

Université

<u>Outline</u>

- Introduction, MicPHC technical organization
- CPS design & characterization
- R&D activities for the next 3-5 years
- Conclusions

CMOS Pixel Sensors Development

Party in successful and the state of the second sec

- CPS is an integrated measurement system (SoC)
 - Needs a wide range of skills in Si detector, microelectronics (analogue, digital), electronics (analogue, digital), data acquisition, mechanics, ...
- The group MicPHC is organised by expertise in order to master the entire chain:
 Definition-Design-Validation-Integration of CPS
 - ♥ Physicists involved (PICSEL)
- Continuous R&D on sensor architectures and design techniques benefiting from the progress of semiconductor processes
- Design to Reuse (with adjustments) creates synergy among projects
 - ✤ Ability to handle multiple projects in parallel

CS

Synergy Among Projects

And in the owner of the owner owner

Ultimate objective: ILC, with staged performances

CPS applied to other experiments with intermediate requirements

<u>EUDET 2006/2010</u>

Beam Telescope

<u>ILC ~2030</u> International Linear Collider

Tracking of Charged Particles

- Subatomic physics
- Beam instrumentation
- Hadron therapy

Imaging

- B-rays, low energy e⁻
- X-rays
- Dosimetry
- Hybrid photo-detector
 - Bio-inspired vision

ALICE 2018 A Large Ion Collider Experiment

<u>CBM >2020</u> <u>Compressed Baryonic Matter</u>

<u>BEAST-BELLE II 2018</u>

Beam Exorcism for A STable BELLE Experiment

Earlier Measurement System (DELPHI 1981-1989)

- **1 detector group + 2 technical groups** (A, D) were involved in the project
- Now, with CPS (MIMOSA28 ~1 M channels), the whole measurement system is integrated on the same substrate
 - ✤ Experts must interact strongly
 - ↔ Modeling/simulation prevail at each step of the development
 - Defective parts cannot be repaired

8/3/2019

Project Definition & Technical Coordination

and some of the second states in the local states in the second states i

- Ensure connection between physics and CPS design
 - ✤ Transcription of physical constraints into electronic specifications
- Study / Propose of CPS architectures dedicated to the projects
 - ✤ Identifying the crucial points
 - ✤ Reusing, if feasible, the basic building blocks
 - ✤ Allocating of the necessary human resource
- Develop technical solutions in line with the technology progress
- Interact with foundries to maximize the process potential
- Interact within collaborations

Proposal 2: MIMOSIS Chip

Sensing Elements

• **Objective**: according to PHY requirements: σ_{sp} , t, A, ... dealing with μ E specs: noise, P, ...

Sensing

Elements

(Detector)

Preamp

Filter

General Resources Blocks (IP)

low dose n-type implant

Data

& Storage Steering / Clocking Data

& Control

Bench

Labo/ Bear

The key point is to choose the adequate process (doping, thickness, ρ, ...)

- Design validated by prototyping (\$/€!)
- ➔ N diode topologies for a project

P EPITAXIAL LAYER

OW DOSE NUTYPE IMPLANT

DEPLETED ZONE

DEPLETION

low dose n-type implan

In-Pixel Front-End Electronics

- **Objective**: design a low noise & very low power FEE (Front-End Electronics)
 - Signal ~100 e⁻ due to the EPI layer thickness → ultra low noise
 - 1/f, thermal, shot, RTS (no modeling), ...
 - ♦ High density, ~200 k ch/cm²
 requires → low power
 - Tradeoff Speed & Power consumption
 - Low power → MOS in weak inversion (model?)
 - besign robustness : pixel-to-pixel, chip-to-chip & wafer-to-wafer variations
- Access to foundry & specific process can provoke a (r)evolution in the FEE design

Tests

0.35 μ m Twin-wells (NMOS) \rightarrow 0.18 μ m Quadruple-wells (CMOS) = more functionalities

Integration of a FEE in typ. $20x20 \ \mu m^2$

- Pre-amplifier/Shaper
- A/D conversion

General Resources Blocks (IP)

Steering / Clocking

Data

Speed

Radiation

Prototypes

& Control

Noise

Test

Bench

Dimensions

Consumption

Sensing

(Detector)

Desian

- In-pixel memories
- Data driven readout

Functional Blocks (IP)

 Objective: SoC, design functional blocks (IP), according to the spec, needed for a CPS. They have the same constraints as the in-pixel FEE

Sensing Elements

(Detector)

In-Pixe

Preamp Filter Data

& Control

& Storage

Bench

Labo/ Bea

- These **IP blocks must** often be considered as **complete μE projects**
 - \checkmark Ex. ADC: Collaboration LPSC, LPCC, IRFU, IPHC \rightarrow 4 Ph.D theses
- → Reusable IP for CPS → Synergy in projects and collaborations
 - ✤ DeSIs and DRHIM also benefited from these IPs for their circuits

Analog and mixed IP:

- ADC, TDC, bias DAC, LDO regulator, SRAM, PLL, DLL, LVDS Rx et Tx, Temp. sensor, Band Gap, ...
- → Analog IP modelization for Digital Design Flow compatibility \rightarrow Another evolution in the knowhow

Digital IP:

CS

SPI, I2C, JTAG, Serialiser/deserialiser, 8B/10B, ...

