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• 10243 particles, 512 Mpc/h box size

• 101 N-body simulations

• varying

• Fiducial model                                                        

Data publicly available on http://columbialensing.org from Liu et al. 2018, [arXiv:1711.10524v1] 
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(http://columbialensing.org)

• 10000 maps realisations, 100 cosmologies, 5 redshifts

• ray-tracing code LensTools

• 5122 pixels

• 12,25 deg2, 0.4 arcmin resolution

Next, we create merger trees using the public code Consistent Tree
15 [58], a com-

panion code to Rockstar. Similarly, it takes advantage of temporal information to secure
the consistency of halo properties across multiple time steps. Consistent Tree first takes
the traditional method of finding common particles to match progenitors and descendants
in consecutive snapshots. It then makes the assumption that each descendant must have a
progenitor (except for when the progenitor mass falls below the mass resolution), and traces
back in time to find the best-matching progenitor by evolving gravity backwards. When
progenitors are missing in an intermediate time step, often due to their close passage near
the center of its host halo (therefore mis-identified as a part of the host halo), Consistent
Tree creates the halo and assigns properties interpolated using the information from adjacent
time steps.

We show an example of the merger history of a Mvir = 1014.5M� halo in Fig. 6, in both
the massive and massless fiducial simulations. Because we use the same seed to generate the
initial conditions for all models, we can match the same halos across simulations based on
their mass and position. This is more reliable for very massive halos, since small halos may
be destroyed in some models. We see many clearly matching branches in both simulations,
especially for all the major branches where the most massive progenitors (> 1012.5M�, solid
circles) are formed. However, some branches may only exist in one of the models; for example,
the outer-left-most branch in the massless simulation.

6 Lensing convergence maps

Weak gravitational lensing by large-scale structure is a promising cosmological probe. Com-
pared to other cosmological probes, which typically observe the baryon distribution and then
infer the underlying DM distribution, weak lensing has the advantage of probing the DM
clustering directly. Photons emitted at cosmological distances are deflected by the inter-
vening matter. As a result, we see a distorted image of the source. Lensed galaxies are
magnified in brightness and distorted (“sheared”) from their intrinsic shape (see a recent
review by [59]). Lensing distortions produce non-Gaussianity in CMB maps of temperature
and polarization anisotropies (see a recent review by [60]). Statistical measurements of CMB
lensing [e.g. 61–65] and galaxy weak lensing [e.g. 66–70] have been achieved recently, and are
now advancing to become a major tool for precision cosmology.

To lowest order, the lensing convergence  is a projection of the three-dimensional
matter over-density �m along the line-of-sight, weighted by the lensing kernel W (z), which
describes the e�ciency of lenses at each redshift in deflecting the source light. Under the Born
approximation [71–74], where photons are assumed to travel along unperturbed geodesics
x = �(z)✓, we can write,

(✓) =

Z 1

0
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where �(z) is the comoving distance, ✓ is the angular position, zs is the source redshift, and
dn(zs)/dzs is the redshift distribution of the sources and is a delta function at zs = 1100
for the CMB. Ref. [74] showed that the Born approximation is su�cient to describe the

15https://bitbucket.org/pbehroozi/consistent-trees
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MASSIVENUS: CONVERGENCE MAPS
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Data (simulated)

Cosmological constraints

Based on Z. Li et al 2018, [1810.01781]

BUILDING THE PIPELINE
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Noiseless convergence map

+

The above illustration shows a noiseless convergence map. To include observational noise, noise is added to
each pixel, drawn from a random Gaussian distribution centered at zero with variance

�noise =
< �

2
� >

ngal�⌦
. (5)

This expression shows how the noise level depends on the galaxy shape noise ��, the galaxy density ngal and
the noise smoothing scale. The noise contribution has to be modeled for specific survey designs.

