

Spin-off activities in the PICSEL & Microelectronic groups

Jerome Baudot

Scientific Council of IPHC 2019 March 8th

- → Motivations & Limits
- \rightarrow Overview on all projects
- \rightarrow Focus on β +, X, hadrontherapy
- → Tentative roadmap of developments

 \rightarrow Questions addressed to committee

Higher dynamic / speed Single particle detection

Landscape of CMOS pixel sensors

built on public-CMOS but...

Position, Time, Energy, Type

Public market

- Visible spectrum
- Video rates
- Small pixels

Wider spectrum: IR, X

Scientific-CMOS

Single photon sensitivity

⇒ Smart customized sensors

• Frame rate beyond imaging

Subatomic-CPS

e-, β +, p, α , ions, X, γ

2

Motivations for spin-offs

Subatomic-flavoured CPS are unique

- Target niche applications hardly matched by COTS or other scientific sensors
 - Sensitivity: lower energy ($\leq 1 \text{ keV}$) / hybrid-pixels
 - Frame speed: orders of magnitude higher than CCDs or sCMOS
 - Advanced analysis: embedded (e.g. histogramming) contrary to CCDs
 - Radiation-tolerance: orders of magnitude higher than CCDs

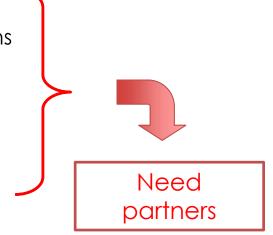
There is a demand

- Inside IPHC / IN2P3 / Unistra and outside
- Sometimes match existing sensors / sometimes not
- Potential contribution to group budget

Progressing on the technology

- New applications \rightarrow new requirements \rightarrow new abilities
- Potential source of new performances for vertexing / tracking
- <u>Remark</u>
 - Consumer market applications drives CMOS sensor technology evolution
 - \Rightarrow adapting CPS to subatomic physics is actually the spin-off ...

Limits



Scientific management

- PICSEL scientists cannot drive / be-user-of the applications
 - Missing expertise & time

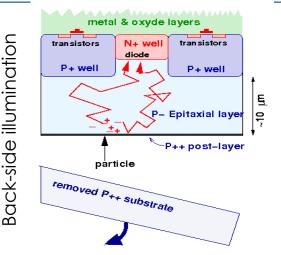
Budget

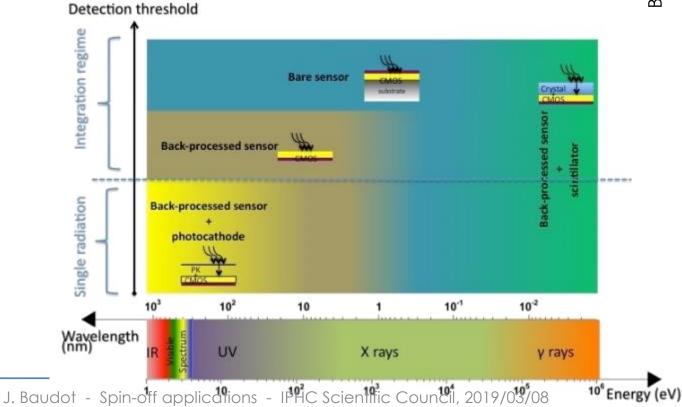
• PICSEL budget is not requested for spin-offs

Competitors

- Cannot compete on manpower against mainstream dvpmt companies
 - Exclude detection of photon close to visible spectrum: sCMOS, CCD
- Cannot (currently) compete on counting rate against hybrid-type system
 - XPAD, Medipix/Timepix, PILATUS
- Cannot (currently) compete on time resolution againt Silicon PhotoMultiplier

