

Belle II

Emi Kou (LAL-IN2P3)

Journée prospectives du LLR 2019 @ Toulouse 18 September 2019

The Belle II experiment

B factories, Babar/Belle

B factories: e+e- circular with energy at $\Upsilon(4S)(\rightarrow BBbar)$

SuperKEKB

Nano-beam technology to reach to 40 times more luminos

Proudly Operated by Battelle Since 1965

Slide from Belle II talk at ICHEP 2016

Upgraded Belle II detector

Better particle identification, higher coverage...

Timeline of Flavour Physics

Competition/Complementarity between Belle II vs LHCb

Searching new physics in flavour physics

Flavour physics

- Investigating the fundamental interaction through transitions among different quarks and leptons
- The CP violation is one of the most interesting phenomena in flavour physics

Flavour Physics within SM

In SM, the difference between mass and interaction basis explains, the GIM mechanism, the CP Violation! Very concise!

$$\mathcal{L}_{Y} = \underbrace{\sum_{ij} Y_{ij}^{u} Q_{iL} \left(\begin{array}{c} \phi^{0} \\ \phi^{-} \end{array}\right) u_{jR} + \underbrace{\sum_{ij} Y_{ij}^{d} Q_{iL} \left(\begin{array}{c} -\phi^{-\dagger} \\ \phi^{0\dagger} \end{array}\right) d_{jR} + h.c.}$$

$$\mathbf{Y}$$

$$\mathbf{Y}$$

$$\mathbf{Y}$$

$$\mathbf{W}$$

$$\mathbf{W$$

What has been confirmed?

Observed Quark masses

	1st generation	2nd generation	3rd generation
up type	up	charm	top
charge 2/3	2.2±0.5MeV	1.27±0.03GeV	173.21±0.87GeV
down type	down	strange	bottom
charge -1/3	4.7±0.5MeV	96±6MeV	4.18±0.04GeV
charged lepton charge -1	electron 0.511MeV	µ 105.7MeV	τ 1.78GeV
neutrinos	ν _e	μ	ντ
charge O	<2.0eV	<0.17eV	<18.2eV

Observed Quark mixing VCKM

 ✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable.
 ✓ V_{CKM} has to be a 3x3 unitary matrix which includes only one complex phase.
 ✓ N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling.

Vckm: Cabibbo– Kobayashi–Maskawa matrix

What has been confirmed?

Observed Quark masses

 ✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable.
 ✓ V_{CKM} has to be a 3x3 unitary matrix which includes only one complex phase.
 ✓ N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling.

Vckm: Cabibbo– Kobayashi–Maskawa matrix

The Unitarity triangle: test of Unitarity?

Successful explanation of flavour physics up to now! Hundreds of observables (including dozens of CPV) are explained by this single matrix.

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also CP violation parameters can appear. N.B.: SM also has an "unwanted" CP parameter (strong CP problem).

SUSY: Quark and Squark mass matrices can not be diagonalized at the same time ---> FCNC and CP violation Mutli-Higgs model, Left-Right

symmetric model:

Many Higgs appearing in this model ---> tree level FCNC and CP violation Warped extradimension with flavour in bulk: Natural FCNC suppression though, K-K mixing might be too large due to the chiral enhancement

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also CP violation parameters can appear. N.B.: SM also has an "unwanted" CP parameter (strong CP problem).

SUSY: Quark and Squark mass matrices can not be diagonalized at the same time ---> FCNC and CP violation Mutli-Higgs model, Warped extra-Left New with particle introduces new source of flavour/CP violations. Then, if new physics exist, we should observe those phenomena at some point! The strategies...

Strategy I: reducing experimental uncertainties

Strategy I: reducing experimental uncertainties

Many statistical uncertainties become at a few per-cent level: increasing number of systematic uncertainties (of order of a few per-mill !) are to be taken into account.