All Digital Circuits

Objective: readout strategy, embedded data processing & compressing, transmission

Sensing Elements

(Detector)

In-Pixe

Preamp

Filter

- Steering & control logic, memories and digital IP blocks
- ✤ Design technics + Constraints:
 - Consumption (clock & power gating, asynchronous RO)
 - cross-talk
 - surface (insensitive area)
 - radiation tolerance (SEE) & speed
 - Signals / clocks distributions over long lengths (3 cm)

Pushed by the requirements of the experiments

- **Strong growth in complexity**
 - Steering and 'SUZE' logics \rightarrow data driven readout + high data flow management
 - For CBM (MIMOSIS) = 20 Gbps in internal data flow (~10xALPIDE)
 - □ New digital design on data compression, storage and transmission
 - □ Collaborations: IKF

Data

& Control

ransmiss

Test

Bench

General Resources Blocks (IP)

Data

& Storage

CPS Integration

• CPS == SoC \rightarrow need an engineer expert dedicated to the integration at the system level

Sensing Elements

(Detector)

In-Pixe

Preampli

Filter

General Resources Blocks (IP)

Steering / Clocking

Processing

Data

Transmission

& Control

Test

Bench

Labo/ Bear

• Design for Test (DfT) \rightarrow the integrated testability is defined with the test team

- Facing the evolution of mixed circuits: from (A/d) to (a/D)
 - Imposes an evolution of methodologies, from AoT to DoT \rightarrow (new skill!)
 - Always looking for additional digital designers!
 - Few microelectronics designers at IN2P3 master it

Design Team Summary

Tasks	Definition & Study Coordination T	Sensing Elements	Front End Electronics	Functional Blocks (IP)	All Digital Circuits	CPS Integration	IT, PCB CAD Support	Activities off-project
FTE (total 11/year)	0.8/year	0.6/year	1.8/year	1.8/year	2.8/year	1/year	0.4/year	1.8/year

Activities off-project:

- IN2P3 expert site for Cadence tools, for sharing IP blocks
 Expertise & consulting (University ICube, Mind, Collaborations, Juries)
 O.1 FTE / year
- \leq IN2P3 µE/CAD chargé de mission (C. Colledani)
- ✤ IN2P3 PCB library (0.3 FTE) and IPHC PCB support (0.4 FTE) (C. Illinger)
- ↔ Other: conferences, training courses, courses given

Training place for students in **μE** & physics instrumentation

- PhD students work on upstream R & D
 - They are technically supervised by our Ph.D engineers
 - 22 since 2005 including 3 Imabio and 1 Ramses
 - □ 2 ongoing
- \checkmark 7 masters μ E + 1 engineering student μ E + 2 BAC pro PCB since 5 years

0.6 FTE / year

0.7 FTE / year

0.2 FTE / year

Tests Team Missions

- CPS, IP blocks Test & Characterization
 - **Provide** Test benches P
 - P Training / Test benches for CPS designers, Physicists, PhD students, Post Doc
 - P Contribute to Test & Characterization activities

- Contribute to CPS technology deployment
 - P **Demonstrators & Instruments for final applications**
 - **EUDET Telescope**
- 2010 DESY, CERN

FIRST

- 2012 Heidelberg
- CYRCé Hadron Therapy 2016 IPHC
- Construction of HEP detectors P
 - STAR PXL detector - 2013 STAR USA
 - PLUME in BEAST - 2018 KEK Japon
 - CBM MVD detector - 2020 GSI Germany

Sensing Elements

(Detector)

In-Pixe

Filter

Preamp

STAR detector 2013

General Resources Blocks (IP)

A/D

Data

& Storag Steerina / Clockina & Contro

G. Claus - IR2

Test

Bench

DAO

Labo/ Bear

Test & Characterization -> CPS and IP

- - ♦ CPS Input
 - It must be particles
 - Hardly emulated by electric signal
 - ScPS characterization skills
 - Pixels → Physics, Electronics
 - Signal processing → Electronics

Test bench

General Resources Blocks (IP)

& Storage Steering / Clocking

A/D

Test

Bench

DAO

Test results

1.25 V

Buffer operation vs -Power supply voltage -Input signal level

Zone de

& Control

Characteri

Labo/ Bean

Mimosa 28 mounted on a PCB

What is an IP, IP block > Electronic block (Amplifier, DAC, ADC, Processing logic)

SLVS Bufer

- ♥ IP Input & Output
 - Electric signals
- ✤ IP Characterization skill
 - Electronics

8/3/2019

Tension

8/3/2019

CS

IPHC gilles.claus@iphc.cnrs.fr

15

Test & Characterization -> Why ?

Test & Characterization

- P Test = Functional test BEFORE performance measurement
 - Check for CPS design errors (Thanks to simulation risk is low but never null)
 - Check for CPS foundry process problems & Measure production yield
 - But ... our test activities are not production test for final CPS
- Characterization = Performance measurement P
- Characterization is crucial
 - Characterization is more than performance assessment P
 - Characterization is integrated in the CPS <u>R&D cycle</u> P
 - It is a feedback which guides the R&D program.
 - It starts with tests at laboratory and ends in Beam Tests CPS working conditions ~ final application