⇒ Selecting the proper niche is crucial

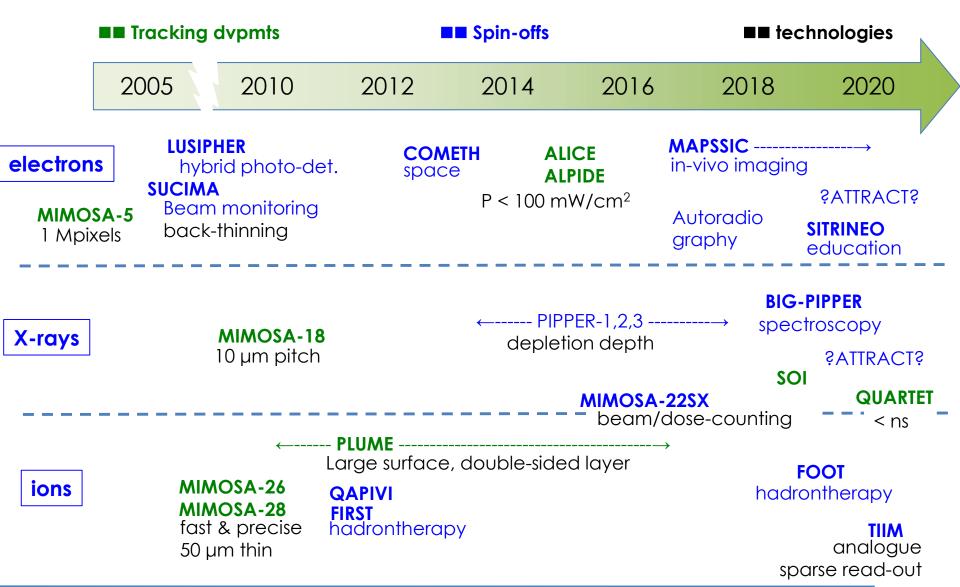

Sensitivity to radiations



All charged particles

Photons

- Equivalent Noise Charge ≤ 20 e → easy detection for E_{loss} ~ keV
- Limitation for low penetrating part. (e- of few keV, α) \Rightarrow


List of activities

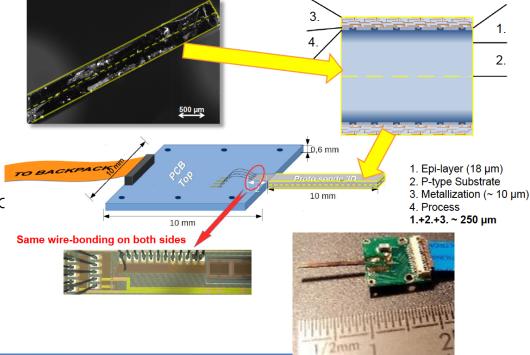
					STRASBO
Title	Date	Partners	Support	Domain	Work
SUCIMA	01-04	INFN	EU-FP5	Hadrontherapy	New sensor
LUSIPHER	06-10	IPNL, SAGEM, PHOTONIS	contract	Biology	New sensor
QAPIVI	11-13	IPHC/DRS	ANR-Cancer	Hadrontherapy	Existing sensor
FIRST	10-12	IPHC/DRS, LNF	INFN	Hadrontherapy	Existing sensor
FOCAL	10	Utrecht, Bergen	Utrecht, Bergen	HEP (calorimetry)	Existing sensor
COMETH	10-14			Space tech.	New sensor
PIPPER	13→	(SOLEIL), Tü.Berlin	SOLEIL +	X-analysis	New sensor
MIMOSA-22SX	14-17	SOLEIL	SOLEIL	X-analysis	New sensor
MAPSSIC	16→	IMNC, CPPM, CERMEP, NeuroPsi	IN2P3, CNRS-MI	Pharmacy	New sensor
FOOT	17-20	IPHC/DRHIM, INFN/LNF	INFN	Hadrontherapy	Existing sensor
SITRINEO	17→	KNU (Korea)	FKPPL, PHC, EUR	Education	Existing sensor
SOI	17→	КЕК	FJPPL +	HEP + X-analysis	New sensor
μBeam/autorad.	17	IPHC/DRHIM		Therapy / Biology	Existing sensor
ТІІМ	19-23	IPHC/DRHIM, GSI, INFN/LNF	EU-H2020	HEP (track+PID)	New sensor
ATTRACT	19-20	IPHC/DRS, Frankfort, INFN/LNF	CERN (EU-H2020)		Request 6

Timeline

In-vivo molecular imaging

Scientific case

- Coupling in-brain imaging with behavioural studies
 - locating β + emitters in brain of freely moving rodent


Key requirements

- Positron sensitivity over the largest possible energy range
- Immunity to γ from positron annihilation
- Extremely low power dissipation
- Robustness / implantation

