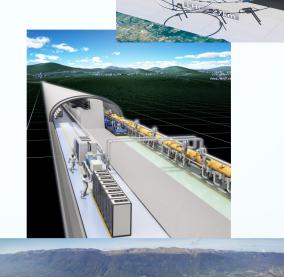


Reality and Dreams in Future e⁺ e⁻ Colliders


A Faus-Golfe

LLR Perspectives 2019

16-19 September 2019

.....But when theorists are more confused, it's the time for more, not less experiments.

(Nima Arkani-Hamed Cern Courier March 2019)

Compact Linear Collide

LLR Perspectives 2019

Present and Future Large Accelerator projects In construction

International Large Scale Projects

An uncompleted view ...

Under study

Compact Linear Co

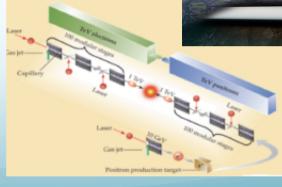
EPPSU FCC/CLIC, ILC ?

2018 2020	2022	2024	2026	2028	2030	2032	2034	2036	2038	2040	2042	2044	2046	2048	2050	2052	2054	2056
LHC ATF2	ESS SC linad		-LHC ⁻Nb₃Tn		CepC. High cι		LC L.3GHz (SC	<u> </u>	current		Chh Γ Nb₃Tn	/NbTn					FCCee) (FCCee)
Super KEKB		FAIR	2		Z-pole		nano- peam/st	abilizati	Z-pole on	9	FC ERI	Ceh		HC (HL b₃Tn/N	LHC) bTn		μ+μ-	
			LBNF		ERL	C	LIC 2 GHz				LIXI		Spp	C				
LLR Perspec	ctives 201	9			PLC		ano- eam/sta	bilizatio	n							6-19 Se	eptembe	er 2019 3

Outline

European Strategy

Summaries from EPPSU Granada


TREET

Focusing in "real" e⁺e⁻ colliders

LC projects: ILC, CLIC CC projects: FCC-ee, CepC

Some "dreamt" e⁺e⁻ colliders

Boosting the performances Advanced Linear Colliders e⁺e⁻

LLR Perspectives 2019

16-19 September 2019

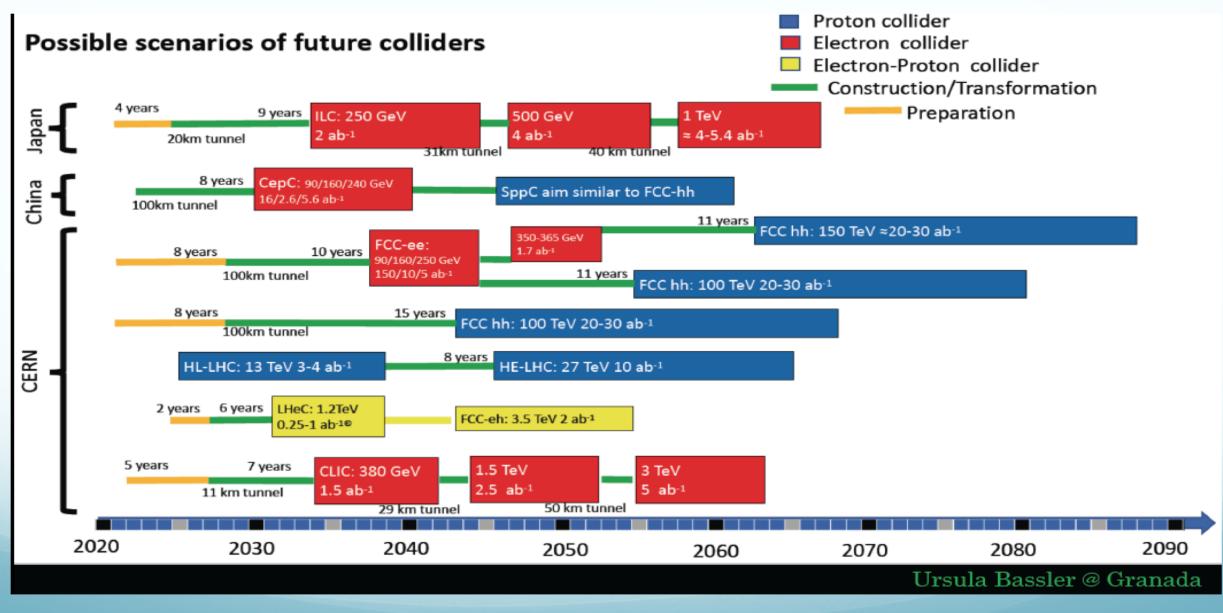
Geneva

Compact Linear Collide

Outline

European Strategy

Summaries from EPPSU Granada


Focusing in "real" e⁺e⁻ colliders

LC projects: ILC, CLIC CC projects: FCC-ee, CepC

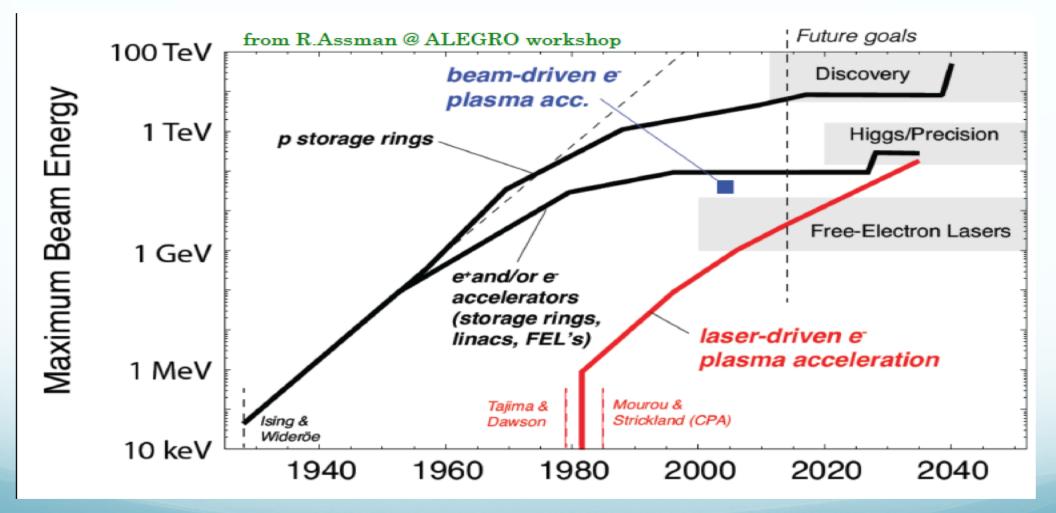
Some "dreamt" e⁺e⁻ colliders Boosting the performances Advanced Linear Colliders e⁺e⁻

Schedule Implementation

Personal (A. Yamamoto) Technology View on Relative Timelines

Timeline	~ 5	~	10 ~ 15	~ 20	~ 25	~ 30	~ 35					
Lepton Collie												
SRF-LC/CC	Proto/pre- series	Const	Construction		Operation		rade					
NRF-LC	Proto/pre-ser	ries <mark>Co</mark>	es Construction		Operation		rade					
Hadron Colli	Hadron Collider (CC)											
8~(11)T NbTi /(Nb3Sn)	Proto/pre- series	Const	ruction		Operatio	on	Upgrade					
12~14T <mark>Nb₃Sn</mark>	Short-model	R&D	Proto/Pre-serie	s Cons	Construction		ation					
14~16T <mark>Nb₃Sn</mark>	Short-model R&D P			Prototype/Pre	e-series	Construction						

Note: LHC experience: NbTi (10 T) R&D started in 1980's --> (8.3 T) Production started in late 1990's, in ~ 15 years


Future Projects Comparisons

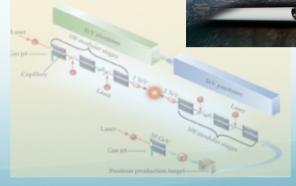
D. Schulte, Granada 2019

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.98 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

Advanced Linear Accelerators

ALEGRO (Advanced LinEar collider study GROup, for a multi-TeV Advanced Linear Collider) Workshop (March 2018 in Oxford): http://www.physics.ox.ac.uk/confs/alegro2018/index

Outline


European Strategy

Summaries from EPPSU Granada

Focusing in "real" e⁺e⁻ colliders

LC projects: ILC, CLIC CC projects: FCC-ee, CepC

Some "dreamt" e⁺e⁻ colliders Boosting the performances Advanced Linear Colliders e⁺e⁻

LLR Perspectives 2019

16-19 September 2019

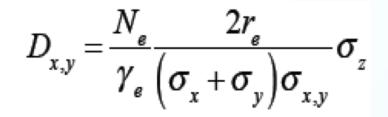
Geneva

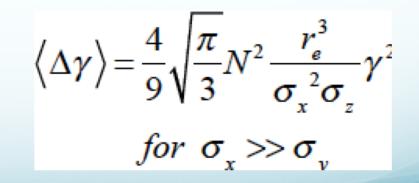
Compact Linear Collide

Luminosity recipe: linear vs circular

$$\begin{split} L &= f_c \frac{N_{e^-} N_{e^+}}{4\pi \sqrt{\beta_x^* \varepsilon_x} \sqrt{\beta_y^* \varepsilon_y}} = \frac{I_{e^-} I_{e^+}}{4\pi \sqrt{\beta_x^* \varepsilon_x} \sqrt{\beta_y^* \varepsilon_y}} \cdot f_c \cdot e^2 \\ P_{SR} &= V_{SRe^-} I_{e^-} + V_{SRe^+} I_{e^+} \end{split}$$

The way to reduce SR power is to reduce beam currents in both electron and positron beam. To keep luminosity high, one would need to reduce one, two or all in

