Digits Architectures Logiciels Informatique

Optimizing Cherenkov
photons generation and
propagation in Corsika

ADNANE KHATTABI

* ————————

l ' M t cherenkov

C a telescope

| o: ‘ array
LABORATOIRE # MONTPELLIER
UNIVERS & PARTICULES
e

Content

1. Cherenkov photons production and propagation.
2. Corsika profiling.

3. Optimization process.
1. Raybnd
2. Cerenk

3. Cerlde
4. Experiments and performance.

5. Conclusion

Cherenkov photons production and
propagation
Shower Particle track Atmosphere

} Tracksub-step (n,6,n, T, ...)

%
L4 'Cr,
/701‘00 Z’?,{—Op

\] AN A J
| ! Y |
EGS4/SHOWER/ELECTR CERENK raybnd telout
- Shower development - Nb of emitted - Deviation of - Record coordinates
- Transport of Cherenkov photons photon bunches by of photon bunches

electron/positron - Grouped in bunches atmosphere refraction hitting the teleScopes

shower_

92.17%

(0.00%)
120x

5.43%
80374x

photon_ electr_
5.43% 86.71%
(5.89%)
88709x

0.58%
2003737x

0.27%
3580192x

12.79% //g;XY%
/ 31040173x | 862051x

94.87% 2.09%
139x 1x

box3_ inprm_

94.87%

(0.00%)
139x

[
92.17% 2.70%
120x

Ax

1.05%
636x

2.03%
14079x

dnielm_
0.34%
14079x

rhof
0.67
(0.67
28168x

28162x

1.37%
[14076x

onstprop.5

32.49%
31040173x 14076x

refi - raybnd_ d107d1
0.12% 6 : 32.49%

1602262x (32.49%)
31040173x

0.72% 1.68%
000864x

2.31%
31040411x 91040411x

ppcs_
l r‘D::
(1.6¢
900864x

Profiling
ORSIKA v

* Profiling on a 100 shower run.
* LONGI option enabled
* 76.90% runtime in CERENK

* 32.49% runtime in Raybnd

Vectorization

* Having to compute a number of scalar
AVX2

operations on same type variables.

EN EEEN BN BN EE EN
* Storing a number of variables in a vector M \‘ ¥
and using a vectorized operation
_ AVX512
equivalent to the scalar one.

oo
e

Vectorization

* Intel Intrinsics to manually vectorize the code .

* External libraries that implement vectorized functions such as math libraries.

o SIMD vector libm

o https://gitlab.com/cquirin/vector-libm

o https://hal.archives-ouvertes.fr/hal-01511131/document

* Automatic vectorization of the code by the compiler.

-

l

Vectorized RaybndJ ——————| CerenkinC Optl m |Zat|on
-) l process
KVectorized Raybnd :
"| Cerenk

_
Optimization process (Raybnd)[femm] (=

* Previous work on the vectorization Raybnd by computing mutliple photon bunches [mwwm]
once.

e https://gite.lirmm.fr/cta-optimization-group/cta-optimization-project/wikis/uploads/
d9fel1652712cbfffe6a28c5d8c3a5da9/CorsikaOpt.pdf

* The vectorization of mathematical functions (exp, cos ...) using a dedicated library
* https://gitlab.com/cquirin/vector-libm

* Unrolling Cerenk Fortran loop to use vectorized Raybnd.

* Factorizing the code to avoid redundant function calls.

Optimization process (Raybnd)

* Advancing the optimization of Raybnd
by:

* Restructuring the tests.

*= sin_t_obs/sin_t_em;

*= sin_t_obs/sin_t_em;

((*w) >= 0.)

*w = sqrt(1.-sin_t_obs*sin_t_obs);

*w = -sqrt(1.-sin_t_obs*sin_t _obs);

* Isolating computations to facilitate [T IEEtE GV DRI s

detection of vectorizable loops by
compiler.

*Validation of vectorization by checking
assembler code.

*dy += hori_off * (*v)/sin_t_obs;

*dt += travel_time;

(=0; i< VECTOR_SIZE; i++){
u[i] *= sin_t_obs[i]/sin_t_em[1i];

(=0; i< VECTOR_SIZE; i++){
v[i] *= sin_t_obs[i]/sin_t_em[1];

(=0; i< VECTOR_SIZE; i++){
(w[i] >= 0)
w[i] = sqrt(1.-sin_t_obs[i]*sin_t_obs[i]);

w[i] = -sqrt(1.-sin_t_obs[i]*sin_t_obs[1]);

(=0; i< VECTOR_SIZE; i++){
dx[1] += hori_off[i1] * (u[i])/sin_t_obs[1];

(=0; i< VECTOR_SIZE; i++){
dy[i] += hori_off[i1] * (v[i])/sin_t_obs[1];

(=0; i< VECTOR_SIZE; i++){
dt[i] += travel_time[i];

Optimization process (Cerenk’ m

* Optimization opportunity in the vectorization of unrolled loop in Cerenk.