Noise

General Resources Blocks (IP

teering / Clocking

Speed

Sensing

In-Pixe

Eilter

Dimensions

Labo/ Be

Tes

Bench

DAO

& Contro

Test & Characterization -> CPS Design Steps

► First Step → Pixels matrix – CPS with Analogue output Tests C x Column 1 - Analogue CPS 2 - Digital CPS R Х Tests Row Tests 3 - Full chain CPS ► Second Step → Signal digitization – CPS with Digital output Tests C x Column 1 - Analogue CPS 2 - Digital CPS R Х Row Tests Tests **C** x Discriminator 3 - Full chain CPS ► Third Step → Data processing – Full chain CPS C x Column Tests 1 - Analogue CPS 2 - Digital CPS R Х Row Tests Tests **C** x Discriminator Data processing SUZE 3 - Full chain CPS Conclusion : New CPS -> Three Prototypes - Analogue - Digital - Full chain + **IP Electronics blocs**

and second se

- IP, Building blocks
 - Sectorics blocks (Buffer, DAC, Discriminator, PLL, Data processing logic) needed to build CPS

✤ Input & Output are electronic signals

- Validation can be done at ~ 100 % by simulation at CPS design stage !
- ♦ Why building and testing prototypes ?
 - Safety rule
 In case of new complex design
 - Evaluate robustness /
 - Voltage variations
 - Temperature variations
 - □ Radiations
 - □ etc ...
- Test and Characterization
 - Like ASIC
 (Application Specific Integrated Circuit)
 - Section Classic test benches
 - ASIC PCB

CS

- Analog / Digital waveform generators
- Voltmeters, Oscilloscope, Logic analyser

Generators, Scop

IP on Test board

IP Blocs test bench

Characterization

CPS Designers

Test Engineers

done by

Test results

CPS Designer - Hung Pham

Test Engineer K.Jaaskelainen

CPS Designer G.Doziere

&

1 – Analogue CPS

- **Pixels** characterization
 - Solution by simulation not possible → Prototypes + Characterization

Sensing

Elements

- Characterization in two steps
- ♦ At laboratory → Estimate the S/N ratio
 - CPS excited by X Photons (Fe55) Beta (Sr90)
 - □ Noise (e-)
 - □ CVF (Charge Voltage Factor) ⇔ Gain (uV/e-)
 - □ Charge collection (%)
- Solution Section S
 - CPS in a beam (Pions, e-) Telescope Particles
 - □ Spatial resolution [μ m] → 1-5 μ m
 - □ Detection efficiency [%] \rightarrow > 99,5 %
- Characterization requires experts
 - Sector Secto
 - ♦ Physicists → Pixel + Beam test data analysis
 - Solution State State
 - Instrumentation Engineers → System operation, Safety

Blocks (IP)

Calibration at laboratory Test bench \rightarrow Fe⁵⁵ source

Gain [µV/e-] - Charge collection [%]

Processing

Steering / Clocking

Data

Transmission

Detection performances measurement at CERN & DESY

Beam Telescope $\rightarrow \pi$, e⁻

CS

2 – Digital CPS

CS

- Pixels + A/D chain
 - ♦ A/D = Discriminator (ADC one bit)
 - 🎭 One discriminator / column or / Pixel
 - Example : Mimosa 26 (EUDET) 8680 fr/s = 1152 discriminators @ 10 MHz
- At laboratory → Discriminators electric performance
 - ✤ 50 % Threshold distribution [mV]
 - ✤ Noise distribution [mV]

- → FPN ~ 0,5 mV
- → TN ~ 0,5 1 mV
- In Beam Test → Detection performance (Resolution, Detection efficiency)
- Characterization requires experts
 - ✤ Electronics Engineers
 - ♦ Physicists
 - Solution Microelectronics Engineers
 - ✤ Instrumentation Engineers

Digital CPS characterization is mainly an electronics job but physicists involvement is required for Beam Tests

Sensing

Elements

Digital CPS One A/D (discri) / Column

Data

Transmission

ces Blocks (IP) Data

Processina

Steering / Clocking

Discriminators TPN & FPN

3 – Full Chain CPS

- Pixels + A/D chain + Data processing
 - Bata processing = Data « compression » by Zero Supression logic
 - S = Read only fired pixels (removedzero = pixels not fired)
- Testability integrated in CPS in order to check each block at laboratory
 - Pixel analogue
 - Pixels + Discriminators
 - Pixels + Discriminators + Data Processing
- Once blocks are checked Beam Test
 - Spatial resolution [μm] \rightarrow 1-5 μm
 - ✤ Detection efficiency [%]
- Characterization requires skills & Experts in
 - ♦ Physics → Beam test data analysis
 - \checkmark Microelectronics \rightarrow Test results analysis
 - Sector Secto
 - Instrumentation → System, Safety

Close and strong collaboration between Electronics engineers Microelectronics engineers Physicists

Sensing

Elements

Blocks (IP Data

Processing

Steering / Clocking

Data

Transmission

Mimosa 26 600 k pixels @ 8680 fr/s

CS

→ > 99,5 %

Irradiations

- Evaluate CPS, IP blocs radiation hardness
 - \mathcal{C} Characterize (at Laboratory or/and in beam test) non irradiated CPS, IP

1 - Analogue CPS

Tests

Tests

3 - Full chain CPS

2 - Digital CPS

Tests

- P Irradiate CPS at a given dose
- P Characterize again CPS
- P Etc ...
- Effects of radiations
 - P Ionising radiations
 - Increase of Noise, Leakage current, Thresholds shift
 - Non ionising radiations P
 - Done on bare chips
 - Reduction of Charge collection, Increase of Noise, leakage current
 - P Transient effects : SEE (SEU, SEL, SET)
 - Generate errors, mainly on digital electronics (bit flip, etc)
 - Latchup
- Irradiation sites