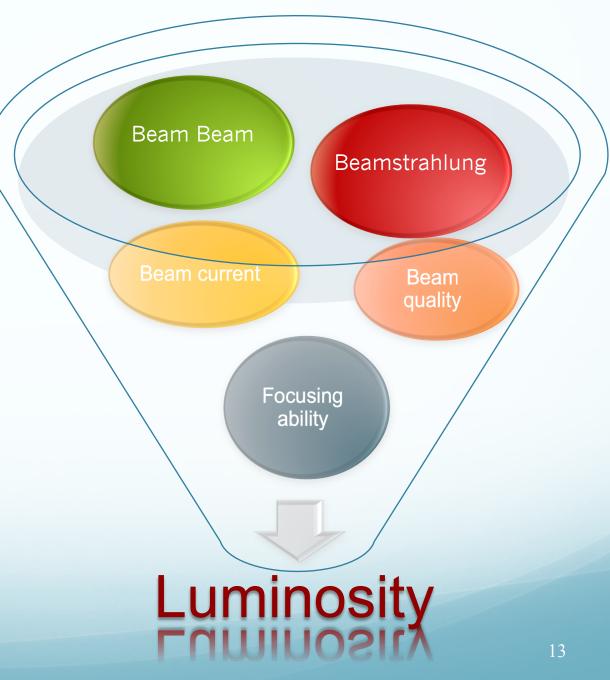

$$\sqrt{\beta_x^* \beta_y^*} \cdot \sqrt{\varepsilon_x \varepsilon_y} \cdot f_c$$


LLR Perspectives 2019

Luminosity recipe: linear vs circular

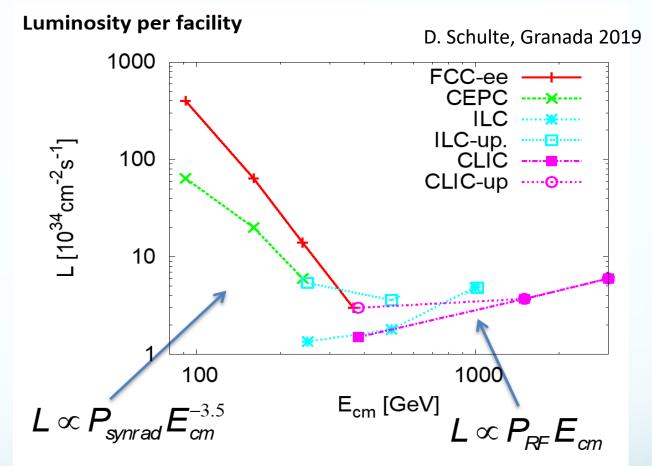
- In storage rings additional limitations appear: beam-beam tune shift and IP chromaticity (small β_y*) which favors high beam currents, large emittance and high collision frequencies
- In linear the relevant number is the disruption parameter
- At high-energies the most dangerous effect is beamstrahlung: SR in strong EM field of opposing beam during collision. It can cause significant amount of energy loss, induce large energy spread and loss of the particles. Using very flat beams is the main way of mitigating this effect

$$\xi_{x,y} = \frac{N r_0 \beta_{x,y}^*}{2\pi \gamma \sigma_{x,y} (\sigma_x + \sigma_y)} < 0.1 - 0.5$$

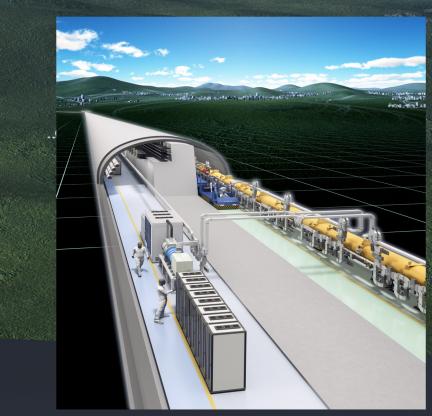


Luminosity recipe

Luminosity cannot be fully demonstrated before project implementation:


- Luminosity is a feature of the facility not the individual technologies
- Relying in experience, theory and simulations
- Foresee margins

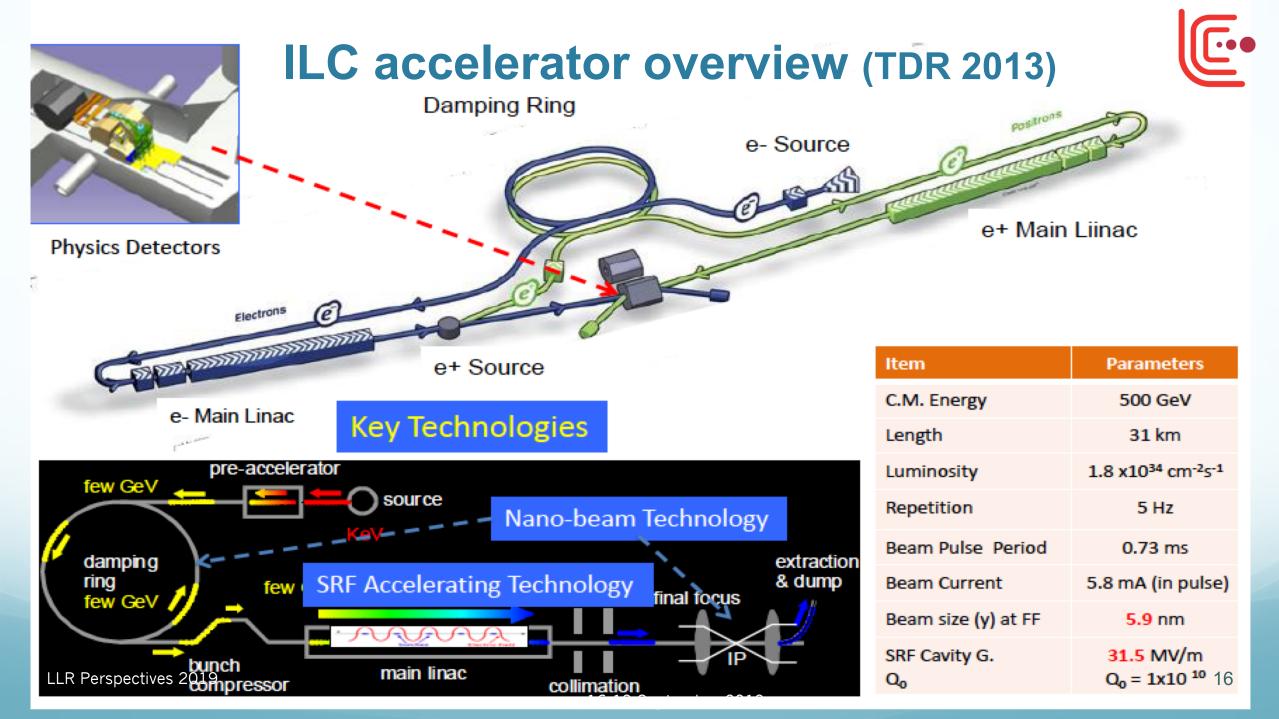
Luminosity recipe: the "dreamt" Luminosity


Energy dependence:

- At **low energies circular** colliders surpass
- Reduction at high energy due to SR
- At **high energies linea**r colliders excel
- Luminosity per beam power roughly constant

Note: The typical higgs factory energies are close to the cross over in luminosity Linear collider have polarised beams (80% e⁻, ILC also 30% e⁺) and beamstrahlung

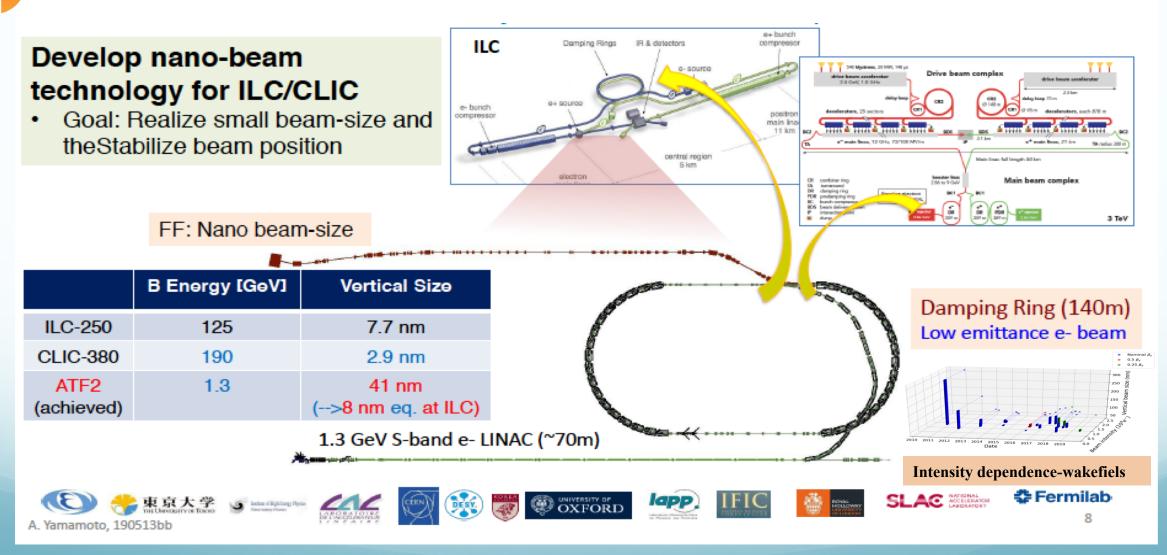
ILC accelerator: status and optimizitation

