

LHC : PRÉSENT ET FUTUR PERSPECTIVES AU LHC ET HL-LHC

ROBERTO SALERNO LLR CNRS/IN2P3 Ecole Polytechnique

LHC AND HL-LHC TIMELINE Today Run1 and Run2 2015 2016 2017 2018 2019 2020 2021 2022 2023

2033	2034	2035	2036
JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND
	LS5		

>300fb⁻¹ 14 TeV

J F M A M J J A S O N D J F M A M J J A S O N I

LHC

2028	2029	2030	2031	2032
JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND
		LS4		

] F M A M J J A S O N D

LS2

ONDJFMAMJJASOND

Shutdown/Technical stop Protons physics Commissioning Ions

ROBERTO SALERNO²

FOREWORD

The Higgs boson is a fundamental scalar particle (spin 0) and its theory is unlike anything else we have seen in nature.

Its discovery have open a huge landscape at LHC and HL-LHC of possibilities in the study of Higgs boson properties, EWSB, SM, and new avenues in probing new physics beyond SM

Outline

- ✓ QCD studies
- ✓ EW phenomena
- ✓ Flavour physics (aka top quark physics)
- ✓ Higgs boson properties
- Higgs boson as portal for New Physics
- Searches for New Physics at high mass

PUBLICATIONS

More than 900 LHC-collisions based paper already submitted by CMS for publication!

+ the same order by ATLAS

ROBERTO SALERNO 4

PUBLICATIONS

PUBLICATIONS

More than 900 LHC-collisions based paper already submitted by CMS for publication!

+ the same order by ATLAS

ROBERTO SALERNO⁶

A SUMMARY IN A SINGLE PLOT

ROBERTO SALERNO 7

A SUMMARY IN A SINGLE PLOT

July 2019

The LHC is an **everything** factory Produced in 139 fb⁻¹ at $\sqrt{s} = 13$ TeV Particle Higgs boson 7.7 million LHC Top quark 275 million Z boson 2.8 billion ($\rightarrow \ell \ell$, 290 million) W boson 12 billion $(\rightarrow \ell \nu, 3.7 \text{ billion})$ Bottom quark ~40 trillion (significantly reduced by acceptance) Broad physics potential by probing with high-precision Higgs and other Standard Model processes, detecting very rare processes, and exploring new physics via direct and indirect measurements Andreas Hoecker EPS-HEP 2019

CMS Preliminary

ULTIMATE HL-LHC PDF

Quantify the precision of the PDF at the end of the HL-LHC running

pseudo-data generated for various inputs: top, Drell-Yan, photons, W+charm, W and Z in the forward region, inclusive jets...

ROBERTO SALERNO 9

WEAK MIXING ANGLE

The world average of the weak mixing angle $\sin^2\theta_{eff}$ is dominated by determinations based on LEP and SLD data that differ of $> 3\sigma$.

Increase forward detector acceptance is a key element !

Cedex, France

ROBERTO SALERNO¹⁰

10

TRIBOSON PRODUCTION

scales beyond the reach of direct resonance production

It can signal the presence of anomalous EW couplings (TGC/QGC), and of new physics at energy

Channel	$\frac{\Delta\mu}{\mu}$ (3000 fb ⁻¹)	$\frac{\Delta\mu}{\mu}$ (4000 fb ⁻¹)
$WWW \rightarrow 3\ell \; 3\nu \; (0SFOS)$	11%	10%
$WWZ \rightarrow 4\ell \ 2\nu \ (DFOS)$	27%	25%
$WZZ \rightarrow 5\ell 1\nu$	36%	31%

Expected precision on the signal strength measurement

WEAK VECTOR BOSON SC .045

VBS provides a key opportunity to probe the nature of the electron

At HL-LHC first study of the longitudinal scattering of weak bosons ($Z_LZ_L \rightarrow Z_LZ_L$)

FOUR TOP QUARKS PRODUCTION One of the rare SM processes that is expected to be discovered/studied by (HL-)LHC runs

ШЩ 15-**TOP FLAVOUR CHANGIN** 10 FCNC are forbidden at tree are strongly sup

Model:	
$\mathcal{B}(t \to qZ$	

FCNC single top production processes

Maximal FCNC decays predicted by some models

HIGGS BOSON TODAY

Using the LHC Run2 dataset (<5% of the fi

- •, Precision era in the gauge sector has s
- Switch from discovery to properties me
- Focus on rare processes probe charm-H interaction and Higgs self-c

est diphoton ma ackground is ext n background is s $\mathbf{ERN}_{\mathbf{D}\mu}$ 15

HIGGS BOSON WIDTH

A crucial parameter for BSM searches, in SM $c\tau_{\rm H} = 48$ fm, small width $\Gamma_{\rm H} = 4.1$ MeV

HIGGS BOSON COUPLINGS

Consider coupling modifiers $k_i^2 = \sigma_i / \sigma_{SM}$ Here: effective coupling modifiers (loops in y, g and Zy coupling not resolved)

Per-cent level precision on most Higgs couplings, theory becomes the dominant systematics

Higgs boson properties

ROBERTO SALERNO 17

HIGGS BOSON EFFECTIVE FIELD THEORY

Moving beyond kappas.

Precision measurements to search for BSM dynamics that can still have an impact at smaller energies via virtual effects → Model independent EFT framework $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} c_i \mathcal{O}_i + \cdots$

Moving beyond kappas.

Precision measurements to search for BSM dynamics that can still have an impact at smaller energies via virtual effects

→ Model independent EFT framework $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum c_i \mathcal{O}_i + \cdots$

ROBERTO SALERNO¹⁹

PROBING THE HIGGS BOSON SELF-COUPLING

Essential in EWSB, need to measure the Higgs boson trilinear coupling (λ_{HHH})

 $\sigma(gg \rightarrow HH) = 33.5 \text{ fb}$ [@13 TeV, NNLO + NNLL with top mass effects]

Expected constraints on the Higgs Boson self-coupling

Higgs boson properties

PROBING THE HIGGS BOSON SELF-COUPLING

Single Higgs boson productions, decays, and kinematics are sensitive to the self-coupling through EW corrections

Higgs boson properties

Complements direct determination from HH

HIGGS BOSON INVISIBLE DECAY

Higgs boson as portal for NP

Invisible decays are a generic prediction of NP models with light dark matter. The invisible branching ratio in the SM is very small (0.1%) so any observable rate would be evidence for BSM

ROBERTO SALERNO²²

N BSM

The expected exclusion limit for $H/A \rightarrow \tau \tau$

Interplay between direct searches for new Higgs bosons and 125 GeV Higgs boson coupling measurements to probe

Twin Higgs boson

Second Higgs boson which is a singlet of the SM gauge group

ROBERTO SALERNO²³

LONG LIVED PARTICLE

THE DARK SECTOR

In our world, a Dark Sector could allow for long-range forces among its matter constituents

Search for long-lived dark photons (γ_D) that are produced in cascade decays of the SM Higgs boson

OUTLOOK AND CONCLUSIONS

confirmed the immense physics potential of LHC.

beyond what was originally assumed possible. the star of such program.

We will have access to the rarest phenomena leading to measurements of hitherto unanticipated precision.

- The analysis of the LHC Run1 and Run2 datasets (<5% of the final HL-LHC integrate luminosity)
- The LHC and HL-LHC potentials will push the reach for precision and sensitivity well
- A broad physics program is planned and the Higgs boson, that is 'really' new physics, is