Project MAPSSIC

- Partners: IN2P3/IMNC+CPPM, CERNMEP, NeuroPsi
- Exploit front-end derived from ALPIDE
 - One active probe = $160 \,\mu\text{W}$
- sensitive volume only 18 μm
- Wireless connection in rodent back-pc
- First probe prototype under test
- New (improved) sensor to be submitted in 2019

-500

volu

Hadrontherapy: X-section

Scientific case

• better knowledge of fragmentation cross-section (E, θ) relevant for C path in tissues

Inner Tracker

Permanent Halbach magnets

- Some dose deposited outside targeted volume
- ⇒Impact on Treatment Planning System

Key requirements for vertexing/tracking

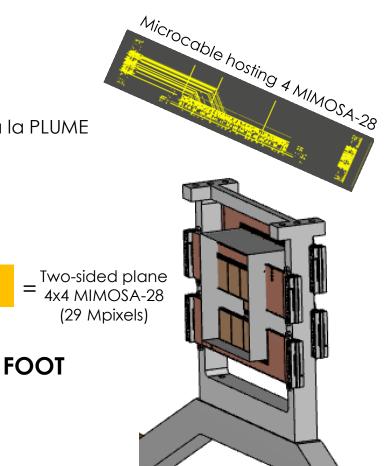
Sensor transparency to ions thickness
 ⇒Usage of 50 µm thin MIMOSA-26 & 28 + integration a la PLUME

Target and

Vertex

Projects

• FIRST (2011) \rightarrow FOOT (2019...)

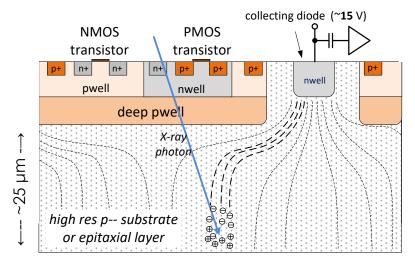

FIRST exepriment used

start counter and beam

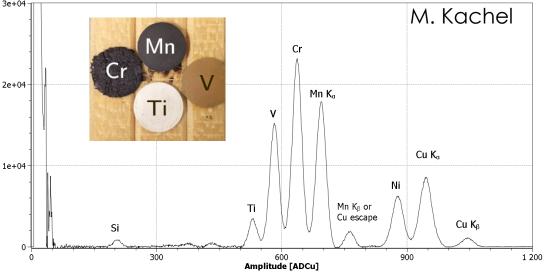
monitor chamber

- Collaboration with IPHC/DRHIM & INFN/LNF
- Outsourcing (industry) of PLUME-like module

X-ray spectrometry



Scientific case


- Instruments for X-ray characterization: cheaper / easier / more performant
- Partners: SOLEIL, Tech. Uni. Berlin, Uni. Frankfort
- Key requirements
 - Full depletion of sensitive volume
 - Pixel size < hybrid-det case
 - Noise, gain fluctuation < few 100 eV
 - Room T operation

Project

- New pixel type: PIPPER
 - AC-coupling
 - Useful / radio-tolerance in HEP
- Prototypes 2013-17
- Application size: BIG-PIPPER
 - subimission Spring 2019

EDXRF measurement - 4 samples (Ti, V, Cr, Mn), Cu tube (30kV, 40mA) background subtracted

Counts

ATTRACT proposals

- IPHC Institut Pluridisciplinaire Hubert CUREN STRABOURG
- CERN-driven initiative to connect detection-labs with industry
 - 2 Phases: many 1 year projects \rightarrow few long-term projects
 - 2019-2020: initial "proof of concept" period
 - CMOS pixel sensors @ IPHC involved in 4 projects
- Fast pixelated X-ray spectrometer
 - Based on CMOS pixel sensors measuring energy
 - Partner: Uni. Frankfort, IPHC (microelectronics)
- γ-spectrometry for flux > GHz/cm²
 - Based on tracking electrons in Coulomb-scattering with a dense sensor stack
 - Partners: IPHC, INFN/LNF, AERIAL
- Contamination (tritium) detector
 - Based on back-illuminated CMOS pixel sensor to locate source
 - Partners: Uni. Frankfort, IPHC
- Flying drone landmine detection
 - Based on light CMOS sensor coupled with neutron converter
 - Partners: IPHC (DeSIs), Lebanese Uni., Uni. S⁺. Joseph