										_		
Observable	LHCb 2018	Upgrade (50 fb)	-									
$\begin{array}{l} 2\beta_s(B^0_s \to J/\psi\phi) \\ 2\beta_s(B^0_s \to J/\psi f_0(980)) \\ a^s_{\rm sl} \end{array}$	0.025 0.045 0.6×10^{-3}	0.008 0.014 0.2 × 10 ⁻³			(e.g. s	syste	ematic	uncer	tainty	for ϕ_s	5
$\begin{aligned} & 2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi) \\ & 2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\overline{K}^{*0}) \\ & 2\beta^{\text{eff}}(B^0 \to \phi K_s^0) \end{aligned}$	0.17 0.13 0.30	0.03 0.02 0.05				mea	asur	ement	with 1	Bs->J/p	si KK	
$\begin{array}{l} 2\beta_s^{\rm eff}(B^0_s \to \phi \gamma) \\ \tau^{\rm eff}(B^0_s \to \phi \gamma)/\tau_{B^0_s} \end{array}$	0.09 5 %	0.02 1 %	Source Mass width parametrisation	$ A_0 ^2$ 0.0006	$ A_{\perp} ^2$ 0.0005	$\phi_s [rad]$	λ -	$\frac{\delta_{\perp} - \delta_0 \text{ [rad]}}{0.05}$	$\frac{\delta_{\parallel} - \delta_0 \text{ [rad]}}{0.009}$	$\Gamma_s - \Gamma_d \left[\mathrm{ps}^{-1} \right]$	$\frac{\Delta\Gamma_s \left[\mathrm{ps}^{-1} \right]}{0.0002}$	$\Delta m_s [1]$
$S_{3}(B^{0} \to K^{*0}\mu^{+}\mu^{-}; 1 < q^{2} < 6 \text{ GeV}^{2}/c^{4})$ $s_{0}A_{\text{FB}}(B^{0} \to K^{*0}\mu^{+}\mu^{-})$ $A_{\text{I}}(K\mu^{+}\mu^{-}; 1 < q^{2} < 6 \text{ GeV}^{2}/c^{4})$ $\mathcal{B}(B^{+} \to \pi^{+}\mu^{+}\mu^{-})/\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})$	0.025 6 % 0.08 8 %	0.008 2 % 0.025 2.5 %	Mass factorisation Multiple candidates Fit bias $C_{\rm SP}$ factors	0.0002 0.0006 0.0001 -	$\begin{array}{c} 0.0004 \\ 0.0001 \\ 0.0006 \\ 0.0001 \end{array}$	0.004 0.0011 0.001 0.001	0.0037 0.0011 - 0.0010	0.01 0.01 0.02 0.01	0.004 0.002 0.033 0.005	0.0007 0.0003 -	0.0022 0.0001 0.0003 0.0001	0.01 0.00 0.00 0.00
$ \begin{split} \mathcal{B}(B^0_s &\rightarrow \mu^+ \mu^-) \\ \mathcal{B}(B^0 &\rightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s &\rightarrow \mu^+ \mu^-) \end{split} $	$0.5 imes 10^{-9}$ ~100 %	0.15×10^{-9} ~35 %	Time res.: statistical Time res.: prompt	-	-	-	-	-	- 0.001	-	-	- 0.00
$\gamma(B \to D^{(*)}K^{(*)})$ $\gamma(B_s^0 \to D_s K)$ $\beta(B^0 \to J/\psi K_S^0)$	4° 11° 0.6°	0.9° 2.0° 0.2°	Time res.: mean offset Time res.: Wrong PV Ang. acc.: statistical	- - 0.0003	- - 0.0004	0.0032 - 0.0011	0.0010 - 0.0018	0.08 - -	0.001 0.001 0.004	0.0002 - -	0.0003 - -	0.00 0.00 0.00
A_{Γ} $\Delta \mathcal{A}_{CP}$	0.40×10^{-3} 0.65×10^{-3}	0.07×10^{-3} 0.12×10^{-3}	Ang. acc.: correction Ang. acc.: low-quality tracks Ang. acc.: $t \& \sigma_t$ dependence	0.0020 0.0002 0.0008	0.0011 0.0001 0.0012	0.0022 0.0005 0.0012	0.0043 0.0014 0.0007	0.01 - 0.03	0.008 0.002 0.006	0.0001 0.0002 0.0002	0.0002 0.0001 0.0010	0.00
LHCb upgrade LOI: CEF see alo PoS(FPCP2016)	RN-LHCC- 041	-2011-001	Dectime eff.: statistical Dectime eff.: $\Delta\Gamma_s = 0$ sim. Dectime eff.: knot pos. Dectime eff.: n d f. weighting	0.0002 0.0001	0.0003 0.0002	-	-	-	-	0.0012 0.0003	0.0008 0.0005 -	-
			Dectime eff.: kin. weighting Length scale	- - - 0.0024	0.0019	- - - 0.0061	- - - 0.0064			0.0002	0.0026	0.00