CS

- lonising \rightarrow CERN (CH), KIT (DE) P
- Non ionising
 Dubna (RU), Garching (DE), Ljublina (SI) P
- SEU,SEE, SEL → Louvain (BE), SIRAD (IT) P

IPHC gilles.claus@iphc.cnrs.fr

CPS sensors radiation tolerance

General Resources Blocks (IP)

A/D

Data

& Storan Steerina / Clockina & Control

Sensing Elements

(Detector)

In-Pixe

Preamp

Filter

M.Goffe

Characterization

Irradiation – Beam Tests

- P Mimosa 28 (STAR) (tested until)
 - 150 krad (500 krad)
 - 3.10¹² N_{eg} /cm² (3.10¹³)
- Mimosis 0 (CBM) P
 - > 3 Mrad (22 Mrad)
 - $> 3.10^{13} N_{eq} / cm^2 (1.10^{14})$

X rays Irradiation tests CERN

Test

Bench

DAQ

Labo/ Bean

Test Benches Development & Validation

PC

Control – Analysis SW

Laboratory CPS Test bench

- Two types of test benches
- Laboratory test benches
- Beam Test Telescopes (+ DAQ)
- Test benches are developed by the Test Team
 - ✤ Digital & Analog electronics : CPS support, Buffers, ...
 - Collaboration with MicroTechnics & Mechanics teams
 - ✤ DAQ systems : Mainly COTS (Commercial of The Shelf)
 - ✤ FW (VHDL, LabVIEW FPGA) & SW (C, C++, Python, LabVIEW, EPICS)
- Key aspects
 - Solution ← Solutio
 - Solution State State

the second distance of the second sec

DAQ validation G. Claus – M. Specht

Discriminators "S Curves"

Beam Telescope & DAQ At CERN

Test benches : HW, DAQ, Analysis SW Development & Validation > 50 % of Team activities

CPS Technology Deployment

■ From Laboratory prototypes to Demonstrators → Instruments → HEP Detectors

Sensing

(Detector)

In-Pixe

Filter

M.Specht

Proof of readiness / maturity of the CPS Technology

- Contribute to R&D on detection modules : PLUME, SALAT, ...
- Technical support to the CPS end-users
 - □ Instruments : EUDET (FP6) & AIDA (FP7) Telescopes
 - Detectors :
 - STAR Detector BNL USA
 - BEAST KEK Japan

K.Jaaskelainerty Test team actions for CPS Technology deployment

- Organize training on CPS, DAQ, Integration
- CPS characterization (EUDET, STAR)
- DAQ solution proposal (EUDET)
- Detector development, installation & commissioning
 - Example → BEAST for BELLE II
 - Strong contribution from MicroTechnics + Mechanics Teams B

2 x PLUME ladders in BEAST detector

Test

Bench

DAO

Labo/ Bear

EUDET Beam Telescope

General Resources Blocks (IP)

Data

& Storage Steering / Clocking & Contro

BEAST DAQ

BEAST for BELLE II

M.Goffe

G. Claus

M. Szelezniak

CPS Technology Deployment - Collaborations

CPS Detection module / Integration projects

PLUME ladder 8 x 106 Pixels - 8680 fr/s

SALAT Plane (FP7) 4 x 10⁶ Pixels 5400 fr/s

PRESTO (IKF)

Sensor encapsulation (IPHC)

Instruments for Hadrontherapy projects

FIRST (GSI) 2010-2012

CYRCé (IPHC) 2015

Biophysiks (GSI) 2012

and the second se

Padme (BNF) 2018

STAR Detector 2013 - BNL 40 x Mimosa 28 ladders

3 x STAR Ladder designed by BNL USA 1 Ladder = 10 x Mimosa 28 – 10 x 10⁶ pixels @ 5400 fr/s

BEAST detector – 2018 – KEK Japan 2 x PLUME ladders – 2 x 8 x 10⁶ pixels @ 8680 fr/s

Test Team: Conclusion & Future

Tasks	Systems developeme,t	Characterization Labo/Beam Test	Détectors integration	Others
FTE (Average 5/an)	3,1/an	1/an	0,5/an	0,4/an

- CPS Characterization → Large field of activities
- We master all the CPS life cycle steps
 - ✤ Test benches development and validation
 - ♥ CPS characterization
 - ✤ CPS integration in detectors
- We must concentrate efforts on CPS characterization
- Characterization & Test Benches development are running in //
 - Solution Numerous test benches (TB) are required + Manpower
 - Solution States Solution S
- Future challenges

CS

- ✤ Fast serial links >= 1 Gb/s & HEP standard DAQ, like IN2P3 DAQGEN project
- ✤ Improve Simulation / Tests integration for digital blocks
- ✤ New technics for wafer scale CPS

IPHC gilles.claus@iphc.cnrs.fr

& Control

Test

Bench

DAO

Labo/ Bear

- Physicists
- CPS Designers

General Resources Blocks (IP)

A/D

Data

& Storage Steering / Clocking

Sensing Elements

(Detector)

