LHC : présent et futur Problématiques théoriques

Aldo Deandrea IP2I - Université Lyon 1

Journées Prospectives du LLR - 18 septembre 2019

Depuis 80 ans, nos connaissances bâtissent de nouveaux mondes

Comment voir les sommets?

Comment le LHC a changé notre perspective?

- Après 2012 les résultats expérimentaux du LHC et d'autres experiences guident les modélisations théoriques
 - Découverte et étude des propriétés du boson de Higgs
 - Limites et recherches de nouvelles particules autours de l'échelle électrofaible
 - Physique de la saveur (y compris le quark top)
 - QCD, ions lourds

Approches pour la physique au delà du modèle standard (BSM) au LHC

- Theorie effectives du MS avec opérateurs effectifs (aucune nouvelle particule dans le spectre, effets dans les coefficients des opérateurs)
- Modèles (plus) complets/theories UV
- choix très partiel dans la suite parmi une multitude de modèles

BSM et physique au LHC

- L'etude détaillé du secteur de Higgs reste une priorité pour BSM
- Quelque point de tension avec le MS (ex. saveur)
- Naturalness/tuning: naif, mais incite à mieux explorer l'échelle du TeV
- Particule/s de matière noire (nouveau secteur)?
- Secteurs de la saveur des quarks et leptons manquent d'une raison théorique claire
- Approche EFT vs recherche de nouvelles particules (BSM est dans les details)

Higgs

$$m^{2} = m^{2} \left(1 + n \left(n, g \right) by \frac{\lambda^{2}}{m^{2}_{0}} \right) + b \left(n, g \right) \lambda^{2}$$

- la masse est un opérateur relevant (dim 2 en 4D)
- naturel si $b(\lambda,g)=0$ par symétrie (ex. susy, jauge)
- naturel si Λ est une échelle physique (ex. composite)
- quasi-naturel si $b(\lambda,g)=0$ en théorie des perturbations

une petite masse électrofaible qui fait probablement la difference...

Proton (uud) : 2.2 + 2.2 + 4.7 + glue MeV = 938.3 MeV Neutron (udd) : 2.2 + 4.7 + 4.7 + glue MeV = 939.6 MeV

Proton stable pour moins de 2 MeV!

$$\sigma_i = \kappa_i^2(\vec{\kappa}) \cdot \sigma_i^{SM} \qquad \Gamma^f = \kappa_f^2(\vec{\kappa}) \cdot \Gamma^{f,SM}$$

- les κ ne sont pas tous indépendants (hgg et hγγ sont des vertex à boucle et contiennent les autres couplages)
- Dependance de la largeur du Higgs, des sections efficaces et des selections cinématiques

Couplages du Higgs

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Effets typiques sur les couplages dans différents modèles (simplifiés) et precision @LHC14TeV et HL-LHC (Snowmass 2013 report) (u=t, d=b)

$300~{\rm fb}^{-1}$	$3000 {\rm ~fb^{-1}}$
7-par	ameter fit
5-7%	2-5%
6-8%	3-5%
4-6%	2-5%
4-6%	2-4%
14-15%	7-10%
10-13%	4-7%
6-8%	2-5%
	$\begin{array}{r} 300 \ \mathrm{fb}^{-1} \\ & 7\text{-par} \\ 5-7\% \\ 6-8\% \\ 4-6\% \\ 4-6\% \\ 14-15\% \\ 10-13\% \\ 6-8\% \end{array}$

EFT - théories effectives

$$L = L_{d \leq 4} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 \dots$$

- Développement en opérateurs par rapport à l'échelle Λ (cutoff de la théorie ou échelle)
- Avantage : paramétrer une physique qu'on ne connais pas par les coefficients de ces opérateurs (à determiner à partir des données du LHC)
- Désavantages : non-renormalisable et un nombre rapidement croissant d'opérateurs avec l'ordre n de L_n

EFT et géométrie du Higgs

 Le secteur de Higgs du MS a une symétrie O(4)-> O(3) par le choix du vide, linéaire, renormalisable (les Goldstones sont sur un manifold plat R⁴)

$$\begin{split} \mathcal{L}_{\text{SM}} &= \frac{1}{2} \partial_{\mu} \phi \cdot \partial^{\mu} \phi - \frac{\lambda}{4} \left(\phi \cdot \phi - v^{2} \right)^{2} \\ \phi &= (\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}) \end{split}$$

 Les théories effective du Higgs qui généralisent le MS sont principalement de deux types: SMEFT et HEFT.

