Dark Energy with SKA

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Françoise Combes Observatoire de Paris

November 2019

SKA & cosmology: main questions Dark energy:

Is it varying with time?

Matter in the Universe Dark matter/visible matter vs z

How is the Universe re-ionized? End of the dark age: cosmic dawn, EoR

How do baryons assemble into the large-scale structures? Galaxy formation and evolution Star formation history, quenching Environment: groups and galaxy clusters

Strong-gravity with pulsars and black holes

Translation into Main Parameters

1-What is dark energy: w P= w ρ Equation of state and nature of DE, through expansion and growth rates, 5 tools: Weak Lensing, BAO, RSD, Clusters, ISW

2-Gravity beyond Einstein: γ

Testing modified gravity, by measuring growth rate exponent **y**

3-The nature of dark matter, m_v Testing the CDM theory, and measuring neutrino mass

4- The seeds of cosmic structures Improve n = spectral index $\sigma_8 =$ amplitude of power spectrum, $f_{NL} =$ non-gaussianities, inflation?

Rebaselining 2015

The SKA cost was 1 billion euros

In 2014, SKA board capped at **650 Meuros**

Deferring the SKA1-survey
Reducing SKA1-mid to 70%
Reducing SKA1-low to 50%

2017: Deployment baseline

New science book: 2000 pages, 135 chapters, published in 2015 Organisations from 13 countries are currently members of the SKAO – Australia, Canada, China, France, Germany, India, Italy, New Zealand, South Africa, Spain, Sweden, the Netherlands, UK 40% of world population!

Field of View

SKA1-Low

50-350 MHz ($\Delta v = 300$ Mhz)

SKA1 Low: 130,000 dipoles, in 512 array stations of 256 in the Boolardy site in Western Australia 50% within 1 km core 50% clusters of 6 stations on three modified spiral arms maximum baseline = 65 km.

SKA1-Mid

0.35 – 24 GHz (15–24 GHz 2nd phase)

SKA1-Mid: 133 x15m dishes +64 x13.5m Meerkat dishes Karoo site in South Africa 50% in the core, randomly distributed within 2 km 3 logarithmic spiral arms maximum baseline = 150 km

Sensitivity Comparison

Exploring the Universe with the world's largest radio telescope

Survey Speed Comparison

Exploring the Universe with the world's largest radio telescope

Resolution Comparison

Exploring the Universe with the world's largest radio telescope

Accelerating universe from SNIa

Scolnic et al 2018 Pantheon sample 1048 SN 0.01 < z < 2.3 $\mathbf{P} = \mathbf{w} \ \mathbf{\rho} \qquad \mathbf{w}(\mathbf{a}) = \mathbf{w}_0 + \mathbf{w}_a \ (1-\mathbf{a})$ with $\mathbf{a} = 1/(1+z)$

Wa

Planck 2019

CMB and Dark energy

Concordance model, between CMB, Supernovae Ia, Large-scale structure (LSS) (weak lensing, BAO= Baryonic Oscillations)

wo~-1 wa~0 Ωm 0.7 65 0.6 60 ଝ ପ _{0.5} H 55 0.4 50 TT,TE,EE+lowE+lensing +BAO45 0.3 -0.05-0.100.00 Ω_K ΩK

Current constraints: Planck + others

How to solve the H_0 , σ_8 tension

R18 Riess et al 2018

Interacting DE?

A closed universe?

Di Valentino et al 2018, 2019

BAO z=0.8-2.2 from quasars e-BOSS (last release DR14 SDSS-IV)

147 000 quasars over 2040 °²

Compatible with Λ CDM $\Omega_{\rm m} = 0.3, \, \Omega_{\Lambda} = 0.7$

The QSO are very good tracers!

Ata et al 2018

Full BAO: including Lya

Survey in Lya absorption

Sound horizon

150Mpc

Absorption of Ly α line at z=2.3 Delubac et al 2014 Red dots versus QSO simul (grey) H(z)/(1+z) r_d

Peculiar velocity DM-baryons

It was realized in 2010 that $V_b-V_{DM}=33$ km/s at decoupling

The HI $\sigma v = 6$ km/s Supersonic

→Could impact small mass structures Modifies BAO

Blazek et al 2015

HI surveys for BAO with SKA-1

All sky survey: 4 10⁶ gal z=0.2 3π sr Wide-field survey 2 10⁶ gal z=0.6 5000 deg² Deep-field survey 4 10⁵ gal z=0.8 50 deg²

More competitive: HI intensity mapping $30\ 000\ deg^2$ up to z=3 Deep and wide, large volumes, ~Euclid

SKA2 will help to provide pure sample 1 billion HI galaxies in total

Weak shear 10 billions galaxies in continuum

Radial and transverse BAO

IM: HI Intensity mapping Gal: HI galaxy surveys

B1 low-frequency band B2 high-frequency band

Maartens et al 2015

Comparison of Volume covered

HI gal survey vs intensity mapping

First results HI intensity mapping (GBT)

BAO with SKA1 Intensity mapping

RSD Redshift space distortions

Distortions due to peculiar velocities on the line of sight

the line of sight (fingers of god!) Kaiser effect in clusters Systematic infall More than random allows to determine $\beta = \Omega_m^{0.6}/b$ bias $\delta_{galaxies} = b (\delta_{mass})$ bias $\delta_{\text{galaxies}} = b (\delta_{\text{mass}})$ and σ_{gal}

Constraints on DE with HI gal survey

Raccanelli et al 2015

Dark energy and growth factor

Raccanelli et al 2015

Constraints on $f\sigma_8$

SKA1-gal not Competitive, but IM yes, and SKA2 much improved

Raccanelli et al 2015

RSD: Redshift Space Distortions

Mohammad et al 2018

Continuum surveys with SKA1

In 2yrs achieve 2 μ Jy rms would provide \approx 4 galaxies arcmin² (>10 σ)

PSF is excellent quality circular Gaussian from about 0.6 - 100" With almost uniform sky coverage of 3π sr

→ Total of **0.5 billion radio sources, for All sky survey** for weak lensing and Integrated Sachs Wolfe (WL, ISW)

For wide-field (5000 deg2) **2** μ Jy rms \approx 6 galaxies arcmin² (>10 σ) For deep-field (50deg2) **0.1** μ Jy rms, \approx 20 galaxies arcmin² (>10 σ)

Present status of radio surveys

HDF-N 5 x 5 arcmin area to I ~29thmagnitude

Fomalont et al., ApJ 475, L5 (1997)

6 sources detected by VLA with $S_{8.4} > 12 \mu Jy$ (50 hour observation)

Deep radio sky 10' size, @ 1.4GHz

1mJy top 100nJy bottom Left and Right Cosmic variance

FRI: green, double FRII: red, double

Beamed FRI: green dot Beamed FRII: red dot Star-forming: disk

Jackson 2004

Weak Lensing & LSS in radio

SKA footprint to scale /100,000