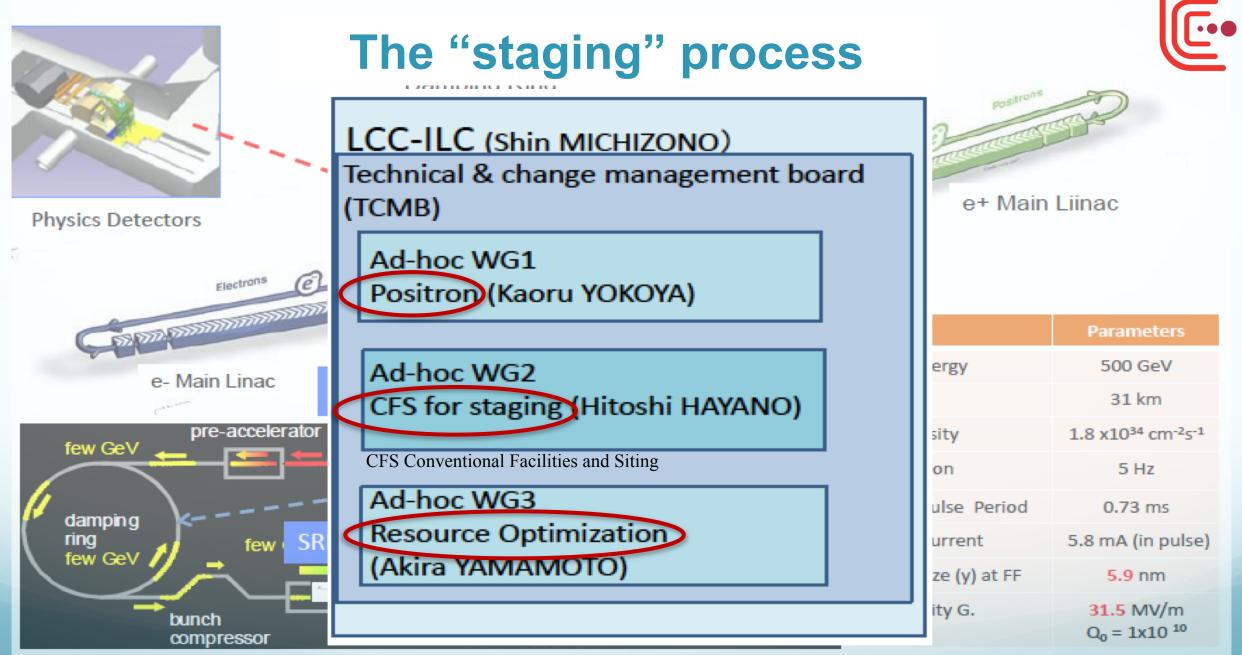


http://www.linearcollider.org/

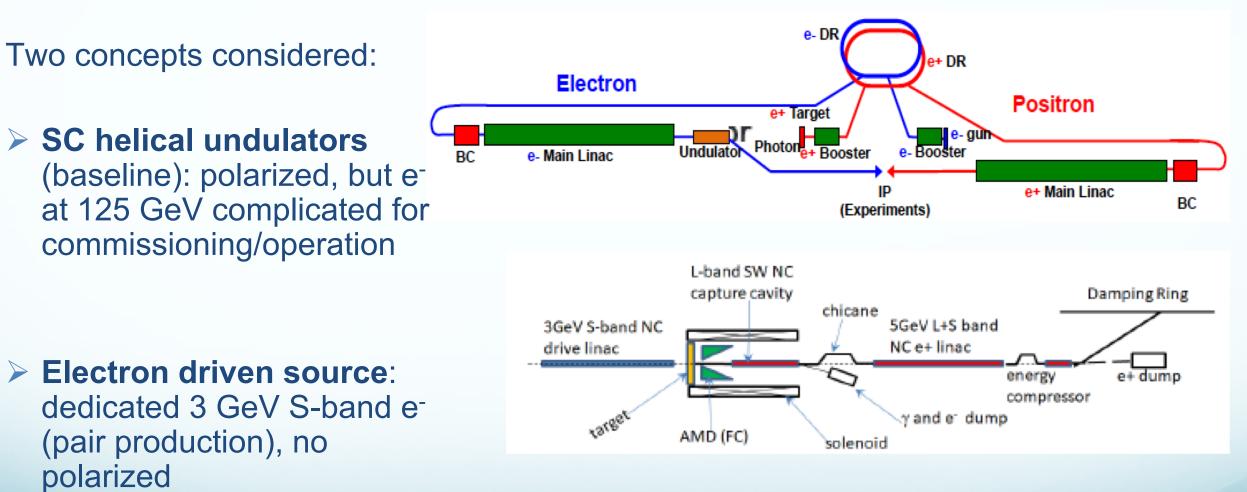
LLR Perspectives 2019

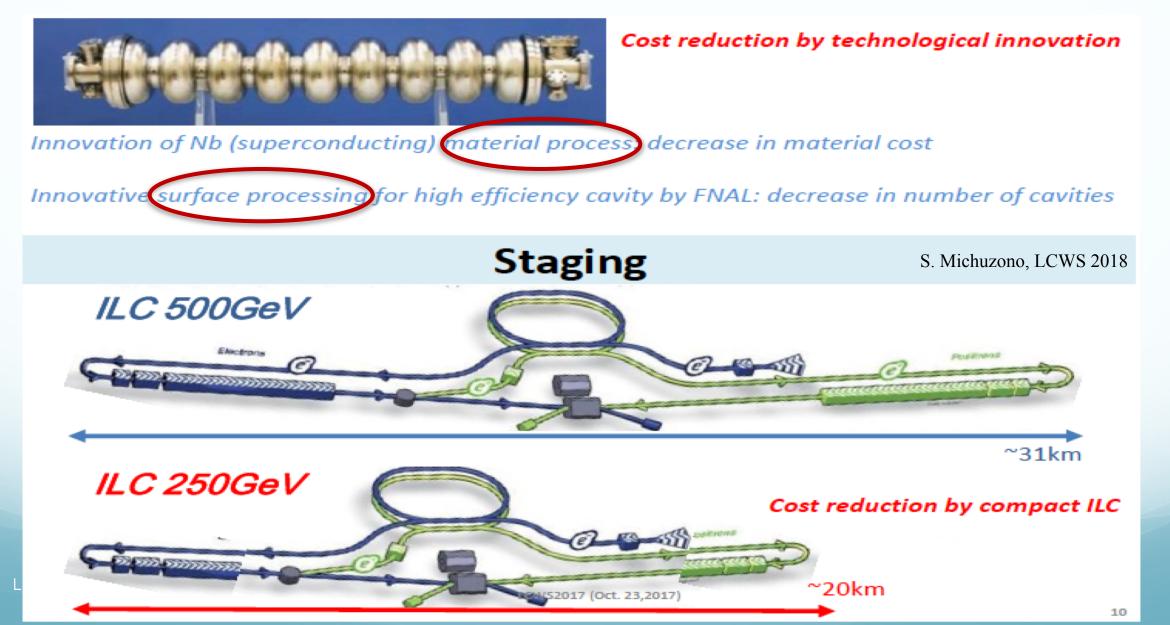
and the state of the second second second second second


16-19 September 2019

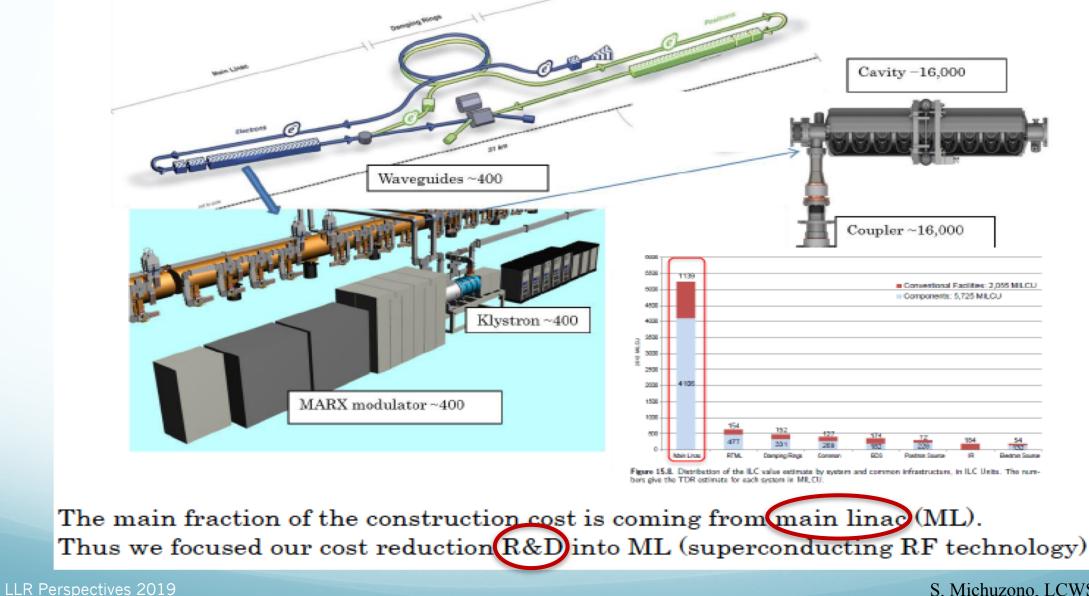


LLR Perspectives 2019


Courtesy: N. Terunuma


LLR Perspectives 2019

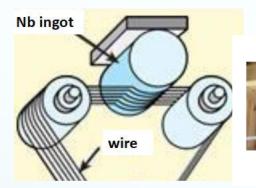
Positron production

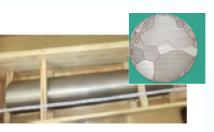

A decision will be made before the detailed engineering design

ILC cost reduction R&D: US-Japan cost reduction

20

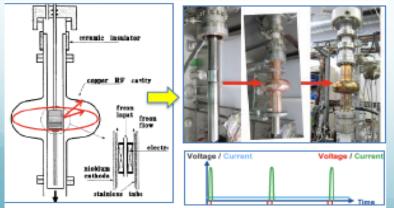
ILC cost reduction R&D

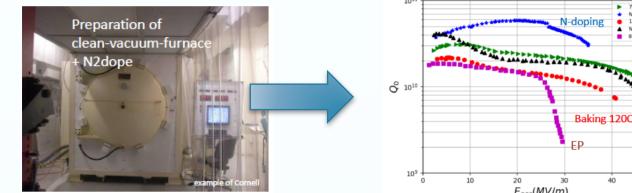


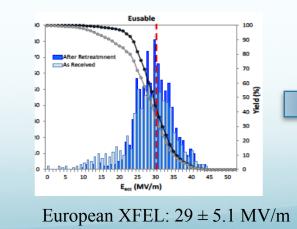

16-19 September 2019

ILC cost reduction R&D: US-Japan cost reduction

Niobium material preparation:


Large grain directly sliced from ingot (cost reduction), Nb thin-film coating on Cu based structure (HiPIMS), or Nb₃Sn in Nb or Cu