* Translating the function from Fortran to C for easier application of the transformations
applied to Raybnd.

* The Translation to C requires:
* Defining the data structures mainly the Fortran common blocks, in C.

* Making sure conditional expressions are equivalent between the two languages.

* Linking the C version of Cerenk to the required functions still in Fortran.

Optimization process (Cerlde)

* LONGI option is impossible to activate with vectorized versions with scalar Cerlde.
mmmm) A vectorized Cerlde function is necessary.

* Inlining Cerlde in the vectorized portion of CERENK while calling the sequential
function in the computation of the remaining photon bunches.

Optimization process

Corsika v6 [IACT 1.51 Corsika v7 [IACT 1.59

Vectorized Raybnd I t Vectorized Raybnd .
[V-cor6-ray J [Cerenkiin C J [V-cor7-ray ——| CerenkinC

Vectorized Raybnd + Cerenk (Vectorized Raybnd + Cerenk
V-cor6-cer 1 V-cor7-cer

M)

Experimental setup

* Dedicated server running running
CentOS Linux release 7.4 - 64 bits.

* Compiler: gcc 8.2.1
* Compilation flags: -O3 -mavx2

* Running conditions:

- gamma, prod3 Paranal baseline 20
deg. zenith angle (LONGI disabled)

- Using keep-seeds option for random
number generation to
obtain reproductible runs

* Run validation using python script

based on
https://github.com/fact-project/pyeventio

Architecture:
CPU op-mode(s):
Byte Order:
CPU(s):

On-1line CPU(s) list:

Thread(s) per core:
Core(s) per socket:
Socket(s):

NUMA node(s):
Vendor ID:

CPU family:

Model:

Model name:
Stepping:

CPU MHz:

BogoMIPS:
Virtualization:

L1d cache:

L11 cache:

L2 cache:

L3 cache:

x86 64
32-bit, 64-bit
Little Endian
16

0-15

2

4

2

2
Genuinelntel
6

85

Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz
4

3600.000
7200.00

VT-X

32K

32K

1024K

16896K

Experiments and Performance

Execution time (s) for 2500 shower run
160 I | | I I I |

| V-corGrayo

Speed-up 1.21 1.26 1.55
| V-cor7-ray | Vecor7-cer
Speed-up 1.14 1.44

* Less CPU time spent in Raybnd in Corsika v7 : New interpolation scheme.

L
g
=

V-cor6-ray0
V-cor6-ray
V-cor6-cer

V-ref7
V-cor7-ray
V-cor7-cer

Experiments and Performance

Execution time (S)
1 1
2500 Showers with LONGI option ©0

350 L
- The vectorization of CERLDE B A gain in performance.
* Speedup of V-cor7-ray + LONGI option : 1.21

o Speedup of V-cor7-cer + LONGI option : 1.52

* All previous experiments have vector length set to 4

V-ref7

* Speedup of V-cor7-cer with -mavx512 flag (vector length = 8) : 1.60

V-cor7-ray
V-cor7-cer

Conclusions

* The optimization of Corsika via vectorization:
* Corsika v6 / IACT 1.51 a speedup of up to 1.55

* Corsika v7 / IACT 1.59 a speedup of up to 1.44 and 1.60 with vectors of 8 doubles.

* Corsika v7 / IACT 1.59 with LONGI option speedup : 1.52

* Vectorized versions have identical results as the Ref versions so no accuracy is sacrificed.

* Optimization plans based on memory access and precision reduction are currently being
investigated.

* The vectorized versions are in the process of being packaged for distribution.

MAIN__

mutrac_

3624459x (3279656

electr_ -
04.13% 3 0 electr_
(5.48%) 05.42% 102%
3594450 : (4.31%) 761820
0656 3624450

3.55% 8 - . 2.82%
65462636x 6546 65462636

cerenk_ elev cerenk_
84.99% y 88.50%
(16.28%) 74212257% [(@1.45%)

66224436x ' 66224436x

1.08% . . 10.37%
221201398x 1301602529x

37.18% 14.93% 6.56%
1301601396x |1301601396x 1301601396x

vb ybnd_ raybnd_vec_ telout
raybnd_ telout _ e 2.02% 2.55% 41 55% 10.37%
37.18% 149 9 () (1312957112x | 312020606 (.) (23.26%)

(37.18%) 4.7 46%) : : 804687« [l 312020606%
1301601396x 1301601396x , :

