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Profiling
ORSIKA v

* Profiling on a 100 shower run.
* LONGI option enabled
* 76.90% runtime in CERENK

* 32.49% runtime in Raybnd



Vectorization

* Having to compute a number of scalar
AVX2

operations on same type variables.
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* Storing a number of variables in a vector M \‘ ¥
and using a vectorized operation
_ AVX512
equivalent to the scalar one.
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Vectorization

* Intel Intrinsics to manually vectorize the code .

* External libraries that implement vectorized functions such as math libraries.

o SIMD vector libm

o https://gitlab.com/cquirin/vector-libm

o https://hal.archives-ouvertes.fr/hal-01511131/document

* Automatic vectorization of the code by the compiler.
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Optimization process (Raybnd)[femm] (=

* Previous work on the vectorization Raybnd by computing mutliple photon bunches [mwwm]
once.

e https://gite.lirmm.fr/cta-optimization-group/cta-optimization-project/wikis/uploads/
d9fel1652712cbfffe6a28c5d8c3a5da9/CorsikaOpt.pdf

* The vectorization of mathematical functions (exp, cos ...) using a dedicated library
* https://gitlab.com/cquirin/vector-libm

* Unrolling Cerenk Fortran loop to use vectorized Raybnd.

* Factorizing the code to avoid redundant function calls.




Optimization process (Raybnd)

* Advancing the optimization of Raybnd
by:

* Restructuring the tests.

*= sin_t_obs/sin_t_em;

*= sin_t_obs/sin_t_em;

( (*w) >= 0. )

*w = sqrt(1.-sin_t_obs*sin_t_obs);

*w = -sqrt(1.-sin_t_obs*sin_t _obs);

* Isolating computations to facilitate [T IEEtE GV DRI s

detection of vectorizable loops by
compiler.

*Validation of vectorization by checking
assembler code.

*dy += hori_off * (*v)/sin_t_obs;

*dt += travel_time;

( =0; i< VECTOR_SIZE; i++){
u[i] *= sin_t_obs[i]/sin_t_em[1i];

( =0; i< VECTOR_SIZE; i++){
v[i] *= sin_t_obs[i]/sin_t_em[1];

( =0; i< VECTOR_SIZE; i++){
(w[i] >= 0)
w[i] = sqrt(1.-sin_t_obs[i]*sin_t_obs[i]);

w[i] = -sqrt(1.-sin_t_obs[i]*sin_t_obs[1]);

( =0; i< VECTOR_SIZE; i++){
dx[1] += hori_off[i1] * (u[i])/sin_t_obs[1];

( =0; i< VECTOR_SIZE; i++){
dy[i] += hori_off[i1] * (v[i])/sin_t_obs[1];

( =0; i< VECTOR_SIZE; i++){
dt[i] += travel_time[i];




Optimization process (Cerenk’ m

* Optimization opportunity in the vectorization of unrolled loop in Cerenk.

* Translating the function from Fortran to C for easier application of the transformations
applied to Raybnd.

* The Translation to C requires:
* Defining the data structures mainly the Fortran common blocks, in C.

* Making sure conditional expressions are equivalent between the two languages.

* Linking the C version of Cerenk to the required functions still in Fortran.



Optimization process (Cerlde)

* LONGI option is impossible to activate with vectorized versions with scalar Cerlde.
mmmm) A vectorized Cerlde function is necessary.

* Inlining Cerlde in the vectorized portion of CERENK while calling the sequential
function in the computation of the remaining photon bunches.



Optimization process

Corsika v6 [ IACT 1.51 Corsika v7 [ IACT 1.59
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Experimental setup

* Dedicated server running running
CentOS Linux release 7.4 - 64 bits.

* Compiler: gcc 8.2.1
* Compilation flags: -O3 -mavx2

* Running conditions:

- gamma, prod3 Paranal baseline 20
deg. zenith angle (LONGI disabled)

- Using keep-seeds option for random
number generation to
obtain reproductible runs

* Run validation using python script

based on
https://github.com/fact-project/pyeventio

Architecture:
CPU op-mode(s):
Byte Order:
CPU(s):

On-1line CPU(s) list:

Thread(s) per core:
Core(s) per socket:
Socket(s):

NUMA node(s):
Vendor ID:

CPU family:

Model:

Model name:
Stepping:

CPU MHz:

BogoMIPS:
Virtualization:

L1d cache:

L11 cache:

L2 cache:

L3 cache:

x86 64
32-bit, 64-bit
Little Endian
16

0-15

2

4

2

2
Genuinelntel
6

85

Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz
4

3600.000
7200.00

VT-X

32K

32K

1024K

16896K




Experiments and Performance

Execution time (s) for 2500 shower run
160 I | | I I I |

| V-corGrayo

Speed-up 1.21 1.26 1.55
| V-cor7-ray | Vecor7-cer
Speed-up 1.14 1.44

* Less CPU time spent in Raybnd in Corsika v7 : New interpolation scheme.
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Experiments and Performance

Execution time (S)
1 1
2500 Showers with LONGI option ©0

350 L
- The vectorization of CERLDE B A gain in performance.
* Speedup of V-cor7-ray + LONGI option : 1.21

o Speedup of V-cor7-cer + LONGI option : 1.52

* All previous experiments have vector length set to 4

V-ref7

* Speedup of V-cor7-cer with -mavx512 flag (vector length = 8) : 1.60

V-cor7-ray
V-cor7-cer



Conclusions

* The optimization of Corsika via vectorization:
* Corsika v6 / IACT 1.51 a speedup of up to 1.55

* Corsika v7 / IACT 1.59 a speedup of up to 1.44 and 1.60 with vectors of 8 doubles.

* Corsika v7 / IACT 1.59 with LONGI option speedup : 1.52

* Vectorized versions have identical results as the Ref versions so no accuracy is sacrificed.

* Optimization plans based on memory access and precision reduction are currently being
investigated.

* The vectorized versions are in the process of being packaged for distribution.



MAIN__

mutrac_

3624459x (3279656

electr_ -
04.13% 3 0 electr_
(5.48%) 05.42% 102%
3594450 : (4.31%) 761820
0656 3624450

3.55% 8 - . 2.82%
65462636x 6546 65462636

cerenk_ elev cerenk_
84.99% y 88.50%
(16.28%) 74212257% [ (@1.45%)

66224436x ' 66224436x

1.08% . . 10.37%
221201398x 1301602529x

37.18% 14.93% 6.56%
1301601396x |1301601396x 1301601396x

vb ybnd_ raybnd_vec_ telout
raybnd_ telout _ e 2.02% 2.55% 41 55% 10.37%
37.18% 149 9 ( ) ( 1312957112x | 312020606 (. ) (23.26%)

(37.18%) 4.7 46%) : : 804687« [l 312020606%
1301601396x 1301601396x , :