Strategy II: reducing theoretical uncertainties

$$\Delta_{NP} = (exp. - SM) \pm \sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$$

- Theoretical development in QCD higher order corrections, Lattice QCD etc allow to reduce the theoretical uncertainties.
- Improved measurements of "theoretical control channels" are very important to reduce the theoretical errors.

Strategy II: reducing theoretical uncertainties

arXiv:1808.10567 (PTEP 2019) Belle II Physics Book

 $(0 \pm 0.25) \times 2\cos(\phi_1)\sin\gamma$ [665]

 $0.02\substack{+0.01 \\ -0.01}$

 $0.13_{-0.08}^{+0.08}$

[0.01, 0.05]

[0.01, 0.21]

 ϕK_{S}^{0}

 ωK_S^0

Strategy III: explore new observables !

arXiv:1808.10567 (PTEP 2019) Belle II Physics Book

High statistics data or detector upgrade allow us to explore new observables, (w/wo theoretical motivation), which have never been studied before!

★ Null test

Unexpected CPV, LFV (e.g. τ→μγ), LFUV, Dark
 Photon, Axion etc...

★ (Ultra)-rare decays

- B->γγ, K(*)νν (start seeing them in a few yeas at Belle II!), baryon decays (more and more available at LHCb) etc...
- ★ Angular/Dalitz distribution
 - Polarisation, CPV etc...
- * New hadronic resonances
 - More XYZ, more Pentaquarks!

What is the odds for discovery: example of CKM unitarity triangle

The Unitarity triangle: test of Unitarity?

What do we expect to see in the future???

2015 0.2 0.2 0.3 0.4 0.4 2016 2018 0.3 0.2 0.2 0.2 0.1 0 1 0.1 0.2 02 0.3 02 0.3 0.4 0.5 Consistent with SM New lattice result Latest average of

on $\Delta Ms / \Delta Md$ hadronic parameter: Consistent with SM Latest average of the γ measurement of LHCb: Consistent with SM

E.K. for B2TiP working group

Fermilab-MILK arXiv: 1602.03560 confirmed by RBC arXiv:1812.0879

What do we expect to see in the future???

E.K. for B2TiP working group

2015 2016 2018 0.2 By ~2027, with LHCb and Belle II full data set, 0.1 we expect the errors to be reduced significantly. Con Let's see what could happen when the error will go down to $\delta \phi_1$ (δβ)=0.4°, $\delta \phi_2$ (δα)=1°, $\delta \phi_3$ (δγ)=1.5°, $\delta V_{ub}^{today}/\delta V_{ub}=1/2$

0.5

0.6

0.4

0.3

0.1

n 4

0.3

0.1

Future of the Unitarity Triangle 2018 2027 0.5 If the central 0.4 04 0.3 0.3 • To understand this " 7σ " effect better, 0.2 we have run a Monte Carlo simulation. 0.1 0.1 • We randomly sample the central values Consistent with SM (1000 trials) assuming Gaussian measurements and compute the significance. The result shows that the chance to Is this 7σ an "odd case" ? observe deviation more than 7σ significance is currently 20%! E.K. & F. Le Diberder for B2TiP working group

Near future of flavour physics...