SMEFT

- h et les 3 bosons de Goldstone sont dans un doublet de SU(2) faible
- Theorie effective non-renormalisable
- Le higgs est toujours dans la combinaison h+v
- dim 5 : 1 opérateur; dim 6 : 59 opérateurs qui conservent CP;

$$\mathcal{L}_0 = \frac{v^2}{4} \mathcal{F}(h) (D_\mu U)^{\dagger} D^\mu U + \frac{1}{2} \partial_\mu h \partial^\mu h - V(h)$$

$$\mathcal{F}(h) = 1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 + \dots$$

- Théorie de type chiral, non-linéaire, non-renormalisable
- · Plus générale, h est indépendant des autres bosons de Golstone
- Les Goldstones sont sur un coset qui a une courbure non-nulle: implications pour l'unitarité à haute énergie.

Unitarité de la théorie (VectorBosonFusion)

$$\mathcal{L}_{2} = -\frac{1}{2g^{2}} \operatorname{Tr}(\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}) - \frac{1}{2g'^{2}} \operatorname{Tr}(\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}) + \frac{v^{2}}{4} \left[1 + 2a\frac{h}{v} + b\frac{h^{2}}{v^{2}}\right] \operatorname{Tr}(D^{\mu}U^{\dagger}D_{\mu}U) + \frac{1}{2}\partial^{\mu}h\,\partial_{\mu}h + \dots$$

- Violation d'unitarité: la théorie ne respecte plus la conservation de la probabilité dans les diffusions à haute énergie (comme le MS sans le Higgs)
- Il suffit d'étudier la diffusion des polarisations longitudinales W_LW_L, Z_LZ_L et hh (théorème d'équivalence) pour la tester
- Ces theories ont une violation d'unitarité (sauf pour a=b=1 MS) donc des nouvelles resonance doivent être ajoutées

Brisure électrofaible avec un secteur fort

- G groupe global
- G_W = groupe de jauge électrofaible = $SU(2)_L \ge U(1)_Y$
- S = subgroups maximal qui commute avec les générateurs de Gw
- SxGw = groupe brisé; W+,W-,Z wouldbe-NGB(WBGB); PNGB (h,...)
- boson de Higgs léger car pNGB de la symétrie brisée du secteur fort, parametrisation avec Lagrangien chiral

Dynamique composite fondamentale

- Brisure de symétrie déterminée par la representation des nouveaux fermions R_{TC}
- R_{TC} réel: G_F = SU(N) $\langle \Psi^i \Psi^j \rangle$ SU(N) \rightarrow SO(N)
- R_{TC} pseudo-réel: G_F = SU(2N) $\langle \Psi^i \Psi^j \rangle$ SU(2N) \rightarrow Sp(2N)
- R_{TC} complexe: $G_F = SU(N)^2$ $\langle \Psi^i \Psi^j \rangle$ SU(N)² \rightarrow SU(N)

Modèles

coset	$\dim(\mathrm{coset})$	$\operatorname{Higgs}(\operatorname{es})$	G_{TC}	fermions	
SU(4)/Sp(4)	5	1	SU(2)	2 doublets	pseudo-real
SU(5)/SO(5)	14	1	SO(N)	5 vectorial	real
$\mathrm{SU}(3)^2/\mathrm{SU}(3)$	8	1	SU(N)	3 fund.	complex
$\mathrm{SU}(6)/\mathrm{Sp}(6)$	14	2	SU(2)	3 doublets	pseudo-real
$SU(4)^2/SU(4)$	15	2	$\mathrm{SU}(\mathrm{N})$	4 fund.	complex

Le modele effectif SO(5)/SO(4) "Composite Higgs" qui a seulement 4 Goldstones (Higgs et parties longitudinales de W, Z) ne peut pas se construire comme théorie d'états liés de fermions.

Modèle minimal SU(4)/Sp(4)

Minimum possible: deux fermions de Dirac (4 Weyl). Le condensat (calculs sur réseau ou arguments de théorie de groupes) est :

$$\langle \psi^i \psi^j \rangle = \mathbf{6}_{\mathrm{SU}(4)} = \mathbf{5}_{\mathrm{Sp}(4)} \oplus \mathbf{1}_{\mathrm{Sp}(4)}$$

la rep. 5 de Sp(4) contient les Goldstones de la brisure SU(4)/Sp(4), qui se décomposent sous SO(4) \subset Sp(4) comme suit

$$\mathbf{5}_{{
m Sp}(4)} = (\mathbf{2}, \mathbf{2})_{{
m SO}(4)} \oplus (\mathbf{1}, \mathbf{1})_{{
m SO}(4)}$$

La 5 de Sp(4) contient un bi-doublet (peut être le Higgs) et un singlet η . Le singlet de Sp(4) est un scalaire massif (comme σ en QCD). Donc minimum deux particules de plus que le MS.

