

Laboratory, the University of California at Santa Cruz,
the University of Cambridge, Centro de Investigaciones
Energéticas, Medioambientales y Tecnológicas-Madrid,
the University of Chicago, University College London,
the DES-Brazil Consortium, the University of Edin-
burgh, the Eidgenössische Technische Hochschule (ETH)
Zürich, Fermi National Accelerator Laboratory, the Uni-
versity of Illinois at Urbana-Champaign, the Institut de
Ciències de l’Espai (IEEC/CSIC), the Institut de F́ısica
d’Altes Energies, Lawrence Berkeley National Labora-
tory, the Ludwig-Maximilians Universität München and
the associated Excellence Cluster Universe, the Univer-
sity of Michigan, the National Optical Astronomy Ob-
servatory, the University of Nottingham, The Ohio State



A. Möller CNRS/LPC Clermont Dark Energy Colloquium Paris 2019

& SNIa cosmologyFINK
Alert 

Package

Alert 
stream

FINK

Broker 
alerts

Enabling science
✓ Improving spectroscopic follow-up coordination 
✓ Prioritization for spectrograph telescope time 

which is expensive/scarce

early classification for spectroscopic follow-up
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DES collaboration 2018 (incl AM)
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3.03± 0.11, � = 0.025± 0.018, and �int = 0.094± 0.008.
Our ↵, �, and �int values are consistent with those found
in previous analyses, while � is smaller compared to those
in Kelly et al. (2010); Sullivan et al. (2010); Lampeitl
et al. (2010); Betoule et al. (2014); Scolnic et al. (2018).
Results with the C11 model (Table 5 of B18) show similar
trends.
We also check the consistency among the DES-SN and

low-z subsets. While ↵ and � are consistent, we find
�int = 0.066± 0.006 for DES-SN, the lowest value of any
rolling SN survey. This value di↵ers by 3.3� from �int =
0.120 ± 0.015 for the low-z subset, and the systematic
uncertainty in adopting a single �int value is discussed
below in § 4.2 and also in § 7.3 of B18. Our � values
di↵er by 1.5�: �DES = 0.009 ± 0.018 (consistent with
zero) and �lowz = 0.070± 0.038.

4.2. w Uncertainty Budget

Contributions to the systematic uncertainty budget are
presented in B18 and shown here in Table 1 for flat
wCDM fits combined with the CMB likelihood. The sta-
tistical uncertainty on w (�w,stat) is determined without
systematic contributions. Each systematic contribution
is defined as

�w,syst =
q

(�w,tot)2 � (�w,stat)2 (6)

where �w,tot is the total (stat+syst) uncertainty from
including a specific systematic, or a group of systemat-
ics. The uncertainty in w has nearly equal contributions
from statistical and systematic uncertainties, the latter
of which is broken into four groups in Table 1.
The first three systematic groups have nearly equal

contributions: 1) photometry and calibration (�w =
0.021), which includes uncertainties from the DES-
SN and low-z subsets, data used to train the SALT2
lightcurve model, and the HST Calspec standard, 2) µ-
bias corrections from the survey (�w = 0.023), which in-
cludes uncertainties from rejecting Hubble residual out-
liers in the low-z subset, magnitude versus volume lim-
ited selection for low-z, DES-SN spectroscopic selection
e�ciency, and determination of DES-SN flux uncertain-
ties, and 3) µ-bias corrections from astrophysical e↵ects
(�w = 0.026), which includes uncertainties from intrinsic
scatter modeling (G10 vs. C11, and two �int, parent pop-
ulations of stretch and color, choice of w and ⌦m in the
simulation, and Galactic extinction. The 4th systematics
group, redshift (�w = 0.012), includes a global shift in
the redshift and peculiar velocity corrections.
Finally, the Table 1 systematics marked with a dagger

(†) have not been included in previous analyses, and the
combined uncertainty is �w = 0.024. Most of this new
uncertainty is related to the low-z subset, which is almost
40% of the DES-SN3YR sample. For previous analyses
with a smaller fraction of low-z events (e.g., Pantheon,
JLA) we do not recommend adding the full 0.024 w-
uncertainty to their results.