1.2 Gaussian smoothing

To remove noises that are dominating the small scales the maps are smoothed.
Jia’s paper takes into account LSST noise and considers three di↵erent smoothing scales (1,2 and 5 arcmin)

to compare the confidence contours from lensing peak counts when computing the contraints on cosmological
parameters. The resulting maps for the corresponding gaussian smoothings will appear as

Figure 2: Noisy convergence map of Figure 1, smoothed with a gaussian filter of precisions 1,2 and 5 arcmin
respectively.

Small smoothing scales can extract more non-linear information (as well as considering higher ` as maximum
multipole), but too small scales would result in a noise dominated map, while too large scales loose the too
much non-lineari information.
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Noisy convergence map

Filtering noise with Gaussian kernel

SURVEY NOISE

Euclid-like noise
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Second Order Statistics 

Power spectrum Peak counts
(Non-Gaussian information)

Higher Order Statistics

SUMMARY STATISTICS
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• build the model (Gaussian Processes)

• define and compute the covariance
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GAUSSIAN LIKELIHOOD
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• INPUT: (training params, training obs)

• interpolate weighting for different bins and cosmologies (scikit-learn)

• OUTPUT: predictions for the observables

INTERPOLATION WITH GAUSSIAN PROCESSES

noise variance.
The goal is to filter out as much as much of the noise as possible while maximally retaining the data. Wavelets

are optimal basis to achieve this since they sample objects of any size scale, and are able to e↵ectively excise
large empty regions. In this formulation, it is possible to obtain not only a filtered image, but also an estimate
of the residual noise, and a noise map. Wavelet denoising relies on the wavelet representation of the image.
Gaussian noise tends to be represented by small values in the wavelet domain and can be removed by setting
coe�cients below a given threshold to zero (hard thresholding) or shrinking all coe�cients toward zero by a given
amount (soft thresholding).

3 Analysis

3.1 Interpolation with Gaussian Processes

To generate parameter constraints we need to evaluate the likelihoods at points in parameter space beyond
the 101 simuulated cosmologies. To build models for the power spectrum and peak counts at an arbitrary
cosmology, they interpolate between the available cosmological models using Gaussian Processes (GP). GP
extend multivariate Gaussian distributions to infinite dimensionality, i.e. it generates data located throughout
some domain such that any finitr subset of the range follows a multivariate gaussian distribution. In this
context, n observations in a arbitrary data set, y = y1, y2, ...., yn are considered as sample from some n�variate
Gaussian distribution. When the mean of this gaussian is assumed to be zero, the quantity that relates one
observation to another is the covariance function k(x, x0). This is due to the fact that Gaussian processes can
be completely defined by their second-order statistics. Hence, if a gaussian process is assumed to have mean
zero, defining the covariance function completely defines the behavoiur of the process. Basic aspects of the
process are then described through the covariance, e.g. the stationarity, the isotropy, the smoothness and the
periodicity. Stationarity refers to the separation of any two points x and x

0: a stationary process depends on
the separation x�x

0, while a non-stationary process depends on the respective positions of x and x
0. Moreover,

a process is isotropic if it only depends on the Euclidean distance |x� x
0| and not on the direction.

A common choice for it is the squared exponential

k(x, x0) = �
2
fexp

⇥�(x� x
0)2

2l2
⇤

(6)

where x are the new values, x0 the training data, �2
f is the maximum allowable covariance and l is the inter-

polation length scale, which is a measure of the e↵ect of the ”separation” between x and x
0, i.e. it describes

how close two points x and x
0 have to be to influence each other significantly. If x ⇡ x

0, k(x, x0) approaches its
maximum, while if x is distant from x

0 then k(x, x0) ⇡ 0 meaning that during the interpolation at new x values,
distant observations will have negligible e↵ect. Considering noisy cases, each observations y can be thought of
as related to an underlying function f(x) through a Gaussian noise model:

y = f(x) +N (0,�2
n) (7)

leading to the following noisy expression for (6)

k(x, x0) = �
2
fexp

⇥�(x� x
0)2

2l2
⇤
+ �

2
n�(x, x

0). (8)