LHCb/Babar anomalies and theory?

B->K*e+e-/K*μ+μ-: R(K*) (~2σ)

	low- q^2	central- q^2			
$R_{K^{*0}}$	$0.66 ^{+0.11}_{-0.07} \pm 0.03$	$0.69 \ ^{+\ 0.11}_{-\ 0.07} \pm 0.05$			
$95.4\%~\mathrm{CL}$	[0.52, 0.89]	[0.53, 0.94]			
$99.7\%~\mathrm{CL}$	[0.45, 1.04]	[0.46, 1.10]			

Conclusions

- The coming years are very exciting for flavour physics: the startup of Belle II and the upgrades of LHCb will improve the sensitivity to new physics drastically.
- Even for the processes, which were claimed in the previous generation experiment as "consistent to SM", may show some deviations. Many breakthrough towards "going beyond the SM" is possible!
- The LHCb anomalies are very intriguing. It was unexpected but many interpretations have been made. A confirmation by Belle II experiment can be done in a few years time (at ~10 ab⁻¹).
- Theoretically, what we are looking for seems to be "Flavour/Dirac structure specific", which may need be postulated to further construct new physics models.

Belle II physics book

arXiv:1808.10567 (PTEP 2019) B2TiP theory community + Belle II collaboration (edited by E.K. & Ph. Urquijo)

- B physics : CKM UT measurement, rare decays, CP violation, QCD-based computation
- **D** physics : CP violation, rare decays, multi-body decays

Many

contributions from

theorists!!

Belle II(/LHCb) precision vs theory uncertainties

- » UT angle measurements (very clean): Belle II+LHCb will reduce the errors significantly $\delta \phi_1(\delta \beta)=0.2^\circ$, $\delta \phi_2(\delta \alpha)=1^\circ$, $\delta \phi_3(\delta \gamma)=1.5^\circ$, \Leftrightarrow theory can achieve about the same precision.
- » Rare decays, hadronic B decays... → more difficult but data driven, more measurements could give us a guide.

» Also observation of B-> $\gamma\gamma$, K(*) in a few years!

15

Many Belle II physics book contributions from arXiv:1808.10567 (PTEP 2019) theorists!! B2TiP theory community + Belle II collaboration (edited by E.K. & Ph. Urquijo) tau physics : LFV, CP violation, a "wish list"... g-2 related measurement : hadronic cross section, two photon processes quarkonium and exotics : missing quarkonium (below threshold), pros and cons of the exotic interpretations

LFV τ -> $\mu\gamma$ sensitivity to SUSY-GUT

ISR luminosity at Belle II

Yet, we(I) want more CPV...

Those observables which are "consistent to SM" as of today are potential discovery channels!

Belle II physics book

arXiv:1808.10567 (PTEP 2019) B2TiP theory community + Belle II collaboration (edited by E.K. & Ph. Urquijo)

- Dark matter and Higgs : dark photon search in phase II (2018), light Higgs search from quarkonium decays
- Theory: lattice "forecast", flavour benchmark models (and their "DNA test"), global fit packages

Many

contributions from

theorists!!

Lattice forecast for Vub

$\mathcal{L} [ab^{-1}]$	$\sigma_{\mathcal{B}} \text{ (stat}\pm \text{sys)}$	$\sigma_{LQCD}^{ m forecast}$	$\sigma_{V_{ub}}$
1	3.6 ± 4.4	aumont	6.2, 6.2
1	1.3 ± 3.6	current	3.6, 3.6
5	1.6 ± 2.7	in 5 yrs	3.2, 3.0
5	0.6 ± 2.2	III 5 y15	2.1, 1.9
10	1.2 ± 2.4	in 5 rra	2.7, 2.6
10	0.4 ± 1.9	III 5 yrs	1.9, 1.7
50	0.5 ± 2.1	in 10 yrs	1.7, 1.4
	0.2 ± 1.7	III 10 y15	1.3, 1.0

upper/down number: wo/w EM correction