4.3. Cosmology results

4.3.1. ⇤CDM

Using DES-SN3YR and assuming a flat ⇤CDM model,
we find ⌦m = 0.331 ± 0.038. Assuming a ⇤CDM model
with curvature (⌦k) added as a free parameter in Eq. 3

TABLE 1
w Uncertainty Contributions for wCDM modela

Descriptionb �w �w/�w,stat

Total Stat (�w,stat) 0.042 1.00
Total Systc 0.042 1.00
Total Stat+Syst 0.059 1.40

[Photometry & Calibration] [0.021] [0.50]

Low-z 0.014 0.33
DES 0.010 0.24
SALT2 model 0.009 0.21
HST Calspec 0.007 0.17

[µ-Bias Correction: survey] [0.023] [0.55]
†Low-z 3� Cut 0.016 0.38
Low-z Volume Limited 0.010 0.24
Spectroscopic E�ciency 0.007 0.17
†Flux Err Modeling 0.001 0.02

[µ-Bias Correction: astrophysical] [0.026] [0.62]

Intrinsic Scatter Model (G10 vs. C11) 0.014 0.33
†Two �int 0.014 0.33
C, x1 Parent Population 0.014 0.33
†w,⌦m in sim. 0.006 0.14
MW Extinction 0.005 0.12

[Redshift] [0.012] [0.29]

Peculiar Velocity 0.007 0.17
†z + 0.00004 0.006 0.14

a The sample is DES-SN3YR (DES-SN + low-z sample)
plus CMB prior.
b Item in [bold] is a sub-group and its uncertainty.
c The quadrature sum of all systematic uncertainties does
not equal 0.042 because of redshift-dependent correlations
when using the full covariance matrix.
† Uncertainty was not included in previous analyses.

(e.g., see Sect 3.1 of Davis & Parkinson 2017) we find
the constraints shown in Fig. 2 and Table 2 (row 2).
Solid contours show our result with both statistical and
systematic uncertainties included, while dashed contours
show the statistical-only uncertainties for comparison.
Fig. 2 also shows that the CMB data provide strong flat-
ness constraints, consistent with zero curvature; the im-
pact of using this CMB prior is shown in row 3. The im-
pact from adding a BAO prior is shown in row 4, where
the evidence ratio R = 110 shows consistency between
the SN+CMB and BAO posteriors.

4.3.2. Flat wCDM

For our primary result, we use DES-SN3YR with the
CMB prior and a flat wCDM model (⌦k = 0) and find
⌦m = 0.321 ± 0.018 and w = �0.978 ± 0.059 (Table 2,
row 5). Our constraint on w is consistent with the
cosmological-constant model for dark energy. The 68%
and 95% confidence intervals are given by the red con-
tours in Fig. 3, which also shows the contributions from
DES-SN3YR and CMB. We show two contours for DES-
SN3YR, with and without systematic uncertainties in
order to demonstrate their impact. In Table 2, row 6,
we show the impact of the low-redshift SN sample by re-
moving it; the w-uncertainty increases by 25% and the
constraint lies approximately 1� from w = �1.
Next, we consider other combinations of data. Adding

a BAO prior (Alam et al. 2017; Ross et al. 2015; Beutler
et al. 2011) in addition to the CMB prior and SN con-

DES collaboration 2018 (incl AM)

This function includes telescope time 
allocation but also selection of 

“promising candidates” often done 
with template fitting + human
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(e.g., see Sect 3.1 of Davis & Parkinson 2017) we find
the constraints shown in Fig. 2 and Table 2 (row 2).
Solid contours show our result with both statistical and
systematic uncertainties included, while dashed contours
show the statistical-only uncertainties for comparison.
Fig. 2 also shows that the CMB data provide strong flat-
ness constraints, consistent with zero curvature; the im-
pact of using this CMB prior is shown in row 3. The im-
pact from adding a BAO prior is shown in row 4, where
the evidence ratio R = 110 shows consistency between
the SN+CMB and BAO posteriors.