In https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
many kernels are defined. The kernel used in this case is a squared exponential kernel or Radial-basis function
kernel (RBF). The RBF is a stationary kernel and it is parametrized by a length scale parameter l > 0 which can
either be a scalar (isotropic kernel) or a vector with the same number of dimensions as the inputs x (anisotropic
kernel). This kernel is infinitely di↵erentiable, which implies that GPs with this kernel as covariance function
have mean square derivatives of all orders, hence they are very smooth.
GP uses the average information, the variance to weight di↵erent bins and cosmologies when performing the
interpolation. The GP is fitted using an anisotropic squared-exponential kernel. This means that

7

Figure 2: Simple 1D Gaussian process with three observations. The solid black line
is the GP surrogate mean prediction of the objective function given the data, and the
shaded area shows the mean plus and minus the variance. The superimposed Gaussians
correspond to the GP mean and standard deviation (µ(·) and �(·)) of prediction at the
points, x1:3.

includes a very large family of common optimization tasks, and Močkus showed
that the GP prior is well-suited to the task.

A GP is an extension of the multivariate Gaussian distribution to an infinite-
dimension stochastic process for which any finite combination of dimensions will
be a Gaussian distribution. Just as a Gaussian distribution is a distribution over
a random variable, completely specified by its mean and covariance, a GP is a
distribution over functions, completely specified by its mean function, m and
covariance function, k:

f(x) ⇠ GP(m(x), k(x,x0)).

It is often useful to intuitively think of a GP as analogous to a function, but
instead of returning a scalar f(x) for an arbitrary x, it returns the mean and
variance of a normal distribution (Figure 2) over the possible values of f at x.
Stochastic processes are sometimes called “random functions”, by analogy to
random variables.

For convenience, we assume here that the prior mean is the zero func-

7
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RESULTS: GAUSSIAN SMOOTHING 

• 95 % confidence contours

• emcee package for MCMC

• flat prior

• gaussian likelihood

• tighter constraints with peaks
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Tomography Gauss PS

Tomography Gauss Peaks

Tomography Gauss PS + Peaks
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STARLET KERNEL

+=

• wavelet transform

•

• multi-scale approach

194 STARCK & MURTAGH

1998 PASP, 110:193–199

effect of an error in the variance estimation is also studied in
two different applications. The first is source detection, and the
second is cosmic-ray removal. In § 5, the case of a noise
composed of both Poisson and Gaussian noise is analyzed. We
propose an algorithm to find the Gaussian part of the noise.

2. MULTIRESOLUTION SUPPORT

2.1. Definition

We will say that a multiresolution support (Starck et al. 1995)
of an image describes in a logical or Boolean way if an image
I contains information at a given scale j and at a given position
( ). If 5 1 (or 5 true), then I contains infor-(I)x, y M ( j, x, y)
mation at scale j and at the position ( ).M depends on severalx, y
parameters:

The input image;
The algorithm used for the multiresolution decomposition;
The noise;
All constraints that we want the support to satisfy in

addition.

Such a support results from the data and the treatment (noise
estimation, etc.), and from our knowledge of the objects con-
tained in the data (size of objects, linearity, etc.). In the most
general case, a priori information is not available to us.
The multiresolution support of an image is computed in sev-

eral steps:

1. The wavelet transform of the image is computed.
2. Booleanization of each scale leads to the multiresolution

support.
3. A priori knowledge can be introduced by modifying the

support.

The last step depends on the knowledge we have of our
images. For instance, if we know there is no interesting object
smaller or larger than a given size in our image, we can sup-
press, in the support, anything that is due to that kind of object.
This can often be done conveniently by the use of mathematical
morphology. In the most general setting, we naturally have no
information to add to the multiresolution support.