In-Pixe

Filter

Preamp

- Test Engineers

CPS R&D Milestone

Proof of principle

Mimosa-1 6,5 mm² - 16 k pixels 600 fr/s – Analogue output

EUDET Beam Telescope

Mimosa-26 2 cm² - 0.6 10⁶ pixels 8400 fr/s - Digital 2018

in success distances in the latter

PLUME detectors in BEAST - 2018

Mimosa5: proto. SUCIMA project Mimosa5: EBCMOS IPNL

Mimosa23: FoCal-ALICE R&D

Mimosa26: NA61, NA63 Mimosa26: other telescopes Mimosa26: FIRST Project Mimosa26: PLUME Project Mimosa26: QAPIVI Project Mimosa26: PRESTO demo IKF Mimosa26: demo CERNWIET

Mimosa28: CYRCé Mimosa28: FOOT project Mimosa28: Hadrontherapy Mimosa28: AIDA EU project Mimosa28: demo BESIII

Mimosa22-SX: demo SOLEIL PIPPER: demo X-rays

IMIC: intracerebral probe

8/3/2019

CS

Current & Future R&D Activities

Spatial resolution & Higher Functionalities (tradeoff)

- 1. Smaller pixel for spatial resolution new FEE
- 2. 4D, 5D pixels

Consumption & Complexity

- 1. Readout strategy (asynchronous)
- 2. Digital architecture
- 1. Charge collection improvement
- 2. Higher integration: 3DIT & wafer scale sensor **Strong international collaboration with foundries**

Current & Future R&D Activities

and the second se

CS

MicroTechnics: Needs/Wishes for CPS

- MicroTechnics at IPHC is an important actor for our projects
 - ✤ Daily contribution: CPS bonding and PCB assembly
 - ✤ Low mass detectors modules construction (Flex-Rigid PCB)
 - PLUME ladder
 - Telescopes SALAT for AIDA (FP7)

- Solution Maintaining human expertise & technical resources
- ✤ Studying enabling technologies
 - Different chip connections techniques
 - Die-to-die interconnections (e.g. direct bonds)
- Solution R&D on assembly of new ladders & wafer scale sensors
 - Data and power transmission
- ♥ QC tools and procedures
 - Metrology
 - Infrastructure

Conclusions

- We design(ed) key sensors for HEP and continue collaborating for this purpose
- We contribute to the spread of the CPS technology via many users of our sensors
- We master the complete CPS development chain: Definition, Design and Validation
- Interaction with physicists for:
 - ♥ Elaborating technical positioning strategies within collaborations
 - Defining the specifications, Finding the best trade-off for the process options, Evaluating CPS performance (lab test & beam)
 - ↔ Arguing on the results from the point of view of the physics experiment
 - ✤ Looking for synergistic CPS applications
- Critical size → to have an impact in international scientific collaboration/competition
 - Upstream R&D on sensor architectures and design techniques
- Importance to collaborate with Institutes like CERN, KEK, ... allows to
 - Have an **access** to the foundry process information, Contribute to **process optimisation**
- But how to maintain this capacity ?

Main Components of the Signal Processing Chain

a summing distance in the state of

- Typical components of read-out chain
 - ✤ AMP: in-pixel low noise pre-amplifier
 - Low signal value: ~ 80 e-h+ pairs/ μ m → signal O(1 Ke⁻) collected by a cluster of ~3-5 pixels→ low noise
 - \checkmark Filter: in-pixel filter \rightarrow low noise
 - ✤ ADC: analog-to digital converter (1 bit = discriminator)
 - Sero suppression: only hit pixel information is retained and transferred
 - ↔ Data transmission: O(Gbits/s) link implemented on sensor periphery
- Read-out in general data-driven
 - \checkmark Synchronous: clock distribution over pixel array \rightarrow power consumption
 - ♦ Asynchronous: no clock running over pixel array → increased design complexity?
- Trade-off between conflicting parameters

Pixel Architecture

MIMOSIS sensor = starting point + Project driven

- \heartsuit Very high spatial resolution (~ 3 μ m)
 - Trade-off between spatial resolution and readout speed
 - High level integration benefit from very deep submicronic feature size processes and 3DIT
- ✤ Analogue power consumption
 - Small electrode (C ~ 5fF), analogue power ~ (Q/C)⁻²
 - Improvement in S/N also good to improve timing jitter
- ♥ Radiation tolerance
 - AC vs DC coupling
 - Process optimisation: charge collection response + radiation tolerance
 - Simulation only (IPHC), contact to foundry via CERN → it is necessary to be in the decision loop (CERN)
- Solution (sub-nanosecond)
 - Collaboration project with CPPM (QUARTET, IN2P3 upstream R&D)
 - ToA measurement, TDC for group of pixels? R&D on new architecture
 - Wider pixel pitch?
- ✤ Energy resolution
 - ToT measurement vs. ADC? particle identification? → need investigation
- ✤ In-pixel memories

CS

■ Keep data in pixel until level 1 (trigger) → power trade-off

- Power consumption:
 - Solution Trade-off between hit activity (average, fluctuation) and clock: Synchronous vs. asynchronous RO
 - ✤ On-chip power management
 - ✤ Reconsider circuit architecture design for wafer-scale sensor (stitching)
- Digital signal flow & state machines with & w/o SEE protection
 - ✤ From pixel outputs, zero suppression, data aggregation to transmission
- Digital design evolution:
 - Solution Soluti Solution Solution Solution Solution Solution Solution S