4.3.2. Flat wCDM

For our primary result, we use DES-SN3YR with the
CMB prior and a flat wCDM model (⌦k = 0) and find
⌦m = 0.321 ± 0.018 and w = �0.978 ± 0.059 (Table 2,
row 5). Our constraint on w is consistent with the
cosmological-constant model for dark energy. The 68%
and 95% confidence intervals are given by the red con-
tours in Fig. 3, which also shows the contributions from
DES-SN3YR and CMB. We show two contours for DES-
SN3YR, with and without systematic uncertainties in
order to demonstrate their impact. In Table 2, row 6,
we show the impact of the low-redshift SN sample by re-
moving it; the w-uncertainty increases by 25% and the
constraint lies approximately 1� from w = �1.
Next, we consider other combinations of data. Adding

a BAO prior (Alam et al. 2017; Ross et al. 2015; Beutler
et al. 2011) in addition to the CMB prior and SN con-

DES collaboration 2018 (incl AM)
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Figure 9. Evolution of the classification results as a function of the survey duration for the time-domain AL considering the SNPCC
training set as completely given in the beginning of the survey.

ered by training data (higher magnitudes). At 900 queries,
the set of queried objects chosen by passive learning (red
line, middle column) follows closely the distribution found
in the target sample (blue), - but this does not translate
into a better classification because the bias present in the
original training was not yet overcome. On the other hand,
the discrepancy in distributions between the target sample
(blue region) and the set of objects queried by AL (red line,
right-most column) at 900 queries is a consequence of the ex-
istence of the initial training18. The fact that AL takes this
into account is reflected in the classification results (figure
5).

These results provide evidence that AL algorithms are
able to improve SN photometric classification results over
canonical spectroscopic follow-up strategies, or even passive
learning in a highly idealized environment19. However, in
order to have a more realistic description of a SN survey, we
need to take into account the transient nature of the SNe
and the evolving aspect of an observational survey.

18 The reader should keep in mind that after 1000 queries the
model is trained in a sample containing the complete SNPCC
spec sample added to the set of queried objects.
19 A result already pointed out by Gupta et al. (2016).

5 REAL-TIME ANALYSIS

In this section, we present an approach to deal with the time
evolving aspect of spectroscopic follow-ups in SN surveys.
This is done through the daily update of:

(i) identification of objects allocated to query and target
samples,

(ii) feature extraction and
(iii) model training.

We begin considering the full SNPCC spectroscopic
sample completely observed at the beginning of the survey
- this allows us to have an initial learning model. Then, at
each observation day d, a given SN is included in the analy-
sis if, until that moment, it has at least 5 observed epochs in
each filter. If this first criterion is fulfilled, the object is des-
ignated as part of the query sample if its r-band magnitude
is lower than or equal to 24 (mr  24 at d) - otherwise, it
is assigned to the target sample20. Figure 8 shows how the
number of objects in the query (yellow circles) and target

20 We consider an object with r-band magnitude of 24 to have the
minimum brightness necessary to allow spectroscopic observation
with a 8-meter class telescope.

MNRAS 000, 1–18 (2018)

Ishida + 2019

Smartly targeting objects for spectroscopic follow-up to improve 
your training sample (type Ia but also other types)

early classification for spectroscopic follow-up

+ active learning



A. Möller CNRS/LPC Clermont Dark Energy Colloquium Paris 2019

& SNIa cosmologyFINK
Alert 

Package

Alert 
stream

FINK

Broker 
alerts

Enabling science

Optimizing spectroscopic follow-up for SN photometric classification with AL 9

Figure 9. Evolution of the classification results as a function of the survey duration for the time-domain AL considering the SNPCC
training set as completely given in the beginning of the survey.

ered by training data (higher magnitudes). At 900 queries,
the set of queried objects chosen by passive learning (red
line, middle column) follows closely the distribution found
in the target sample (blue), - but this does not translate
into a better classification because the bias present in the
original training was not yet overcome. On the other hand,
the discrepancy in distributions between the target sample
(blue region) and the set of objects queried by AL (red line,
right-most column) at 900 queries is a consequence of the ex-
istence of the initial training18. The fact that AL takes this
into account is reflected in the classification results (figure
5).

These results provide evidence that AL algorithms are
able to improve SN photometric classification results over
canonical spectroscopic follow-up strategies, or even passive
learning in a highly idealized environment19. However, in
order to have a more realistic description of a SN survey, we
need to take into account the transient nature of the SNe
and the evolving aspect of an observational survey.

18 The reader should keep in mind that after 1000 queries the
model is trained in a sample containing the complete SNPCC
spec sample added to the set of queried objects.
19 A result already pointed out by Gupta et al. (2016).

5 REAL-TIME ANALYSIS

In this section, we present an approach to deal with the time
evolving aspect of spectroscopic follow-ups in SN surveys.
This is done through the daily update of:

(i) identification of objects allocated to query and target
samples,

(ii) feature extraction and
(iii) model training.