2.2. Multiresolution Support from the Wavelet
Transform

The wavelet transform of an image by an algorithm such as
the à trous method (Shensa 1992) produces, at each scale j, a
set { }. This has the same number of pixels as the image, andwj
thus this wavelet transform is a redundant one. The original
image c0 can be expressed as the sum of all the wavelet scales

and the smoothed array cp:

p

c 5 c 1 O w . (1)0 p j
j51

A pixel at position ( ) can also be expressed as the sum allx, y
the wavelet coefficients at this position, plus the smoothed
array:

p

c (x, y) 5 c (x, y)1 O w (x, y). (2)0 p j
j51

The multiresolution support will be obtained by detecting at
each scale the significant coefficients. The multiresolution sup-
port is defined by

1, if w (x, y) is significant;jM( j, x, y) 5 (3){0, if w (x, y) is not significant.j

Given stationary Gaussian noise, in order to define if iswj
significant it suffices to compare to . Often k isw (x, y) kjj j

chosen as 3. If is small, it is not significant and couldw (x, y)j

be due to noise. If is large, it is significant. That is,w (x, y)j

if FwF ∏ kj , then w is significant;j j j

if FwF ! kj , then w is not significant. (4)j j j

So we need to estimate, in the case of Gaussian noise models,
the noise standard deviation at each scale.

2.3. Estimation of Noise Standard Deviation at Each
Scale

The appropriate value of in the succession of waveletjj
planes is assessed from the standard deviation of the noise jI
in the original image and from study of the noise in the wavelet
space. This study consists of simulating an image containing
Gaussian noise with a standard deviation equal to 1 and taking
the wavelet transform of this image. Then we compute the
standard deviation at each scale. We obtain a curve as ae ej jj j

function of j, which gives the behavior of the noise in the
wavelet space. (Note that if we had used an orthogonal wavelet
transform, this curve would be linear.) As a result of the prop-
erties of the wavelet transform, we have . The standardej 5 j jj I j

deviation of the noise at a scale j of the image is equal to the
standard deviation of the noise of the image multiplied by the
standard deviation of the noise of the scale j of the wavelet
transform.

11

w1 w2 w3 w4 w5c0

Virginia Ajani - Colloque National Action Dark Energy 2019

Starck et al. 2007 



STARLET PEAK COUNTS

• estimate the noise level at each scale 

A&A proofs: manuscript no. mice_peak_counts

Fig. 3. Starlet decomposition of an example noiseless convergence map (✓). The images are 150⇥150 with pixels of size 0.5 arcmin. The original
map is shown along with the wavelet coe�cient maps {w j} up to jmax = 4. The final smoothed map c5, i.e., the low-pass filtered version of , is not
shown. One can see that the transform picks out features of  at successively larger scales as j increases.

using the isotropic undecimated wavelet, or starlet, transform
(Starck et al. 2007).

The starlet has many properties that make it useful in astro-
physical image processing. First, isotropy makes it well-suited to
extract features from astrophysical data containing objects that
are roughly round, such as stars, galaxies, and clusters. Next, it
is a multiscale transform in which the information contained at
di↵erent scales in a image is separated out simultaneously. The
filter functions associated with the starlet transform are localized
in real space—i.e., they go to zero within a finite radius. The first
wavelet function acts as a high-pass filter, while the remaining
wavelets act as band-pass filters for their respective scales, since
they are localized in Fourier space as well. Finally, the wavelet
functions are compensated, meaning they integrate to zero over
their domains. This is beneficial, as it was shown by Lin et al.
(2016) that in the context of peak-count analyses, compensated
filters are better at capturing cosmological information compared
to non-compensated filters like the Gaussian kernel. We note that
the wavelet transform of a convergence map at a particular scale
is also formally equivalent to aperture-mass filtering by a corre-
sponding compensated filter (Leonard et al. 2012).

The starlet transform of an N ⇥ N image I amounts to suc-
cessive convolutions of the image with a set of discrete filters
corresponding to di↵erent resolution scales j = 1, ..., jmax. The
result is a set of J = jmax + 1 maps {w1, ..., w jmax , cJ}, each of size
N ⇥N, where the ‘detail’ maps {w j} represent I filtered at a scale
of 2 j pixels. The final map cJ represents a smoothed version of
I, and the original image is exactly recoverable from the decom-
position: I = cJ +

P jmax
j=1 w j. Further details, including explicit

expressions for the discrete filter bank associated with the starlet
can be found in Starck et al. (2007).