Developments related to spin-offs

Sensors

Integration

- Sensitive volume
 - Depletion (PIPPER)

Architecture

- Sparse analogue read-out (TIIM)
- Short integration time << µs or ns (QUARTET)
- Technologies
 - SOI

Post-processing

• Back-thinning (SUCIMA, PIPPER)

System

- Ultra low power (MAPSSIC)
- Wireless com. (MAPSSIC)
- Assembling
 - Sensor stack (FIRST, FOOT, ATTRACT)

Conclusion on spin-offs

A long-standing commitment

- Started in the first years of the group
- Various projects going-on & foreseen (ATTRACT)

A number of successes

- Boosted usage of sensors designed in the group (MIMOSA-26/28)
- Enlarged expertise (depletion, integration)

Strong points

- Ability to provide custom solution (ex. MAPSSIC)
- Variety of performances useful to several applications (ex. PIPPER, QUARTET) Spatial resolution (done) / Spectrometry (almost done) / Time resolution (to be dvp^{ed})

Notes

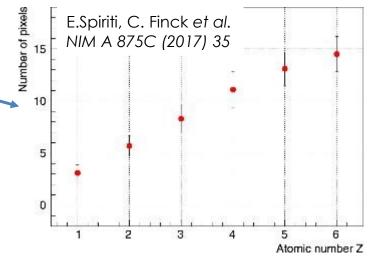
- No application yet in nuclear physics
- (almost) budget-less activity from IN2P3 side
- Difficult balance between
 - number of projects needed to maintain the activity
 - local team commitments

- The development of CPS is the main motivation of the PICSEL team existence:
 - \Rightarrow Is the potential of the technology justifying such an investment ?

- The operation of the PICSEL team is specifically oriented towards exploiting the potential of the expertise and means available at IPHC for CPS development :
 - \Rightarrow Is this operation mode justified and appropriate ?

Additional slides

Particle Identification + Tracking

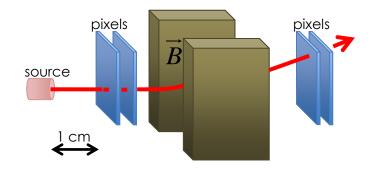


Scientific case

- Current CMOS pixel sensors in HEP not used for PID
 - Very thin sensitive layer \rightarrow large dE/dx fluctuation
- However:
 - Demonstrated possibilities for ions with large energy loss
 - Many silicon layer systems (ex. ALICE-ITS) mitigate fluctuations

Project: TIIM

- Within EU-infra STRONG project, 2019-2023
- Elaborate pixel architecture combining
 - depletion (for excellent signal collection)
 - analogue or few bits digital output
 - sparse read-out
- Only prototypes
- Partners: IPHC/DRHIM, INFN


Education on tracking

Scientific case

- Provide a tool for teaching tracking (detectors + <u>algorithms</u>) to student
 - Need multi-layer system: pattern recognition & momentum estimate
 - Propose hands-on experience on an open system: simulation, acquisition, control,
- Only available source (beyond cosmic rays) = low energy β radionuclides

Key requirements

- Miniaturisation !
- Super thin sensors to minimize material budget

Project

- SITRINEO partners: IPHC/DRS, Unistra, KNU (Daegu), INFN/LNF
 - (potentially many others...)
- Tracker with 4-6 planes of CMOS pixel sensors
- Permanent magnetic field (< 1T)
- Hardware almost there
- First "beam" late Spring 2019
- Then start "dissemination"

2 out of 4 sensors available

magnet

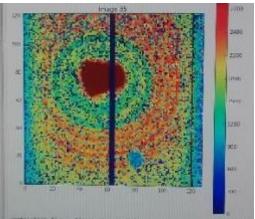
X-ray counting with MIMOSA-22SX

Scientific case

- Provide X-ray counter with
 - small pixels << 50 μm
 - Sensitivity to soft X-rays down to 100 eV

Mimosa 225X First prototype specs

- Tower Jazz 180 nm CIS
- Depleted substrate, back-thinned
- 128 x 256 pixels with 22µm pixel pitch


2014-2017

- Discriminator with 2 thresholds
 → energy window
- Binary outputs
- 16 mm² of active area