Niobium ingot

High Power Impulse Magnetron Sputtering (HiPIMS)

SRF cavity fabrication for high-gradient (N doping well stablished) and high-Q (N infusion, low-T baking to be understood)

LCLS-II: 18-21 MV/m O>2.7 10¹⁰

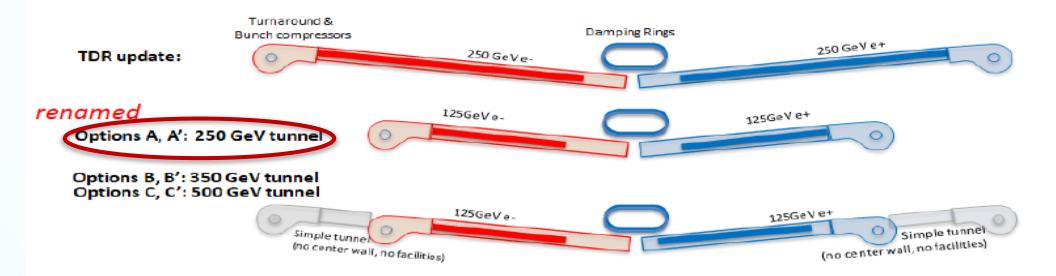
16-19 September 2019

75/120 N-Dope

> 1200 N-Infuse 800C HT

> > Baking 75/120C

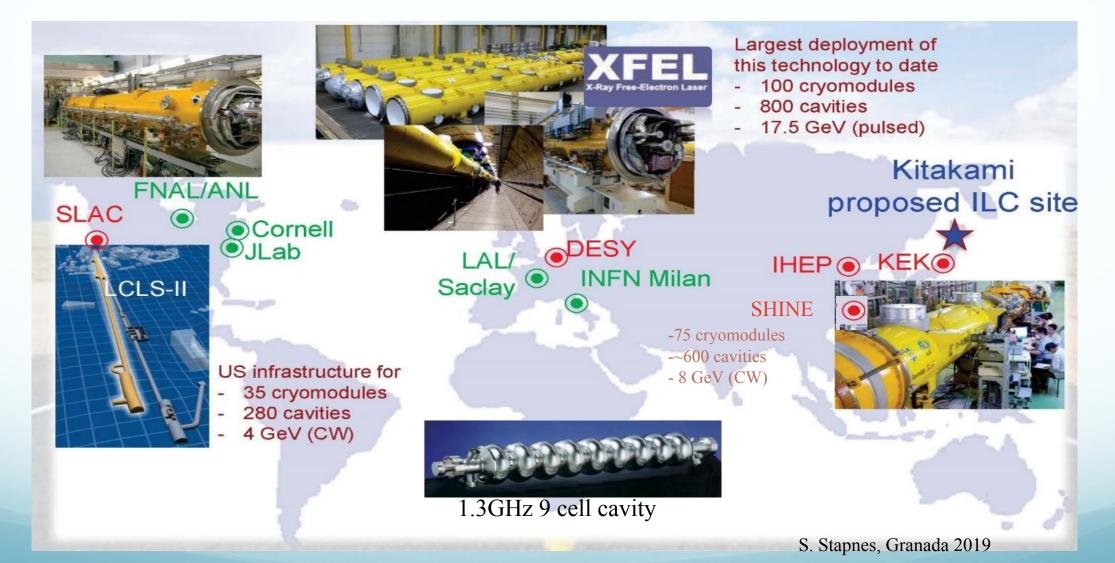
N-infusion


ILC cost reduction R&D: US-Japan cost reduction

Fermilab and KEK has achieved ILC gradient goal > 31.5 MV/m with beam

LLR Perspectives 2019

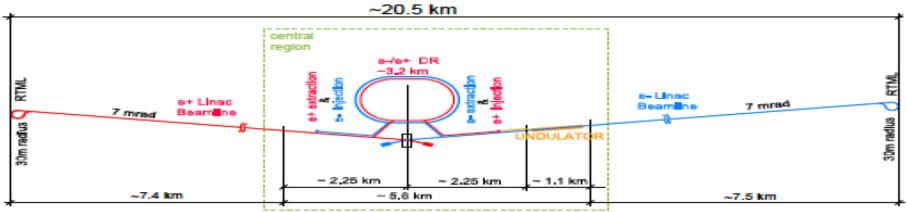
Staging: Options for ILC 250GeV


Options	Gradient [MV/m]	Е _{СМ} [GeV]	Total Е _{см} Margin	n	Space margin	Reserved tunnel	Total tunnel
TDR update	31.5 35	500	2%	10	1,473 m	0 m	33.5 km
Option A		250		6		0 m	20.5 km
Option B				6&8	583 m	3,238 m	27 km
Option C			6%	6&10		6,477 m	33.5 km
Option A'			070	6		0 m	20.5 km
Option B'				<mark>6&</mark> 8	1,049 m	3,238 m	27 km
Option C'				6&10		6,477 m	33.5 km

Staging: Options for ILC 250GeV

	TDR-500	Option A (250 GeV)	Option A' (+R&D)					
Electricity (Power)	167 /25* MW	129 MW/15* MW	~ 120/12* MW (TBC)					
Labor (FTE)	850 FTE	~640 FTE	~640 FTE					
Average Fraction	1	< 0.75						
	* For cryogenics to be standing-by Further power for other standing by to be investigated							

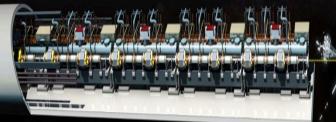
• World wide Labs for RF systems

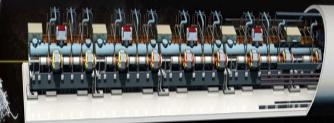


ILC at 250GeV and upgrades

•••

	~						
Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	TDR	Upgi	rades
Centre of mass energy	\sqrt{s}	GeV	250	250	250	500	1000
Luminosity	$\mathcal{L} = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.82	1.8/3.6	4.9
Polarisation for $e^{-}(e^{+})$	$P_{-}(P_{+})$		80%(30%)	80%(30%)	80%(30%)	80%(30%)	80%(20%)
Repetition frequency	$f_{ m rep}$	Hz	5	5	5	5	4
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	1312	1312/2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	ns	554	366	554	554/366	366
Beam current in pulse	$I_{ m pulse}$	mA	5.8	5.8	8.8	5.8	7.6
Beam pulse duration	$t_{ m pulse}$	$\mu { m s}$	727	961	727	727/961	897
Average beam power	P_{ave}	MW	5.3	10.5	10.5	10.5/21	27.2
Norm. hor. emitt. at IP	$\gamma\epsilon_{ m x}$	$\mu { m m}$	5	5	10	10	10
Norm. vert. emitt. at IP	$\gamma\epsilon_{ m y}$	nm	35	35	35	35	30
RMS hor. beam size at IP	$\sigma^*_{\mathbf{x}}$	nm	516	516	729	474	335
RMS vert. beam size at IP	$\sigma_{ m y}^*$	nm	7.7	7.7	7.7	5.9	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	87.1%	58.3%	44.5%
Energy loss from beamstrahlung	g $\delta_{ m BS}$		2.6%	2.6%	0.97%	4.5%	10.5%
Site AC power	P_{site}	MW	129		122	163	300
Site length	$L_{ m site}$	km	20.5	20.5	31	31	40


Luminosity upgrade to 10Hz also considered



Not To Scale

CLIC accelerator: status and rebaselining

http://clic-study.web.cern.ch/

LLR Perspectives 2019

16-19 September 2019

CLIC Review

CLIC Accelerator Study – Review of objectives for the MTP 2016-2019

March 1st, 2016

Report from the Review Panel

Members: O. Brüning; P. Collier, J.M. Jimenez, R. Losito; R. Saban, R. Schmidt; F. Sonnemann; M. Vretenar (Chair).

Introduction and general remarks

The Panel was very impressed by the enormous amount of work that was presented, by the enthusiasm of the CLIC team and by the wealth of knowledge accumulated by the CLIC study. The CLIC accelerator study has reached a high level of maturity and has been able to establish a large community consisting in about 50 collaborating laboratories and universities, working together on a number of technical challenges

After the publication of the Conceptual Design report in 2012, the CLIC Study is presently in the Development Phase, to prepare a more detailed design and an implementation plan for the next European Strategy Upgrade in 2018-19. This phase is expected to be followed by a Preparation Phase covering the period 2019-25; in case of a positive decision, a construction

Key recommendations

- Optimized, staged design: 380 GeV (optimised for Higgs + top physics) → 1.5 TeV → 3 TeV
- Optimize cost and power consumption
- Support efforts to develop high-efficiency klystrons
- Develop 380 GeV klystron-only version as alternative to PETS
- Consolidate high-gradient structure test results
- Develop plans for 2020-25 ('preparation phase')
- Continue and enhance participation in KEK/ATF2

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

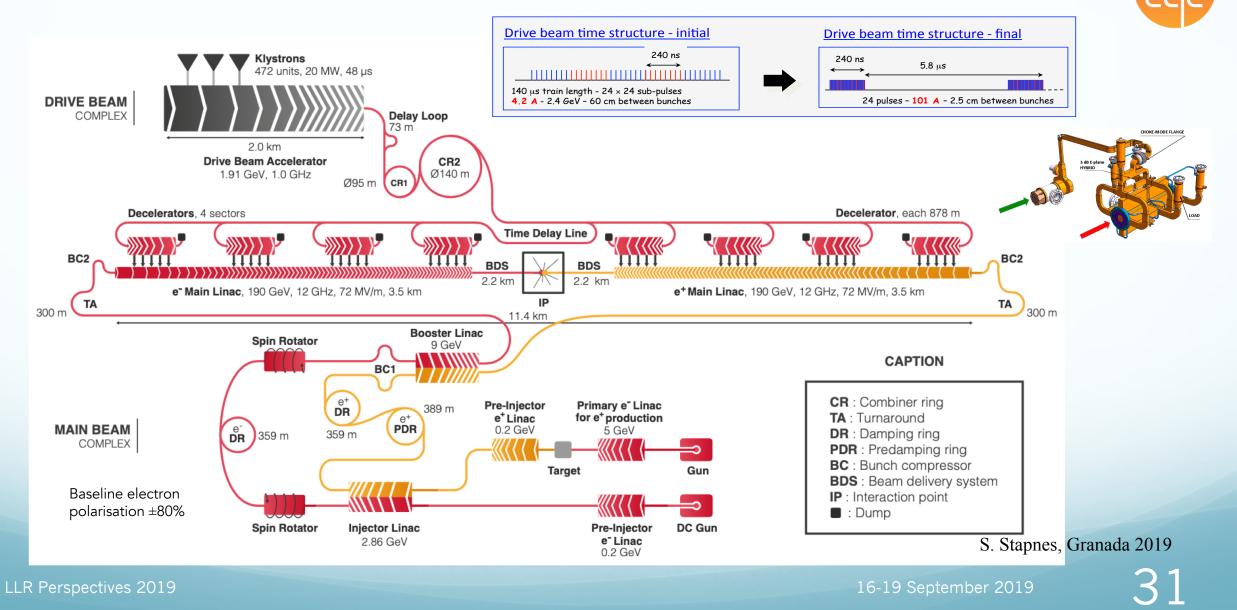
2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