Modèle minimal SU(4)/Sp(4)

Le top et les nouveaux hyper-fermions contribuent au potentiel scalaire :

$$V(\theta) = {y'_t}^2 C_t \cos^2 \theta - 4C_m \cos \theta$$

La masse du Higgs va dépendre de ces paramètres :

$$m_h^2 = \frac{f^2}{4} \left(2C_m \cos \theta - {y'_t}^2 C_t \cos(2\theta) \right)$$
$$= \frac{{y'_t}^2 C_t f^2}{4} \sin^2 \theta_{\min}.$$

Scalaires et dynamique électrofaible

from arXiv:1809.09146; coupling perturbativity (blue), Higgs couplings (red), EWPO (green)r. Black line for $\Gamma_{h_2} = m_{h_2}$ with 5, 10, 15 pNGBs. γ =0.2 left, γ =0.3 right.

QuarksVector-like

- Présents dans plusieurs modèles (Xdim, composite, Little Higgs, SUSY) avec forte motivation théorique
- LHC a des limites fortes dans l'hypothèse de désintégrations uniquement en h, Z, W (- 1 TeV)
- Mélange avec les 3 familles du MS important (production/désintégration)

Pourquoi "Vector-Like"

• Vector-like = couplage gauche et droit aux bosons de jauge sont identiques. Courants chargées L et R :

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} = \bar{u}_L \gamma^\mu d_L + \bar{u}_R \gamma^\mu d_R = \bar{u} \gamma^\mu d = \mathbf{V}$$

Pour les quarks du MS:

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} \quad \text{with} \quad \begin{cases} J_L^{\mu+} = \bar{u}_L \gamma^{\mu} d_L = \bar{u} \gamma^{\mu} (1 - \gamma^5) d = V - A \\ J_R^{\mu+} = 0 \end{cases}$$

- Pas d'anomalie de jauge pour ces fermions vector-like
- Les limites usuelles pour une 4e famille ne s'appliquent pas aux fermions vectorlike
- Un terme de masse invariant de jauge:

$${\cal L}_M = -M ar{\psi} \psi$$

VLQ comme états liés

	spin	$SU(4) \times SU(6)$	$Sp(4) \times SO(6)$	names
QQ	0	(6, 1)	(1, 1)	σ
			$({f 5},{f 1})$	π
$\chi\chi$	0	(1, 21)	(1, 1)	σ_c
			(1, 20)	π_c
χQQ	1/2	(6, 6)	(1, 6)	ψ_1^1
			$({f 5},{f 6})$	ψ_1^5
$\chi ar Q ar Q$	1/2	(6, 6)	(1, 6)	ψ_2^1
			$({f 5},{f 6})$	ψ_2^5
$Qar\chi ar Q$	1/2	$(1, \mathbf{ar{6}})$	(1, 6)	ψ_3
$Qar\chi ar Q$	1/2	$({f 15},{f ar 6})$	(5, 6)	ψ_4^5
			(10, 6)	ψ_4^{10}
$\bar{Q}\sigma^{\mu}Q$	1	(15, 1)	$({f 5},{f 1})$	a
			(10, 1)	ho
$ar{\chi}\sigma^\mu\chi$	1	(1, 35)	(1, 20)	a_c
			(1, 15)	$ ho_c$

Multiplets VLQ

pNGBs colorés

- SU(6)/SO(6) \supset SU(3)c : 20' de SO(6) = A2 = (8,0) + (6,4/3) + (6,-4/3) (π_8, π_6, π_6^c)
- SU(6)/Sp(6) \supset SU(3)c : 14 de Sp(6) = S2 = (8,0) + (3,-4/3) + (3,4/3) (π_8 , π_3 , π_3^c)
- $SU(3) \times SU(3)/SU(3)c$: 8 de SU(3) = Ad = (8,0)(π_8)
- toujours un octet π_8 et selon le models aussi triples et sextets de couleur (1507.02283)

Nouveaux modes de désintégration

- La description avec fermions fondamentaux pour les models composite contient des nouvelles particules par rapport au MS
 → présence de nouveaux états légers (pNGBs) qui sont aussi present dans les désintégrations de VLQs
- singlet EW: T \rightarrow η t avec η = EW pNGB
- U(1): T \rightarrow at avec a = pNGB non-anomalous U(1)
- Coloré: X5/3 $\rightarrow \pi_6$ b avec $\pi_6 = pNGB$ coloré
- Chargé : X5/3 \rightarrow ϕ +t avec ϕ + = EW pNGB
- Conséquences: BR grand dans ces modes de désintégration, et limites de masses sur les VLQs réduits.

Exemple de limites VLQ

• En supposant seulement des désintégrations en W, Z, h et melange 3e famille :

CMS 1805.04758

ATLAS twiki

Conclusions

- Discussion sur une petite partie des modèles BSM, mais beaucoup de directions à explorer pour le LHC dans le futur.
- Les limites actuelles sur plusieurs recherches (VLQ, susy etc) sont obtenues avec des hypothèses précises, donc à prendre avec precaution
- Les approches de Lagrangian effectif SMEFT, HEFT contiennent aussi des hypothèses
- des particules légères ne sont pas systématiquement exclues, par contre typiquement dans des canaux difficiles