Project

- Dedicated proto MIMOSA-22SX combining
 - depletion in PIPPER
 - Fast binary read-out in MIMOSA-22
- Partner: SOLEIL

Diffraction image obtained at SOLEIL with 1.5 keV X-rays

- Other potential applications:
 - Electron microscopy with single-electron detection
 - Beam monitoring

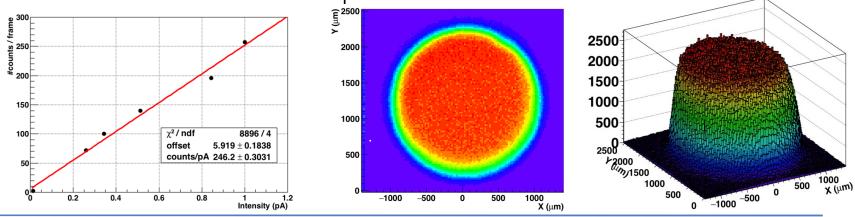
$\mu Beam$ with M22SX

2017

Dose Monitoring by counting

CYRCé Cyclotron at IPHC:

• 24 MeV protons



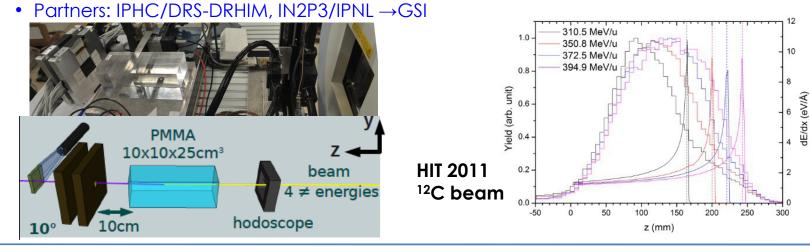
• Millimetre beam size for small animal proton therapy

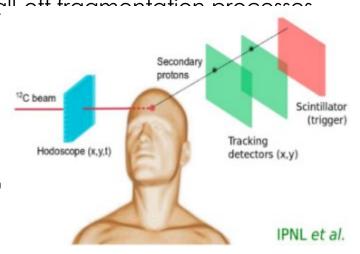
Motivation:

Monitor dose for small beam size (problematic with current detector)

- First tests with Mimosa 22SX (with IPHC/DRHIM)
- Linear behaviour in the measured fluence range
- At least 1000 protons/nix/s possible

J. Baudot - Spin-off applications - IPHC Scientific Council, 2019/03/08

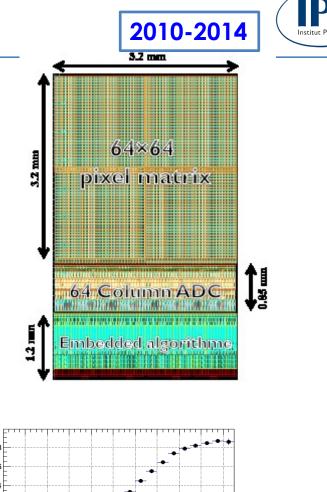

Hadrontherapy: monitoring

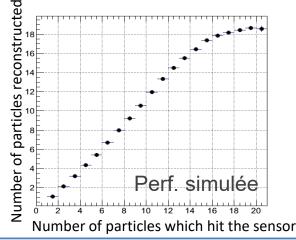

Scientific case

- Dose delivery driven by Bragg peak position = fc" off fragmentation processor
- Real-time monitoring of fragmentation vertices
 = dose location monitoring
- Key requirements for vertexing
 - Sensor transparency to ions thickness
 ⇒Usage of 50 µm thin MIMOSA-26 & 28 + integration a l₁