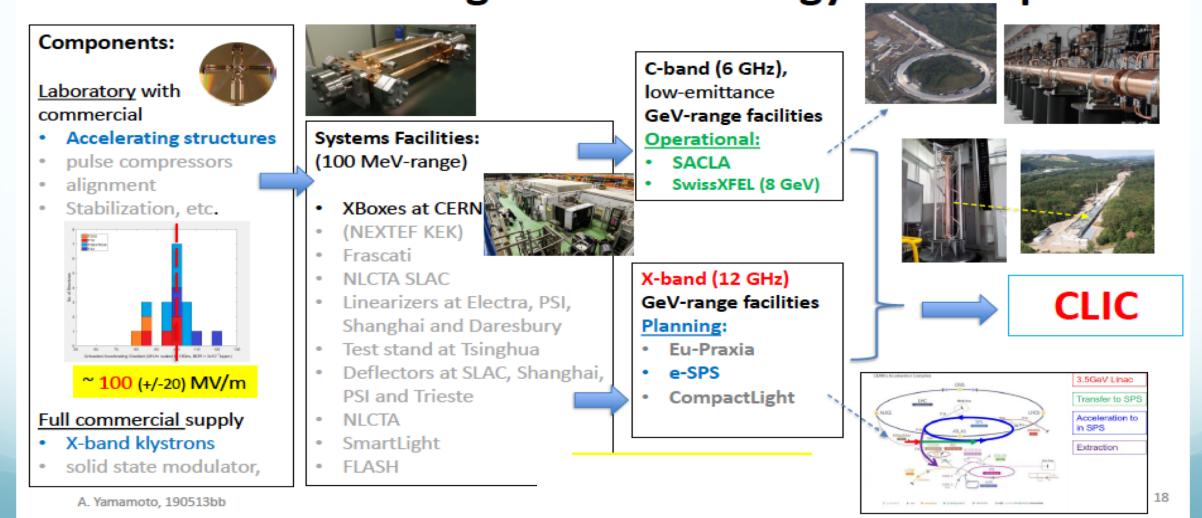

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

CLIC rebaseline: 380 GeV and power generation

Technical developments



S. Stapnes, CLIC 2019

Modules (drive-beam, klystron type)	Final modules, from revised designs to industrial modules
Optimized structures	Use existing test-stands for testing, increase manufacturability, brazed, halves, conditioning
Klystrons and Modulators	Efficiency and costs, significant gains possible for efficiency, industrial cost- models and optimisation
Magnets	Permanent magnets, industrial capabilities
Civil engineering, infrastructure	Detailed site layout and CE/ infrastructure designs

LLR Perspectives 2019

Technical developments: Normal Conducting Linac Technology Landscape

16-19 September 2019

Legend CLIC at 380GeV and upgrades

CERN existing LHC

Potential underground siting :

CLIC 380 Gev
CLIC 1.5 TeV
CLIC 3 TeV

Jura Mountains

Luminosity increases could also be considered for 380 GeV with 100 Hz operation

œ

LLR Perspectives 2019

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/10
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb ⁻¹	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
On P beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/$
Normalised emittance (end of linac)	ϵ_x/ϵ_y	nm	900/20	660/20	660/2
Final RMS energy spread		%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

Lake Gen

For the formular colliders: For the formula of the

FCC - 100km

ST.

International Communication Sector

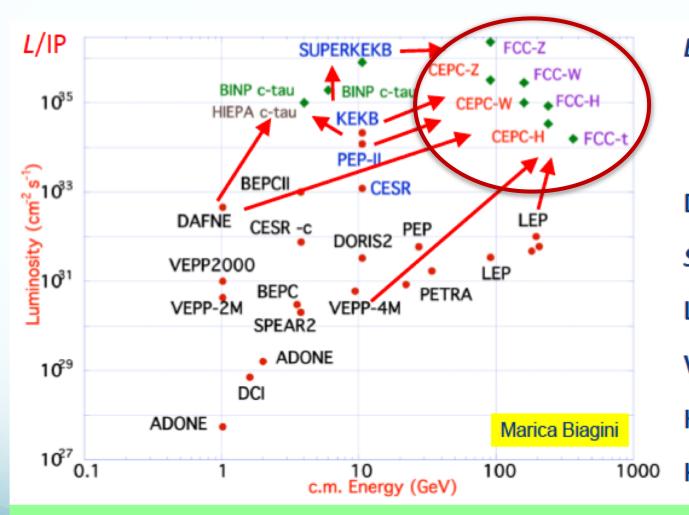
Innovation Development Sector

CEPC Research Core Sector

High-end Service

Sector

CEP


Key parameters for CC e+e-

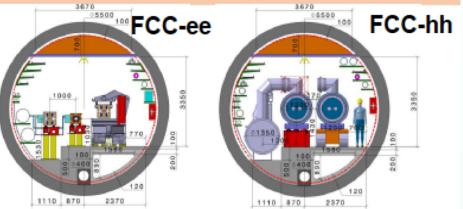
M. Benedikt, Granada 2019

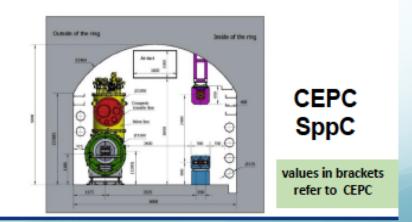
	Collider (all double rings)	Beam energy [GeV]	Peak luminosity (per IP) [10 ³⁴ cm ⁻² s- ¹]	β _y * [mm]	beam current [mA]	Collision scheme	Beam lifetime [min]	e ⁺ top- up rate [10 ¹¹ /s]
	SuperKEKB	4 (e⁺), 7 (e⁻)	80	0.3	3600 (e ⁺), 2600 (e ⁻)	Nano-beam	<5	10
	BINP c-t	1-3	5-20	0.5	2200	Crab waist	<10	1
	HIEPA c-t	1.5-3.5	~10	0.6	2000	Crab waist	<10	1
	FCC-ee (Z)	45.6	230	0.8	1500	Crab waist	68	7
	FCC-ee (H)	120	8.5	1.0	29	Crab waist	12	1
	FCC-ee (t)	182.5	1.6	1.6	5	Crab waist	12	0.2
2	CEPC (Z)	45.5	32	1.0	460	Crab waist	150	1.1
	CEPC (H)	120	3	1.5	17	Crab waist	26	0.2

Many similar parameters and strong synergies for design

CC based on proven techniques from past colliders and light sources

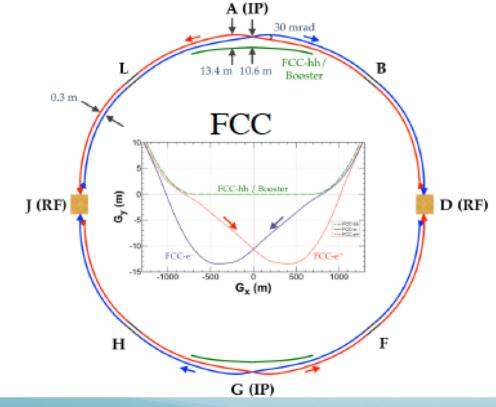
B-factories: KEKB & PEP-II: double-ring lepton colliders, high beam currents, top-up injection DAFNE: crab waist, double ring Super B-factories, S-KEKB: low β_v^* LEP: high energy, SR effects VEPP-4M, LEP: precision E calibration KEKB: e⁺ source HERA, LEP, RHIC: spin gymnastics

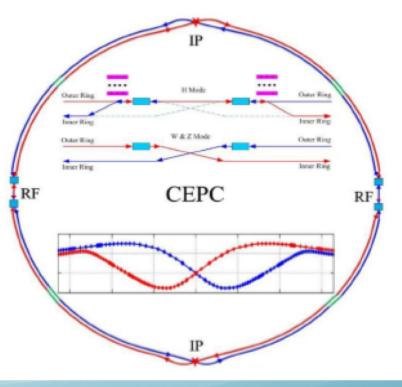

combining successful ingredients of several recent colliders → highest luminosities & energies