We begin considering the full SNPCC spectroscopic
sample completely observed at the beginning of the survey
- this allows us to have an initial learning model. Then, at
each observation day d, a given SN is included in the analy-
sis if, until that moment, it has at least 5 observed epochs in
each filter. If this first criterion is fulfilled, the object is des-
ignated as part of the query sample if its r-band magnitude
is lower than or equal to 24 (mr  24 at d) - otherwise, it
is assigned to the target sample20. Figure 8 shows how the
number of objects in the query (yellow circles) and target

20 We consider an object with r-band magnitude of 24 to have the
minimum brightness necessary to allow spectroscopic observation
with a 8-meter class telescope.

MNRAS 000, 1–18 (2018)

Ishida + 2019

early classification for spectroscopic follow-up

+ active learning

✓ Improve our classification models with limited 
spectroscopic resources

Smartly targeting objects for spectroscopic follow-up to improve 
your training sample (type Ia but also other types)

VRT will survey the 
sky for 10 years!
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Figure 9. Hubble diagram (top) and Hubble residuals (bottom) from the combined Foundation and MDS sample. In the
top panel, opacity is set using the approximate posterior probabilities, P(Ia|D), for the photometrically classified data. In the
bottom panel, the points and the lines connecting the points represent the piecewise-linear function of log(z) that we use to fit
the SN Ia distances (see appendix). Note that the highest- and lowest-redshift control points have extremely high uncertainties
as no SNe are above or below them in redshift, respectively. Residuals are shown compared to a nominal flat ⇤CDM model
with ⌦m = 0.3 and ⌦⇤ = 0.7.

Figure 10. As a function of redshift, Hubble residuals from the combined Foundation+MDS sample subtracted by those from
the previous low-z+MDS sample (J18). Foundation distances are 0.046± 0.027 mag fainter than those from the previous low-z
sample, which gives a positive change in measured w. The highest- and lowest-redshift points have extremely high uncertainties
as no SNe are above or below them in redshift.

Foundation sample, Jones + 2018

Dark Energy Survey 5-year analysis using SuperNNova (in prep)

complete light-curve classification for cosmology

Cosmology limitation: 
Modelling core-collapse contamination

Current efforts include, Vincenzi + 2019, Hinton + 2018  (incl AM)
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Figure 9. Hubble diagram (top) and Hubble residuals (bottom) from the combined Foundation and MDS sample. In the
top panel, opacity is set using the approximate posterior probabilities, P(Ia|D), for the photometrically classified data. In the
bottom panel, the points and the lines connecting the points represent the piecewise-linear function of log(z) that we use to fit
the SN Ia distances (see appendix). Note that the highest- and lowest-redshift control points have extremely high uncertainties
as no SNe are above or below them in redshift, respectively. Residuals are shown compared to a nominal flat ⇤CDM model
with ⌦m = 0.3 and ⌦⇤ = 0.7.

Figure 10. As a function of redshift, Hubble residuals from the combined Foundation+MDS sample subtracted by those from
the previous low-z+MDS sample (J18). Foundation distances are 0.046± 0.027 mag fainter than those from the previous low-z
sample, which gives a positive change in measured w. The highest- and lowest-redshift points have extremely high uncertainties
as no SNe are above or below them in redshift.

Foundation sample, Jones + 2018

Dark Energy Survey 5-year analysis using SuperNNova (in prep)

complete light-curve classification for cosmology

✓ Photometric samples without need for 
spectroscopic SN follow-up 

✓ More diverse samples over larger redshift range
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Summary
- LSST will provide an unprecedented volume of optical data in the 

Southern Sky

- we must develop new methods for analysing this rich alert stream
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✓ Improving spectroscopic follow-up coordination 
✓ Prioritization for spectrograph telescope time 

which is expensive/scarce

✓ Improving modelling of selection functions

✓ Improve our classification models with limited 
spectroscopic resources

✓ Photometric samples without need for 
spectroscopic SN follow-up 

✓ More diverse samples over larger redshift range

- in2p3 broker initiative for LSST alerts

- built on french expertise & new technologiesFINK

Summary

enabling SNIa cosmology

- LSST will provide an unprecedented volume of optical data in the 
Southern Sky


- we must develop new methods for analysing this rich alert stream