Chips Design Tools	2005 MimoStar-2 25 mm ² Coll. STAR	2010-2012 Mimosa 28 ~4 cm ² Coll. STAR	2015 MISTRAL-O: 3x1,5 cm ² IPHC-CERN (Niveau Layout)	2016 ALPIDE: 3x1,5 cm ² Coll. CERN	Now
Verilog/ VHDL	\checkmark	\checkmark	\checkmark	-	\checkmark
STA		\checkmark	\checkmark	-	\checkmark
IR-Drop			\checkmark	-	\checkmark
LIBERATE				\checkmark	\checkmark
SV-UVM					\checkmark
LEC					

CS

Process/Technology/Foundry

- Selection of the right process and foundry is a crucial step
 - Twin well (0.35 μ m) $\xrightarrow{2011}$ Quadruple well (0.18 μ m) P
 - Increase digital circuit density, speed & power
 - Gain freedom in pixel design (NMOS vs. CMOS) \rightarrow readout speed x 10
- Process optimisation (CERN + foundry)
- **3DIT: stacked imagers**
 - 3D integration (ASICs need to be designed to allow for this) P
 - 2009 Fermilab Tezzaron multiproject Run
 - 2019: SOI stacking \rightarrow spatial resolution (~ 3 μ m)
- Post processing (e.g. thinning $<30 \mu m$, dicing, redistribution layers-RDL)
- Wafer scale sensor (CERN)
 - Stitching + thinning \rightarrow Exploit flexible nature of Si? P
 - Realise truly cylindrical detectors G

Thin & rigid ladder

Wafer support by the outer rim

Thin cylindrical detectors

warren warren der and aller all some and aller

2009 Coll. FermiLab

8/3/2019 CS

35

CPS characterization at lab

Calibration of the conversion gain - with soft X-rays

Emission spectra of a low energy X-ray source e.g. iron 55Fe emitting 5.9 keV photons.

very high detection efficiency even for thin detection volumes, constant number of charge carriers about 1640 e/h pairs per one 5.9 keV photon

Charge collection

Peak

150

Charge in highest 1 pixels pl 1 S0

1200

1000

800

600

400

200

0

50

100

INCIDENT, PHOTONS

General Resources Blocks (IP)

Data

Processing

& Storage Steering / Clocking Data

ransmissic

& Control

Sensing Elements

(Detector)

In-Pixe

Preampl

Filter

300

350

Calibration Peak

250

6.45keV

5 9keV

200

Entries

Mean

RMS

ALL ALL AND

Characterizati

Labo/ Beam

Test

Bench

DAO

Discriminators characterization

IPHC MAPS Standard characterization protocol → Example of Mimosa 26

Pixel + Discriminator characterization → **The whole chain** ...

STAR Design review

Sensing Elements

(Detector)

In-Pixe

Preampl

Filter

General Resources Blocks (IP)

Data

Processing

& Storage Steering / Clocking Data

ransmissic

& Control

Marie.Gelin@ires.in2p3..fr

8/3/2019

2/06/2010

ALC: NO.

haracteriza

Labo/ Beam

Test

Bench

DAQ

MAPS test bench \rightarrow Needs DAQ \rightarrow DAQ boards developed at lab until ~ 2007

01/08/2011	National Instruments Big Physics Symposium	- Austin Texas – 1, August 2011	gilles.claus@iphc.cnrs.fr	5/21

CS

CPS DAQ BEAST

3 - DAQ : Hardware NI PXIe

Data

ransmissic

& Control

General Resources Blocks (IP)

Data

Processing

& Storage Steering / Clocking

Sensing Elements

(Detector)

In-Pixe

Preampl

Filter

ALL ALLAN

haracteriza

Labo/ Beam

Test

Bench

DAQ

- Based on the IPHC PXIe NI FlexRIO board (EUDET & AIDA Telescopes)
 - Input :
 - Beam cycle signal : Time stamping with 0,2 us resolution
 - 2 Ladders data stream = 2 x 8 .10⁶ pixels @ 8680 fr/s = 24 x Mimosa 26 = 48 links @ 80 Mb/s = 480 MB/s
 - Output
 - Ladders RAW data stream @ 8680 frames/s → RAID system ~ 23 to 549 MB/s (see slides 11, 12)
 - Processed data Eg : Nb hits / Mi26 / Time unit → Ethernet Few kB/s (see slide 13)

CS

IPHC gilles.claus@iphc.cnrs.fr

Discri in pixel – MIMOSIS (IPHC)

MVD: sensor requirement

	ALPIDE (demonstrated)	MIMOSIS (MVD design goal)	Factor
Ion. Rad. Tolerance	2.7 Mrad	> 3 Mrad	1
Non. Io. Tolerance	1.7 10 ¹³ neq/cm ²	> 3x10 ¹³ neq/cm ²	2
Heavy ion tolerance	N/A	1 kHz / cm²	
Time resolution	5-10 μs	5 µs	2
Hit rate	> 12 kHz/mm²	700 kHz/mm ² (peak)	56
Data rate	1 Gbps	2.5 Gbps	2.5
Data reduction	Trigger	Elastic buffer	
Power consumption (depending on hit density)	20-35 mW/cm ²	50-75 mW/cm²	0.4
GBTx compatible	No	Yes	

- ALPIDE is not sufficient to fulfil all the requirements of the MVD
- Need a new architecture based on ALPIDE

Joachim Stroth | 56th Winter Meeting on Nuclear Physics | Bormio (Italy)

haracteriza

Labo/ Beam

Test

Bench

DAQ

General Resources Blocks (IP)