FCCee and CepC: parallel path

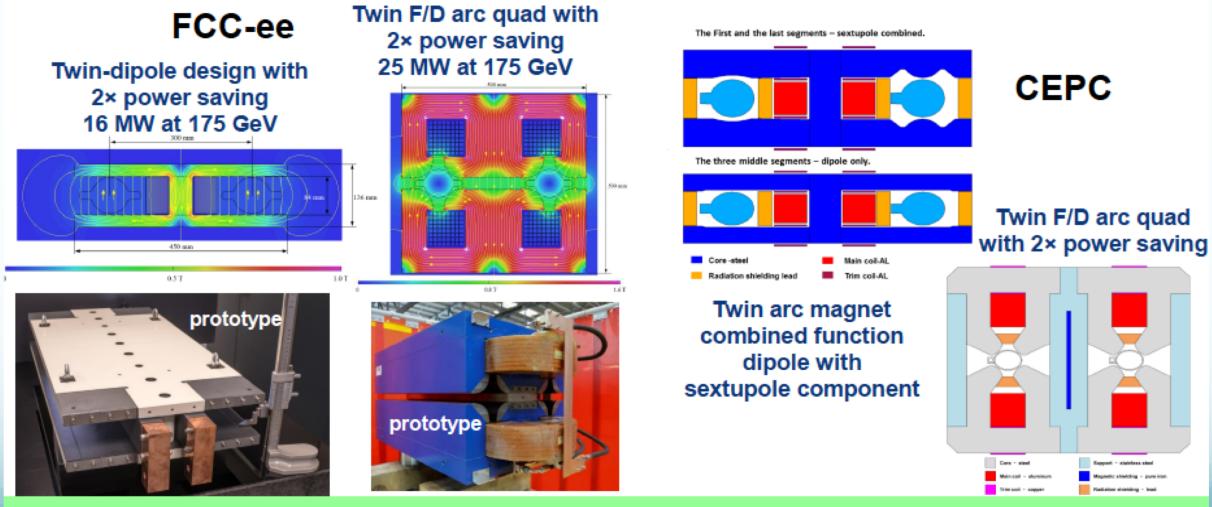
double ring e⁺e⁻ colliders as Z, W, H and t factory at E_{c.o.m.} of 90 - 365 GeV; As Higgs factory: design luminosities 17 (6) x 10³⁴ cm⁻²s⁻¹ (2 IPs) ; β_y^* = 1.0 (1.5) mm; crab waist collision scheme; beam lifetime >12 minutes; top-up injection, e⁺ rate ~ 1x10¹¹ /s ; CDRs complete

- FCC-ee and CEPC are part of integrated proposals and each followed by a hadron collider with common footprint.
- Circumference ~100 km
- Presently 2 IPs, alternatives with 3 / 4 IPs under study
- Synchrotron radiation power 50 (30) MW/beam at all beam energies, cf. LEP2 with 11 MW/beam; SR power/length ~factor 10 below light sources
- Top-up injection scheme requires booster synchrotron in collider tunnel

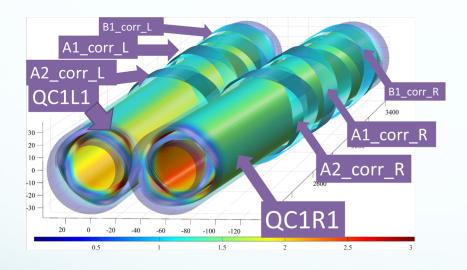




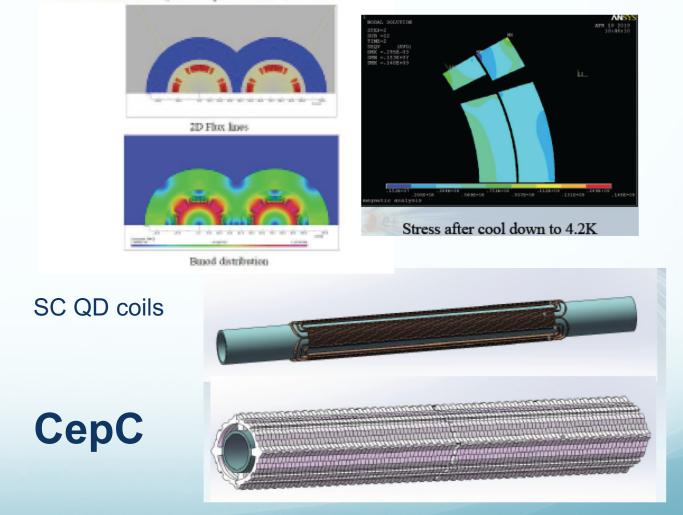
FCCee and CepC: similar design solutions


- Double ring colliders with full-energy top-up booster ring,
- CEPC evolved from initial 54 km single-ring design, practically to the FCC-ee 100 km design.
- 2 IPs, 2 RF straights, tapering of arc magnet strengths to match local energy
- Asymmetric IR layout to limit SR of incoming beams towards detectors and generate large crossing angle
- Common use of RF systems for both beams at highest energy working point (ttbar/ZH for FCC-ee/CEPC)

FCCee and CepC: similar low-power magnets



power reduction by factor 2 w.r.t. single-aperture magnets


FCCee and CepC: similar advances in FF-SC magnets

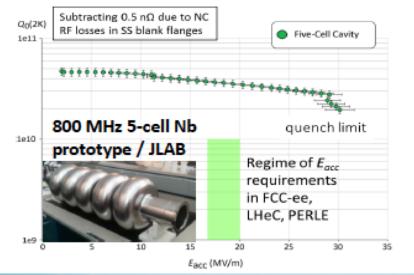
FCCee

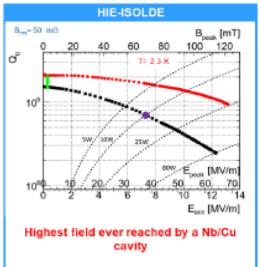
Final quadrupole pair near IP; canted-cosine-theta concept; with orbit corrector & skew quadrupole ; to be built with Nb-Ti or HTS wires • 2D field cross talk of QD0 two apertures near the IP side.

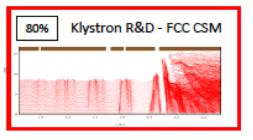
FCCee and CepC: RF systems

	f _{RF} [MHz]	#cavities	#cell/cavity	V _{RF,tot} [MV]	acc. gradient [MV/m]	technology
SuperKEKB	509	30 (ARES) 8 (SCC)	1 1	15 12	2 6	warm Cu bulk Nb
charm-tau	500	1 / ring	1	2x1	6	bulk Nb
FCC-ee-H	400	136 / ring	4	2000	10	Nb/Cu
FCC-ee-t (addt'l)	800	372	5	6930	19.8	bulk Nb
CEPC	650	240	2	2200	19.7	bulk Nb

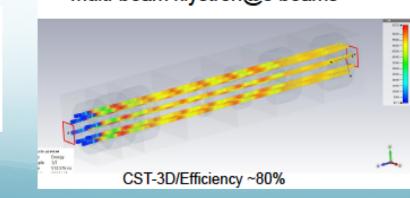
all systems between 400 and 800 MHz, various technologies,

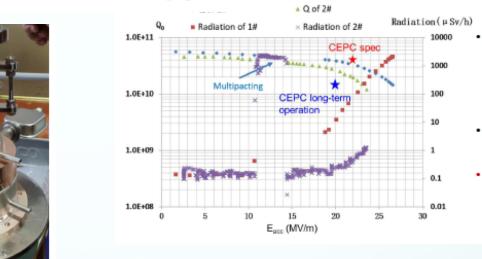

- preference for SC cavities,
- FCC-ee RF system optimized for each working point, CEPC features single system


FCCee : RF R&D activities

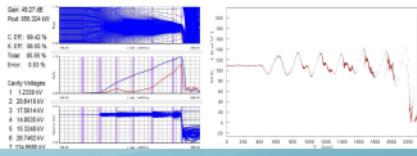

Several R&D lines aim at improving performance and efficiency and reducing cost:

- Improved Nb/Cu coating/sputtering (e.g. ECR fibre growth, HiPIMS)
- New cavity fabrication techniques (e.g. EHF, improved polishing, seamless...)
- Coating of A15 superconductors (e.g. Nb₃Sn)
- Bulk Nb cavity R&D at FNAL, JLAB, Cornell, also KEK and CEPC/IHEP
- High efficiency klystrons (e.g. COM, BAC, CSM) synergy with HL-LHC and CLIC
- MW-class fundamental power couplers for 400 MHz




CepC: RF R&D activities

- 650 MHz 2-cell cavity (BCP without N doping) reached 3.2 10¹⁰ at 22 MV/m
- N doping and Electro Polishing (EP) on 650 MHz cavity under investigation
- EP under commissioning
- High-Efficiency 650 MHz Klystron development
- First 650MHz manufacturer and Infrastructure preparation in progress Multi-beam klystron@8 beams



CEPC 650 MHz 2-cell cavity by HERT

Klystron output window

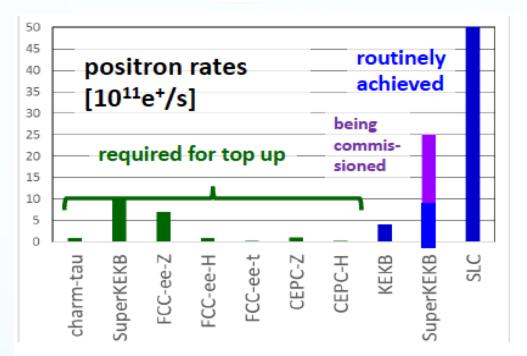
Single beam klystron@110kV/9.1A

16-19 September 2019

Cavities components

44

FCCee and CepC: R&D on positron production



Stanford linear collider

Electrons (e-)

inal focusing

Postrons (e+)

Routinely achieved positron rates: SLC, 1 bunch/pulse, 65 nC, 120 Hz, 5x10¹² e⁺/s KEKB, 2 bunches/pulse 2x0.6 nC, 50 Hz, 4x10¹¹ e⁺/s Under commissioning:

SuperKEKB, 2 bunches/pulse 2x4 nC, 50 Hz, 2.5x10¹² e⁺/s, ~1.0x10¹² e⁺/s already achieved

Increasing the efficiency of the production is under investigation

SuperKEKB injector

SLC complex

1.5 GeV e

Particle

1.1 GeVet

e- Chicane 4.219 GeV

> 9 km Posttron

Photo-cathode RF oun

Electron'

Dumping rings

> Pastron return line

> > Arc-bending: magnets

b oo ster

3.14 GeV e-

Outline

European Strategy

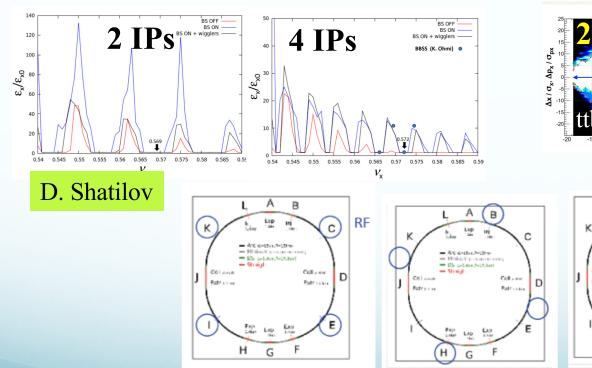
Summaries from EPPSU Granada

THEFT I THEFT

Focusing in "real" e⁺e⁻ colliders LC projects: ILC, CLIC CC projects: FCC-ee, CepC

Some "dreamt" e⁺e⁻ colliders Boosting the performances

Advanced Linear Colliders e⁺e⁻


Compact Linear Collider

Genev

Boosting the performances

 ε_x blow up due to coherent instability vs Q_x

FCCee with increased interactions points

off-mom. dynamic aperture

А

Lxp

AC station between

Dis Lotties, Not April

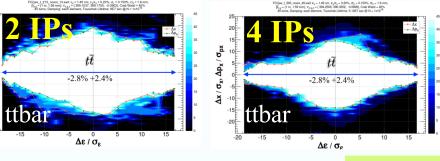
Lop

G

н

Extern.