As an illustration, we show the starlet transform of a conver-
gence map of 150 ⇥ 150 pixels in Fig. 3. The original image is a
noiseless map (✓) with pixels of size 0.5 arcmin, and the decom-
position is shown for jmax = 4 wavelet scales increasing to the
right. Brighter pixels indicate larger values. The smoothed map
c5, which is the low-pass filtered version of , is not shown. One
can see that progressively lower frequency features are picked
out from  as j increases.

After filtering, the noise level is di↵erent at di↵erent scales,
and these levels are related by the ratio of the filter norms. If we
denote the wavelet convolution kernel at scale j by Wj, then the
noise at this scale is

�2
j
= �2

ref ·
||Wj||22
||Wref ||22

, (22)

where || · ||2 denotes the `2 norm, and �ref is the known noise level
at a particular reference scale.

Instead of using the analytic expression corresponding to the
input galaxy ellipticity dispersion, we estimate�ref from the data
as follows. Let  j denote the map filtered at scale j (analogous
to w j above). At the finest wavelet scale, j = 1, the noise is
dominant, and we expect the wavelet coe�cients to follow the
noise distribution. We therefore take �ref as the dispersion of 1,
the smallest resolution of the convergence map decomposition.

The signal-to-noise at scale j of a given coe�cient at loca-
tion ✓ can then be written as

⌫ j(✓) =
 j(✓)
� j

, (23)

where we only consider positive values of  j. For all maps used
in our cosmological analysis, we bin the galaxies into pixels of
size 0.5 arcmin, resulting in maps that are 600 ⇥ 600 pixels. We
transform  with jmax = 5 wavelet scales and identify peaks in
these maps as local maxima of ⌫, where a peak is simply a pixel
with a larger ⌫ value than its eight neighboring pixels.

3.4. Choice of data vector

To compare the predictions of Camelus to MICE, and ultimately
to constrain parameters, we need a summary statistic that en-
capsulates the peak information contained at di↵erent wavelet
scales. For this, we choose peaks of ⌫ � 1 with bin boundaries
defined by [1.0, 1.2, ..., 4.8, 5.0][ [5.3, 5.6, 5.9,+1). That is, the
bin spacing is �⌫ = 0.2 for ⌫ 2 [1.0, 5.0] and �⌫ = 0.3 for
⌫ 2 [5.0, 5.9].

Lin et al. (2016) have shown that keeping the multiscale peak
histograms separate, rather than combining them into a single
data vector, yields tighter constrains on cosmological parame-
ters. Following this result, we adopt a summary statistic that is
the concatenation of peak-count histograms at five consecutive
wavelet scales. The scales are arranged in order of decreasing
resolution, analogous to the four scales in the example of Fig. 3.

In Fig. 4, we show a comparison of the MICE peak his-
tograms at each scale with the Camelus predictions for the 4 650
deg2 field. MICE results are shown as solid blue lines, Camelus
as red circles. The data points for both align with the left edges
of their associated S/N bins. The Camelus data were obtained by
averaging 500 realizations of the code with the MICE cosmol-
ogy as input, and error bars represent the standard deviations of
these runs.

The plots reveal overall good agreement between the mock
observations and the Camelus predictions across all scales, espe-
cially for ⌫ less than ⇠5. The highest S/N bins exhibit the largest
bias at each scale, and the shaded regions indicate bins where the
relative di↵erence between MICE and the Camelus prediction
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CONCLUSIONS

• Tomography outperforms single redshift case

• Gaussian Joints statistics (Power Spectrum + Peaks) tighter constraints than PS alone

• Starlet Joints statistics (Power Spectrum + Peaks)      Peaks alone

• Central scales seem to encode almost all information 
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⇤CDM (15)

zs = 1, ngal = 30/arcmin2

Z zmax

zmin

n(z)dz = 30 arcmin�2 (16)

z = {0.5, 1.0, 1.5, 2.0, 2.5} (17)

⇠ (18)

- Real data, other simulations, systematics …

Next:
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