Data

Processing

& Storage Steering / Clocking Data

ransmissi

& Control

Sensing Elements

(Detector)

In-Pixel

Preamp

Filter

Equipe

7

in successive states and the second

KX SY

Nom	Grade IT & Doctorant	Profil
Bertolone Grégory	IE2	Numérique/Support
Claus Gilles	IR2	Test/DAQ
Colledani Claude	IRHC	Numérique
Dorokhov Andrei	IR1	TCAD/Analog/Mixte/Test
Doziere Guy	IR1	Numérique
Goffe Mathieu	IE2	Test
Himmi Abdelkader	IR1	Numérique
Hu-Guo Christine	IRHC	Analog/Mixte
Hu Yann	Prof	Prof
Jaaskelainen Kimmo	IEHC	Test
Kachel Maciej	IR2	Analog/Mixte/Test
Illinger Christian	IEHC	CAD support/PCB
Molinet Sylviane	IE1	Infomaticienne (40%)
Morel Frédéric	IR2	Analog/Mixte/Numérique
Pham Hung	IR2	Analog/Mixte
Specht Mathieu	AI	Test
Szelezniak Michal	IR2	Test
Valin Isabelle	IR1	Analog/Mixte
Zhao Ruiguang	Doctorant	Analog/Mixte/Numérique
Zhao Yue	Doctorant	Analog/Mixte/Numérique

Ph.D Students in Microelectronics

and the second second

	Prénom Nom	Soutenand	ce de Thèse	Suiet	Note	Fauipe
		Année	mois			1.1.
1	Michal Szelezniak	2008	Féb.	Développement des capteurs à pixels avec microcircuits intégrés pour le détecteur vertex de l'expérience STAR au collisionneur RHIC	Thèse: Université de Strasbourg	PICSEL
2	Sébastien Heini	2009	Mars	Conception et intégration d'un capteur à pixels actifs monolithiques et de son circuit de lecture en lechnologie CMOS submicronique pour les délecteurs de position du futur	Thèse: Université de Strasbourg	PICSEL
3	Ndeye Awa Mbow	2009	Juin	Conception et intégration en technologie CMOS d'un circuit de lecture et d'identification de coincidences à résolution temporelle de l'ordre de la nanoseconde destiné à l'imagerie biomédicale	Thèse: Université de Strasbourg	IMABIO
4	Mokrane Dahoumane	2009	Nov.	Conception, réalisation et caractérisation de l'électronique intégrée de lecture et de codage des signaux des délecteurs de particules chargées à pixels actifs en technologie CMOS	Thèse: Université de Strasbourg	PICSEL
5	Nicolas Pillet	2010	Juin	Conception et intégration de convertisseurs analogique/numérique, compacts, à bas bruit, adaptés aux capteurs CMOS destinés à la détection de particules chargées	Thèse: Université de Strasbourg	PICSEL
6	Quan Sun	2010	Juin	Research on on-chip PLL clock generator for MAPS	Thèse: Beihang University	PICSEL
7	Olav Torheim	2010	Sept.	Design and implementation of fast and sparsified readout for Monolithic Active Pixel Sensors	Thèse: Bergen University	PICSEL
8	Wu Gao	2011	Jan.	Conception d'un circuit de lecture monolithique "Front-End" avec un CTN haute précision et un CAN basé sur le temps en technologie CMOS pour l'imagerie TEP	Thèse cotutelle UDS-NWPU	IMABIO
9	Xiaochao Fang	2011	Mars	Conception et intégration d'une chaîne de lecture faible bruit en technologie CMOS pour un système TEP à base d'APD dédié à l'imagerie du petit animal	Thèse: Université de Strasbourg	IMABIO
10	Ming Fu	2012	Juillet	3D TCAD based studies of high resistivity epitaxial layer pixel sensors	Thèse Dalian University of Technology	PICSEL
11	Yunan Fu	2012	Mai	Développement de capteurs à pixels CMOS pour un délecteur de vertex adapté au collisionneur ILC	Thèse: Université de Strasbourg	PICSEL
12	Ying Zhang	2012	Sept.	Development of CMOS sensors for a future neutron electronic personal dosemeter	Thèse: Université de Strasbourg	RAMSES
13	Jia Wang	2012	Sept.	Design of a low noise, limited area and full on-chip power management for CMOS pixel sensors in high energy physics experiments	Thèse cotutelle UDS-NWPU	PICSEL
14	Xiaomin Wei	2012	Dec.	Study and improvement of radiation hard monolithic active pixel sensors of charged particle tracking	Thèse cotutelle UDS-NWPU	PICSEL
15	Liang Zhang	2013	Sept.	Development of a CMOS pixel sensor for the outer layers of the ILC vertex detector	Thèse: Université de Strasbourg	PICSEL
17	Yang Zhou	2014	Sept.	Development of a CMOS pixel sensor for embedded space dosimeter with low weight and minimal power dissipation	Thèse: Université de Strasbourg	PICSEL
18	Wei Zhao	2015	Jan.	Development of CMOS sensor with digital pixels for ILD vertex detector	Thèse: Université de Strasbourg	PICSEL
19	Tianyang Wang	2015	Sept.	Development of CMOS pixel sensors for the inner tracking system upgrade of the ALICE experiment	Thèse: Université de Strasbourg	PICSEL
16	Zhan Shi	2017	Jan.	Microcircuils de transmission rapide intégré dans un capteur CMOS	Thèse Dalian University of Technology	PICSEL
20	Julian Heymes	2018	Juillet	Depletion of CMOS Pixel Sensors: Studies, Characterisations, and Applications	Thèse: Université de Strasbourg	PICSEL
21	RuiGuang Zhao			CMOS Pixel Sensors with on-chip Neural Network		PICSEL
22	Yue Zhao			Radiation Tolerance Design Of CMOS Pixel Sensor For The Compressed Baryonic Matter Experiment		PICSEL