Mini-art anti-term

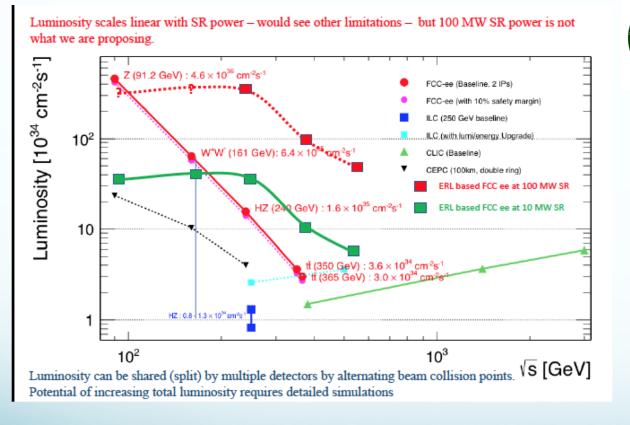

в

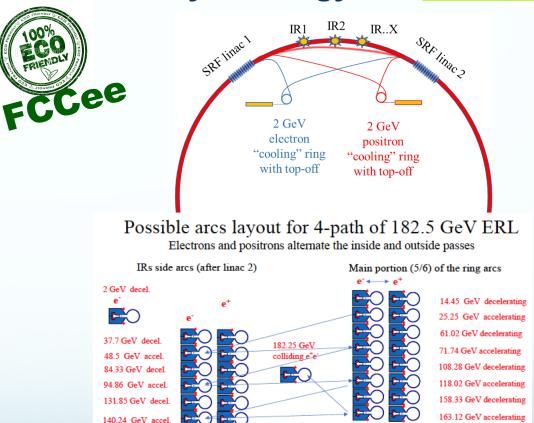
C

D

Collarea

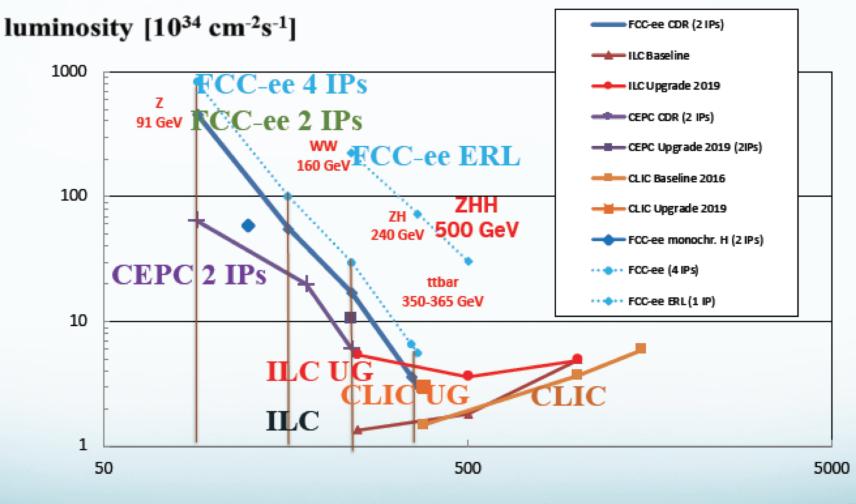
Patrick.


K. Oide

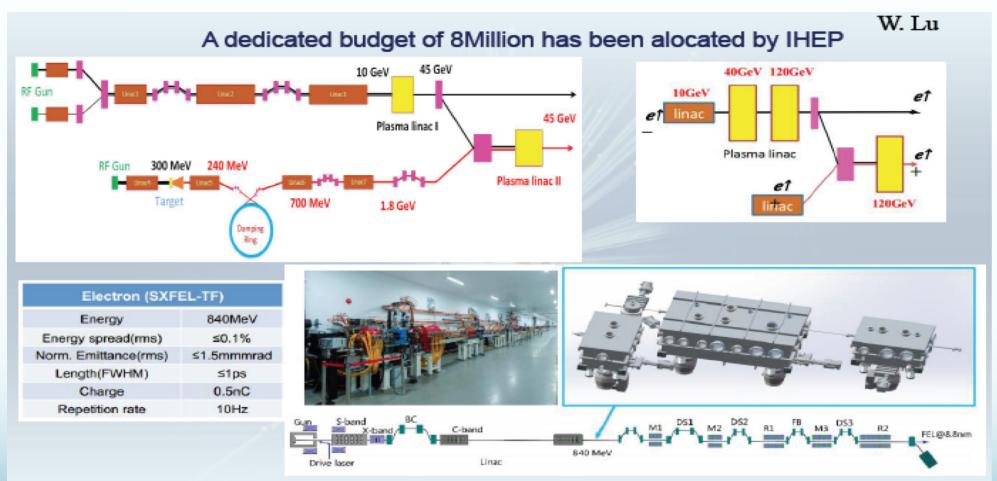

4 IP will have a huge impact on the layout, FCC-hh design, many components such as RF, injection, beam abort, polarimeter, etc.

Boosting the performances

ERL based FCC-ee upgrade for higher luminosity & energy


V. Litvinenko, T. Roser M. Chamizo

arXiv:1909.04437 (cross-list from physics.acc-ph) [pdf] Future High Energy Circular e+e- Collider using Energy-Recovery Linacs Vladimir N Litvinenko, Thomas Roser, Maria Chamizo Llatas



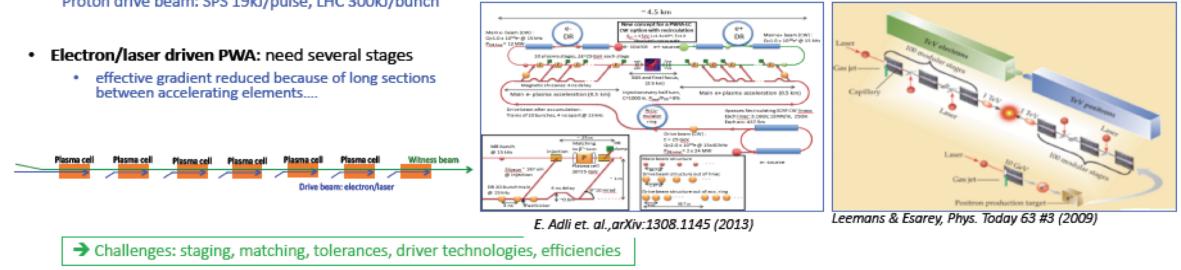
c.m. energy [GeV]

Boosting the performances

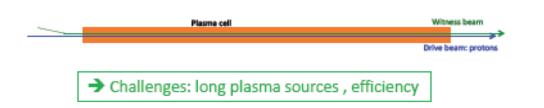
> **CEPC Injector Alternative:** Plasma Accelerator up to 45GeV single stage)~120GeV (cascade)

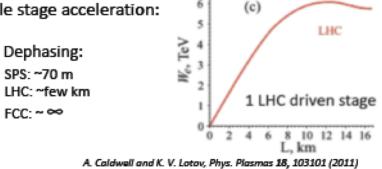
Electron plasma acceleration will be tested in Shanghai's Soft XFEL Facility
 Positron plasma acceleration scheme will be tested at FACET-II at SLAC

Advance Linear Collider e⁺e⁻: HEP Energies in PWA


Plasma WakeField Accelerator (PWFA): Drive beam = high energy electron or proton beam

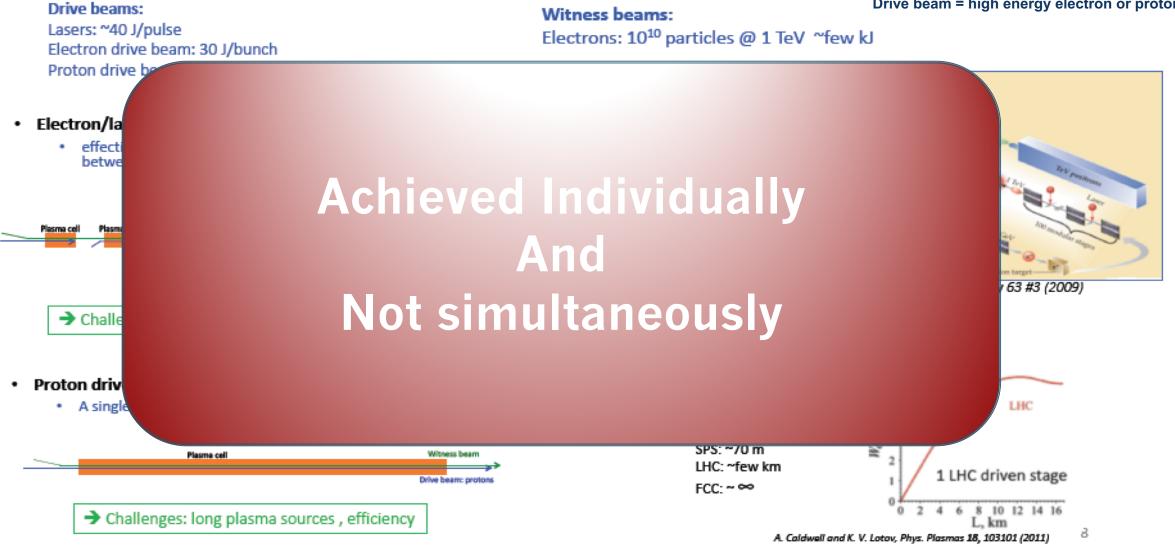
Drive beams:


Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch


Witness beams:

Electrons: 10¹⁰ particles @ 1 TeV ~few kJ

- Proton driven PWA: large energy content in proton bunches → allows to consider single stage acceleration:
 - A single SPS/LHC bunch could produce an ILC bunch in a single PDWA stage.