Projects

QAPIVI = Quality Assurance with Proton Interaction Vertex Imaging

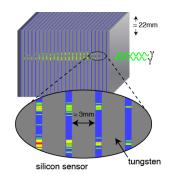



COMETH

IPHC Institut Pluridisciplinaire Hubert CUREN

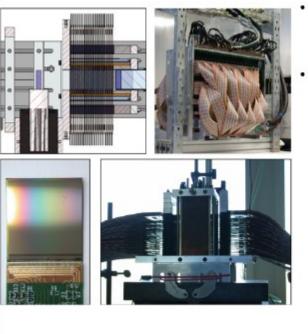
Real-time dose estimation in space

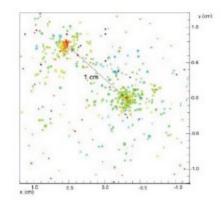
- Satellites on Medium Earth Orbit »
- Particle counter & rough spectrometry
- Electrons: 100 keV–7 MeV; $10^4 \rightarrow 10^7$ particles/cm²/s
- **Protons:** 100 keV– 400 MeV; $10^3 \rightarrow 10^4$ particles/cm²/s
- Key aspects
 - Electron / proton separation
 - Weight, Size, Power
- Project
 - PhD thesis, Yang ZHOU
 - Analogue part fabricated & tested
 - Digital algorithm (histrogramming) designed



DIGITAL Calorimetry: FOCAL

Project targeting ALICE


- Utrecht-NIKHEF + Bergen
- Direct γ measurement in p+p, p+A, A+A
- Granularity « Molière radius
- Energy measurement = counting particles

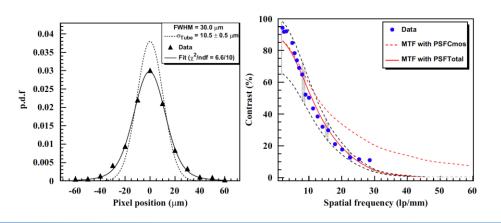

two-particle separation better by orders of magnitude

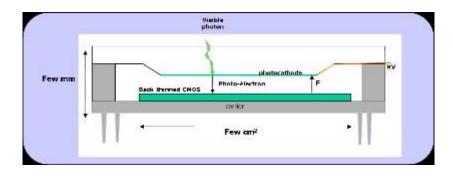
superior particle identification from extreme transverse and longitudinal granularity

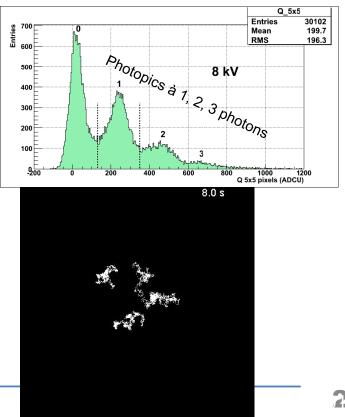
unique measurement capabilities for high particle densities

- activity at Utrecht/Nikhef:
 - full prototype, CMOS (MIMOSA)
 - 39Mpixels, 30µm pitch
- performed systematic tests:
 - test beam data from 2 to 250 GeV (DESY, PS, SPS)
 - cosmic muons

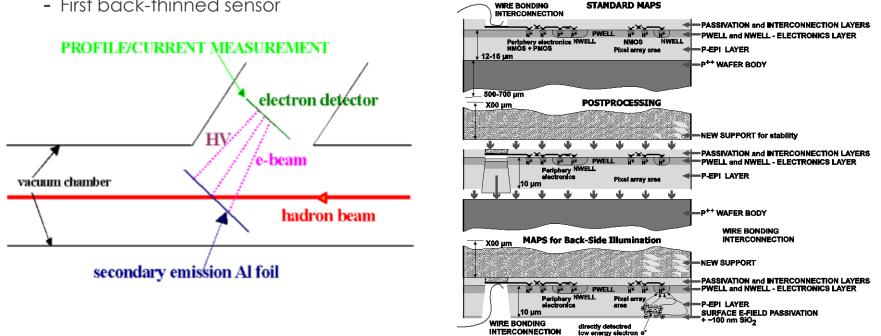
Proto tested in beam 2014 exploits MIMOSA-23 (2008) with tint = 640 μ s