Publications/Workshops (2012-2016)

And Provent Advanced in the Advanced

- 1. Valin et al., "A reticle size CMOS pixel sensor dedicated to the STAR HFT", JINST Volume: 7, January 2012
- 2. W. Dulinski, "New Fabrication and Packaging Technologies for CMOS Pixel Sensors : Closing Gap between Hybrid and Monolithic Slides", PIXEL 2012, Sept. 2012, Inawashiro, Japan
- 3. L. Zhang et al., "A CMOS Pixel Sensor with 4-bit Column-Level ADCs for the ILD Vertex Detector", TWEPP, Sept. 2012, London, UK
- 4. L. Zhang et al., "CMOS Pixel Sensor with 4-bit Column Parallel Self-triggered ADC for the ILC Vertex Detector", IEEE International Conference on Electronics, Circuits, and Systems ICECS 2012, Dec. 2012 Seville, Spain
- 5. Y. Fu et al., "Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability", NIM-A, Vol. 717, July 2013
- 6. F. Morel et al., "MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures Dedicated to the Inner Tracking System of the ALICE Experiment", TWEPP, Sept. 2013, Perugia, Italy
- 7. T. Wang et al., "Development of CMOS Pixel Sensor with digital pixel dedicated to future particle physics experiments", TWEPP, Sept. 2013, Perugia, Italy
- 8. M. Szelezniak ; A novel MAPS based vertex detector for the STAR experiment at RHIC Slides ; 13th Topical Seminar on Innovative Particle and Radiation Detectors IPRD13, Sienna, 7-10 October 2013
- 9. C. Hu-Guo et al. "Development of the MISTRAL & ASTRAL Sensors for the Upgrade of the Inner Tracking System of the ALICE Experiment at LHC", IEEE-NSS, Nov. 2013, Seoul, Korea
- 10. W. Dulinski, "Post-Processing Step for Monolithic (CMOS) Sensors: Possible Added-on Value", Mai 2014, Argonne National Laboratory, USA
- 11. F. Morel et al., "MAPS for ALICE Upgrade and Beyond", Mai 2014, Argonne National Laboratory, USA
- 12. M. Kachel, "Development of MAPS Based Telescope for Neutron Spectroscopy", Mai 2014, Argonne National Laboratory, USA
- 13. T. Wang et al. "Development of CMOS Pixel Sensor Featuring Pixel-Level Discrimination for the ALICE-ITS Upgrade" TIPP, June 2014, Beurs Van Berlage, Netherlands
- 14. Y. ZHOU et al. "COMETH: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor", TIPP, June 2014, Beurs Van Berlage, Netherlands
- 15. C. Hu-Guo et al., "Design of CMOS Pixels Sensor for the STAR Experiment", CPIX, Sept. 2014, Bonn, Germany
- 16. M. Kachel et al., "Fully Depleted MAPS: Peagasus and Mimosa33", CPIX, Sept. 2014, Bonn, Germany
- 17. M. Szelezniak, "Upgrade of the STAR Silicon Detectors", VERTEX, Sept. 2014, Macha Lake, Czech
- 18. F. Morel et al., "FSBB-M and FSBB-A: Two Large Scale CMOS Pixel Sensors Building Blocks Developed for the Upgrade of the Inner Tracking System of the ALICE Experiment", TWEPP, Sept. 2014, Aix en Provence, France
- 19. L. Zhang et al., "A CMOS Pixel Sensor Prototype for the Outer Layers of Linear Collider Vertex Detector", TWEPP, Sept. 2014, Aix en Provence, France
- 20. C. Colledani, "HEP Electronics in France", TWEPP, Sept. 2014, Aix en Provence, France
- 21. J. Heymes et al., "IMIC Needle-shaped Low-Power Monolithic Active Pixel Sensors for Molecular Neuroimaging on Awake and Freely Moving rats", IEEE-MIC, Nov. 2016, Strasbourg, France
- 22. M. Kachel et al., "MIMOSA-22SX A Monolithic Active Pixel Sensor for Low Energy X-Ray Counting Applications", IEEE-NSS, Nov. 2016, Strasbourg, France

Conclusions - Weakness / Solutions -

and the second sec

<u>Mid term</u>

- ✤ Improve the reactivity
 - Need microelectronic digital designer, ...
 - Widen collaborations (both for design and test)
- ♦ Avoid saturation by CPS deployment projects → Slow down the R&D
 - Concentrate efforts on CPS validation, test bench & Data Acquisition developments for the test team
- ✤ Recurrent budget
 - Trainings, technical collaboration missions, workshops, ...

Long term

- ↔ Human resource strategy to maintain technical expertise and task force
 - Call for regular turnover of Ph.D students for upstream R&D
 - Post Doc for dedicated projects
 - 4 people (out of 12) in the design team will be retired in 4 7 years