8

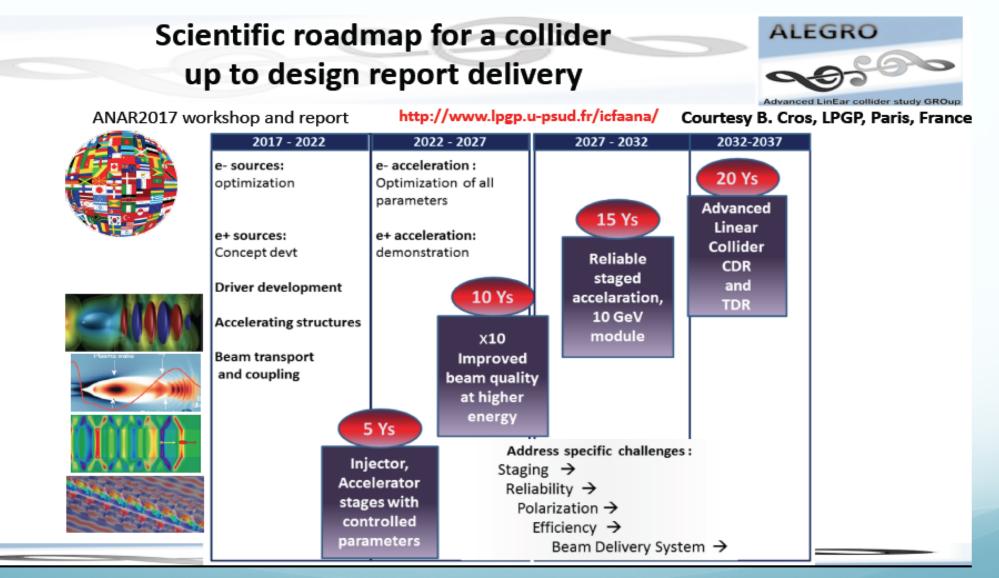
Advance Linear Collider e⁺e⁻: HEP Energies in PWA

Plasma WakeField Accelerator (PWFA): Drive beam = high energy electron or proton beam

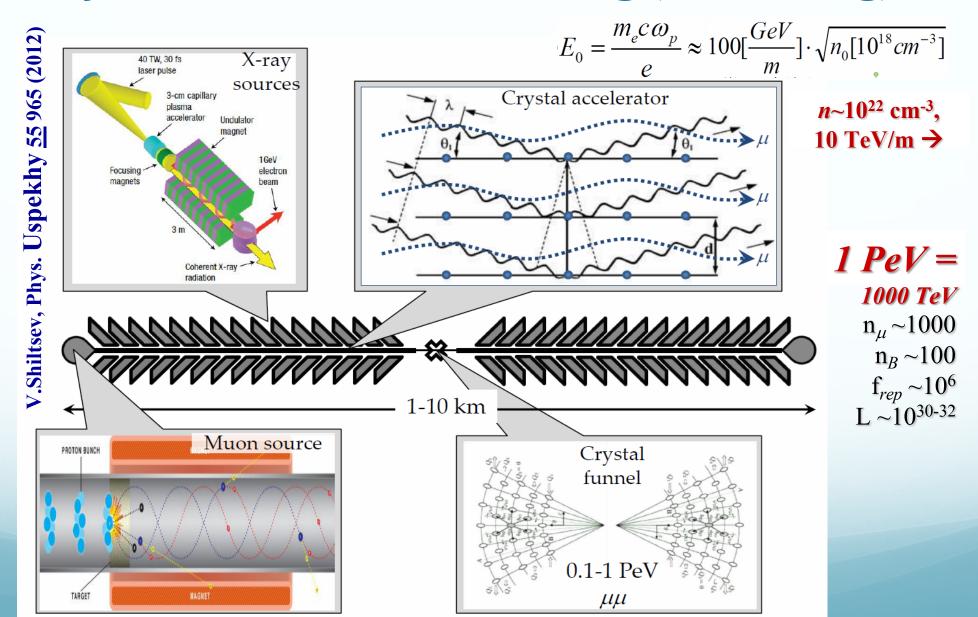
Advanced Linear Colliders e⁺e⁻: HEP Energies in PWA

ALEGRO proposal aims at design of plasma

collider -- the Advanced Linear International Collider (ALIC).


- Construct dedicated facilities over the next five to ten years that can reliably deliver high-quality, multi-GeV electron beams from a small number of stages. Key topics: front end of ALIC, consisting of an injector plus accelerator module:
- External injection
- Bunch quality, efficiency, stability and reproducibility
- Plasma sources
- Operation at high repetition rate
- ✦High-quality electron (e⁻) and positron (e⁺) bunches
- Independently shaped drive- and main-beam
- Multi-stage challenges with high-energy beams

We need a European study for a plasma based collider with start-to-end simulations



Courtesy B. Cros, LPGP, Paris, France

Advance Linear Collider e⁺e⁻: HEP Energies in PWA

"Dream" Collider = Muons + Acceleration in Crystals + Continuous Focusing (Channeling)

Summary at a glance

Higgs Factories	Readiness	Power-Eff.	Cost		
ee Linear 250 GeV					
ee Rings 240GeV/tt					
μμ Collider 125 GeV			*		
ALIC 125 GeV		?	?		
	F1 "Technology	F2 "Energy Efficiency" F3 "Cost" :			
	Readiness" :Green- TDRYellow- CDRRed- R&D	Green : 100-200 MW Yellow : 200-400 MW Red : > 400 MW	Green: <lhc< th="">Yellow: 1-2 x LHCRed: > 2x LHC</lhc<>		

Thanks for your attention

In Summary

- A e⁺e⁻ LC is ready for start up ~2035: ILC hosted in Japan and CLIC at CERN, in both cases promoted and set up as international projects
- The main accelerator technologies have been demonstrated (CLIC need large scale production)
- The cost and implementation time are **similar** to **LHC** (~10B\$)
- The physics case is broad and profound, and being further developed
- The detector concept and detector technologies R&D are advanced

Implementing a LC now provides a very attractive, implementable way forward, with a good match between scientific progress and further technology development – not only for LC technologies ..

- e*e* CCs are combining concepts and techniques developed, implemented and demonstrated by past and present circular colliders.
- All key technologies and concepts are available
- Efficient RF power generation and efficient SRF structures are being investigated
- Optimized engineering design for cost efficient construction, availability, maintainability is also ongoing

Building on the successful model of LEP & LHC at CERN, integrated proposals for future HEP Infrastructures, FCC ee, hh, he and CEPC/SppC, based on ~100 km tunnels, **starting with highest luminosity EW factory** to be followed by highest energy hadron collider at later stage, are very powerful and attractive long-term options for HEP.

Technical Challenges in Energy-Frontier Colliders proposed

		Ref.	E (CM) [TeV]	Lumino sity [1E34]	AC- Power [MW]	Cost-estimate Value* [Billion]	В [T]	E: [MV/m] (GHz)	Major Challenges in Technology
С	FCC- hh	CDR	~ 100	< 30	580	24 or +17 (aft. ee) [BCHF]	~ 16		High-field SC magnet (SCM) - <u>Nb3Sn</u> : Jc and Mechanical stress Energy management
C hh	SPPC	(to be filled)	75 – 120	TBD	TBD	TBD	12 - 24		High-field SCM - <u>IBS</u> : Jcc and mech. stress Energy management
C	FCC- ee	CDR	0.18 - 0.37	460 – 31	260 – 350	10.5 +1.1 [BCHF]		10 – 20 (0.4 - 0.8)	High-Q SRF cavity at < GHz, Nb Thin-film Coating Synchrotron Radiation constraint Energy efficiency (RF efficiency)
C ee	CEPC	CDR	0.046 - 0.24 (0.37)	32~ 5	150 – 270	5 [B\$]		20 – (40) (0.65)	High-Q SRF cavity at < GHz, LG Nb-bulk/Thin- film Synchrotron Radiation constraint High-precision Low-field magnet
L	ILC	TDR update	0.25 (-1)	1.35 (– 4.9)	129 (– 300)	4.8- 5.3 (for 0.25 TeV) [BILCU]		31.5 – (45) (1.3)	High-G and high-Q SRF cavity at GHz, Nb-bulk Higher-G for future upgrade Nano-beam stability, e+ source, beam dump
C ee	CLIC	CDR	0.38 (- 3)	1.5 (- 6)	160 (- 580)	5.9 (for 0.38 TeV) [BCHF]		72 – 100 (12)	Large-scale production of Acc. Structure Two-beam acceleration in a prototype scale Precise alignment and stabilization. timing

A. Yamamoto, 190513k

*Cost estimates are commonly for "Value" (material) only.

Large Accelerator Projects Key technologies:

Components		SCRF			NCRF	HLRF	SC Mag.		NC Mag.	Vac.	Optics	Others		
Techniques		HG	HQ	CRYO	CRAB		HE-Klys	Nb₃Tn	CRYO					
P R O J E C I	FC C	FCC-hh			X	X			X	X		X		
		HE-LHC			X	X			X	X			Coll	Integr.
		FCC- eh/LHe C			X									
T S		FCC-ee	Х	X	X			X			X		IRs	Integr.
	LC	ILC	X	X									IRs	e+
		CLIC					X	X			X		IRs	