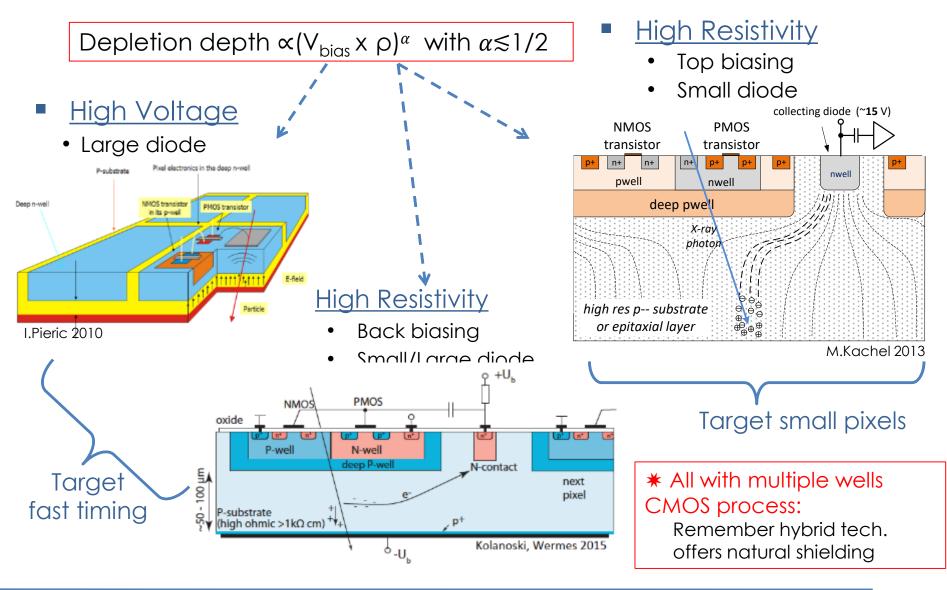

Possible improvement with sensor offering fast analogue read-out ~ TIIM project


Hybrid-photodetector

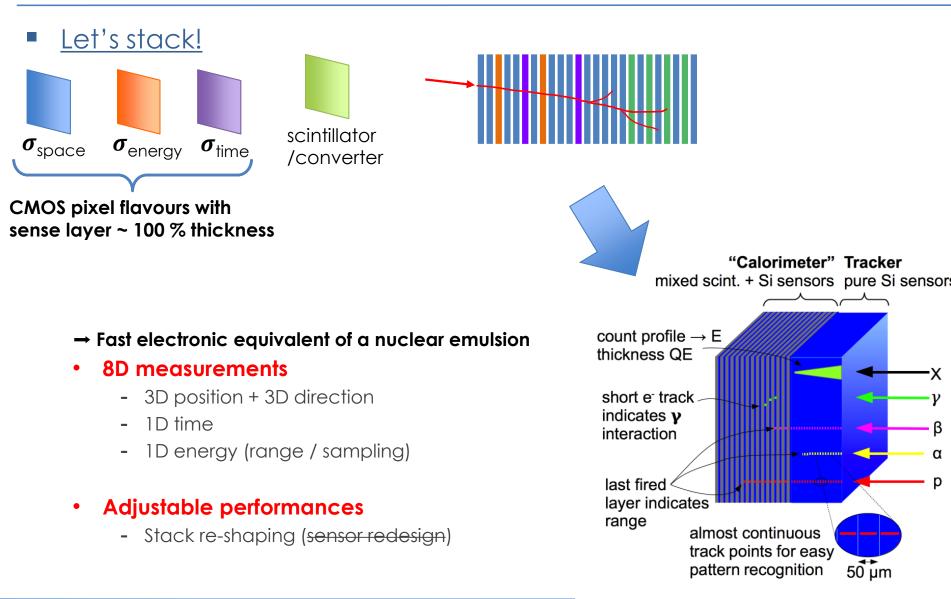
- Electron Bombarded CMOS (ebCMOS)
 - Single photon detector with spatial resolution
 - Collaboration IPN-Lyon (Rémi Barbier), PHOTONIS, SAGEM
- LUSIPHER project
 - Sensor LUCY, 400x800 pixel 10 μm, 600 fps
 - Photocathodes QE~15-25 % @ 480 nm
 - Dark count ~ 15 Hz/mm²
- Applications
 - Tracking low-intensity light sources
 - Underwater bioluminescence (ANTARES)



SUCIMA


Scientific case

- Quality Control of beam for hadrontherapy
 - Imaging secondary electrons emitted by a target hit by primary beam
- Project
 - Silicon Ultra fast Camera for electron and gamma sources In Medical Applications
 - Partners: Uni. dell'Insubria, Karlsruhe, Berlin, Krakow, Warsaw, Geneva
 - New sensor MIMOTERA with 10000 frame/sec
 - First back-thinned sensor


Three ways to deplete MAPS

DREAM of electronic emulsion

